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We propose a new way of evaluating the regularity of a graph of a function f . Our

approach is based on measuring the growth rate of the lengths of less and less regularized

versions of f . This leads to a new index, that we call regularization dimension, dim

R

.

We derive some analytical properties of dim

R

and compare it with other fractional

dimensions. A statistical estimator is derived, and numerical experiments are performed,

which suggest that dim

R

may be computed in a robust way. Finally, we apply the

regularization dimension to the study of Ethernet tra�c.
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1 Introduction

There are two main ways of measuring the regularity of a non-di�erentiable function

f : K ! IR where K is a compact set of IR. The �rst one is based on the investiga-

tion of the H�older properties of f

1

. These can be considered from a global point of

view, i.e. one seeks the largest �

g

> 0 such that 9C > 0;8x; y 2 K; jf(x)� f(y)j <

Cjx� yj

�

g

. A local approach is to look only in a neighborhood of x

0

for the largest

exponent such that : sup

x;y2B(x

0

;�)

jf(x)� f(y)j

jx� yj

�

l

is �nite and then to make � tend to 0.

Finally, the pointwise exponent is the largest �

p

such that sup

x;y2B(x

0

;�)

jf(x)� f(y)j

�

�

p

is �nite.

The second way of evaluating the regularity of f is to measure the dimension

of its graph �. Again, several de�nitions exist, and we only mention here the most

frequently used ones, in the case of a subset E of IR

d 2

:

De�nition 1 (Hausdor� dimension) Let fE

i

g

1�i�1

be a �-cover of E, i.e. a

countable family of sets such that

E �

1

[

i=0

E

i

; jE

i

j � �; E

i

� IR

d

; 8 i

Consider

H

s

�

(E) = inf

1

X

i=0

jE

i

j

s

1



Let

H

s

(E) = lim

�!0

H

s

�

(E) = sup

�>0

H

s

�

(E)

H

s

(E) is called the s-dimensional Hausdor� outer measure of E. The Hausdor�

dimension of E is :

dim

H

E = inffs : H

s

(E) = 0g = supfs : H

s

(E) =1g

Finally, one often considers the box dimension which is easier to compute. We

assume now that E is bounded :

De�nition 2 (Box-counting dimension) Let N

�

(E) be the smallest number of

sets of diameter equal to � which can cover E. The lower and upper box-counting

dimension of E are respectively de�ned by

dim

B

E = lim

�!0

logN

�

(E)

� log �

dim

B

E = lim

�!0

logN

�

(E)

� log �

From now on, we will write dim

B

in place of dim

B

.

The following relations always hold :

dim

H

� � dim

p

� � dim

B

�:

For many \nice" curves, all these de�nitions give the same result, which is moreover

related to the H�older exponent. For example, if X is a fractional Brownian motion of

index H , then almost surely : dim

H

X = dim

p

X = dim

B

X = 2�H and 8t; �

l

(t) =

�

p

(t) = �

g

= H . For a Weierstrass function W (t) =

1

X

1

�

�nh

sin(�

n

t); 0 < h < 1,

one has dim

H

W � dim

p

W = dim

B

W = 2� h and 8t;8t; �

l

(t) = �

p

(t) = �

g

= h.

More generally, a relation of the kind : dim� = 2 � h, where h is a kind of \self-

�milarity" index, holds for many curves, such as some non Gaussian stationary

processes

3; 4

.

As can be seen from the previous de�nitions, all the dimensions are somehow

related to the geometric properties of �, and in particular its length. More precisely,

one can think of dim

B

as measuring the growth rate of the lengths of approxima-

tions of � at �ner and �ner resolutions. We propose in this paper to investigate

more thoroughly this idea, and to de�ne a new dimension based on measuring the

lengths of regularized versions of �. The main advantages of this approach are that

it allows us to make use of a whole body of tools developed in regularization the-

ory, to establish insightful links with wavelet theory and multifractal analysis, and

�nally to obtain robust estimators, the statistical properties of which can be well

described.

Section 2 de�nes the regularization dimension and gives its basic properties. Com-

parisons with other dimensions and links with wavelet analysis and multifractal

theory are developed in section 3. Section 4 describes an estimator of dim

R

and

shows numerical experiments. Finally, section 5 presents an application to the

analysis of Ethernet tra�c.
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2 De�nition and Basic Properties

2.1 Regularization Dimension

Let � be the graph of a bounded function f : IR! IR whose support K is a closed

bounded ball. Let �(t) be a kernel function of Schwartz class S such that :

Z

� = 1: (1)

Let �

a

(t) =

1

a

�(

t

a

) be the dilated version of � at scale a. Let f

a

be the convolution

of f with �

a

:

f

a

= f ? �

a

:

Condition (1) insures that �

a

tend to the Dirac distribution and f

a

to f in the sense

of distributions as a goes to 0. Since f

a

2 S, the length of its graph �

a

on K is

�nite and given by :

L

a

=

Z

K

p

1 + f

0

a

(t)

2

dt (2)

De�nition 3 (Regularization Dimension) De�ne:

dim

R

(�) = 1 + lim

a!0

log(L

a

)

� log(a)

(3)

dim

R

(�) is called the regularization dimension of �.

We will see in section 3 that (3) does not depend on the choice of kernel � and that

� may in fact be chosen among a wider class of functions.

2.2 Basic properties

We now list some basic properties of dim

R

which are easy to prove. Recall that f

is assumed to be a bounded function on a compact set.

Proposition 1

1 � dim

R

(�) � 2 (4)

Proposition 2

sup

a

L

a

<1) dim

R

(�) = 1

We say in that case that � is of �nite curve length.

Proposition 3 Let � be the graph of f

1

+ f

2

and �

i

; i = 1; 2 the ones of f

i

then :

� dim

R

(�

1

) = dim

R

(�

2

)) dim

R

(�) � dim

R

(�

1

):

� dim

R

(�

1

) > dim

R

(�

2

)) dim

R

(�) = dim

R

(�

1

):

If f

1

and f

2

have disjoint supports then :

dim

R

(� = �

1

[ �

2

) = max(dim

R

(�

1

); dim

R

(�

2

)):
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Proposition 4 Let l be a Lipschitzian function over K, i.e. :

9C;8x; y 2 K; jl(x)� l(y)j � Cjx� yj:

Let � be the graph of f and �

0

the graph of g(t) = f(t):l(t). Then :

dim

R

(�

0

) � dim

R

(�)

If moreover l does not vanish on K then

1

l

is also Lipschtzian and :

dim

R

(�

0

) = dim

R

(�)

Proposition 5 Let � be the graph of f , �

i

; i = 1; 2 the ones of f

i

. If f

1

and f

2

are

bounded and compactly supported and f = f

1

? f

2

then f is bounded and compactly

supported and :

dim

R

(�) � min(dim

R

(�

1

); dim

R

(�

2

))

If f

1

2 L

1

and f

2

is bounded and compactly supported and f = f

1

? f

2

, then f is

bounded and for any closed bounded ball B :

dim

R

(�j

B

) � dim

R

(�

2

)

Proposition 6 Suppose f is globally H�olderian with exponent H 2]0; 1] over K.

Then :

dim

R

(�) � 2�H (5)

Proposition 7 De�ne :

~

L

a

=

Z

K

jf

0

a

(t)j (6)

and :

L

a

=

Z

jf

0

a

(t)j = jjf

0

a

jj

L

1
: (7)

Then :

sup

a

L

a

<1() sup

a

~

L

a

<1() sup

a

L

a

<1

Moreover, if � is of in�nite curve length then :

dim

R

� = 1 + lim

a!0

log(

~

L

a

)

� log(a)

= 1 + lim

a!0

log(L

a

)

� log(a)

2.3 Towards a local point of view

Proposition 8 Let g : IR! IR be such that :

1. gj

K

= f

2. 9P , polynomial such that 8t 2 K; jg(t)j < jP (t)j:

Then :

dim

R

(�) = 1 + lim

a!0

log(M

a

)

� log(a)

= 1 + lim

a!0

log(

~

M

a

)

� log(a)

where M

a

=

R

K

p

1 + g

0

a

(t)

2

dt and

~

M

a

=

R

K

jg

0

a

(t)j.
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In view of the previous proposition, it becomes natural to de�ne a local dimen-

sion :

De�nition 4 (Local regularization dimension) Let � be the graph of a real

function f such that f is locally bounded and bounded by a polynomial over IR. Let

B be a bounded closed ball and

L

a

(B) =

Z

B

p

1 + (f ? �

a

)

0

(t)

2

dt (8)

Then we de�ne :

dim

R

(�j

B

) = 1 + lim

a!0

log(L

a

(B))

� log(a)

(9)

Global and local dimensions

From propositions 7 and 8, it follows that if f is of in�nite length over B we can

as well de�ne :

L

a

(B) =

Z

B

j(f ? �

a

)

0

(t)jdt

or

L

a

(B) =

Z

B

j((1l

B

:f) ? �

a

)

0

(t)jdt

or

L

a

(B) =

Z

IR

j((1l

B

:f) ? �

a

)

0

(t)jdt = jj((1l

B

:f) ? �

a

)

0

jj

L

1

;

where 1l

B

is characteristic function of B, without changing (9).

As a consequence, this local dimension can be seen as the global one applied on

1l

B

:f . Thus, any result in the global case still holds in the local case.

Pointwise dimension

With the same conditions on f as in de�nition 4, one can then de�ne a pointwise

dimension :

De�nition 5 (Pointwise Regularization dimension) Let M = (x; f(x)) be in

� and B(x; �) be the ball centered on x of radius �.De�ne :

dim

R

(M) = lim

�!0

dim

R

(�j

B(x;�)

) (10)

Note that proposition 3 implies that, dim

R

(�j

B(x;�)

) is an increasing function of �.

Thus, the limit above is always de�ned.

3 Links between dim

R

, other fractal indexes and wavelets

3.1 Link with box-counting dimension

Proposition 9 If f is continuous, the following relation holds :

dim

R

� � dim

B

�:
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Proof The proof makes use of the results of 12.4 in

5

relating dim

B

with the

oscillations of f . More precisely :

dim

B

(�) = lim

�!0

(2�

logV ar

�

(f)

log�

); (11)

where V ar

�

(f) =

R

K

osc

�

(t)dt and 8t 2 K; � > 0; osc

�

(t) = sup

x;y2B(t;�)

jf(x) � f(y)j.

Now,

~

L

a

can easily be related to the oscillations of f :

8t 2 K;8a > 0; f

0

a

(t) =

Z

f(x)(�

a

)

0

(t� x)dx =

Z

(f(x)� f(t))(�

a

)

0

(t� x)dx

To simplify the proof, we suppose that the support of � is compact and included in

[�1; 1]. We have:

jf

0

a

(t)j �

Z

B(t;a)

jf(x)� f(t)j:j(�

a

)

0

(t� x)jdx (12)

� osc

a

(t)

Z

B(t;a)

j(�

a

)

0

(t� x)jdx

� jj�

0

jj

L

1

osc

a

(t)

a

It follows that :

~

L

a

� jj�

0

jj

L

1

V ar

a

(f)

a

If

~

L

a

is �nite, dim

R

� is 1 and the result holds. Otherwise, dim

R

� = 1+lim

a!0

log(

~

L

a

)

� log(a)

and (11) gives the result. 2

3.2 Wavelet and regularity

Formula 7 in proposition 7 gives us a direct link with wavelet analysis. When L

a

is

in�nite, the regularization dimension is directly related to the variations of L

1

-norm

of the wavelet transform of f as a time function with respect to scale.

Indeed, f

0

a

(b) is the wavelet transform of f at scale a and time b with  (t) = �

0

(�t)

as analyzing wavelet. Since we took � 2 S,  has one vanishing moment and is

fast decreasing. It also veri�es the admissibility condition. One can then make use

of classical properties to investigate dim

R

from a new point of view. In particular,

in a recent study

6

, the link between the wavelet coe�cients of f and dim

B

� has

been established. In the same paper, an example is given of a function f , such

that dim

R

� < dim

B

�. However, it seems that in \many" cases the two dimensions

coincide.

3.3 Link with multifractal analysis

The following function is classical in multifractal analysis

7

:

�(q) = lim

a!0

log

R

jC(a; b)j

q

db

log a

;

6



where C(a; b) is the wavelet coe�cient of f at scale a and position b using a wavelet

of su�cient regularity. Thus, as seen previously,

R

jC(a; b)jdb is directly related to

L

a

. More precisely, we have obviously :

Proposition 10

dim

R

� = max(1; 2� �(1))

Several conclusions can be drawn from this relation. First, as announced in section

2.1, dim

R

� does not depend of the choice of the kernel � as long as �

0

is a wavelet

with su�cient regularity (which is always the case for � 2 S). Second, since it is

always true that

1

:

�(1) = inf

�

(� � f

g

(�))

where f

g

is the large deviation multifractal spectrum of f , we set that dim

R

is

related to multifractal spectrum of f . Third, there are a number of cases where it

has been shown that dim

b

� = 2� �(1), e.g. in the case of attractors of a�ne IFS.

In all these situations, we have :dim

B

� = dim

R

�.

4 Estimation of Regularization dimension

4.1 Statistical Properties

For practical purposes, it is important to investigate the behavior of L

a

and dim

R

when noise is added to the data. In this section, we consider the simple case where

the deterministic signal f is corrupted with additive white Gaussian noise b of mean

0 and variance �

2

. To simplify, we will use a discrete version L

n

of L

a

corresponding

to the discrete wavelet transform. We will denote a(n) the scale corresponding to

the index n. Let X = f + b be the signal to analyzed, x

k

n

= f

k

n

+ b

k

n

its wavelet

coe�cients using an orthonormal wavelet basis, n being the scale index and k being

the position index. Let � be the graph of f ,

~

� the graph of X , and �

b

the \graph"

a

of b. Then L

n

=

P

jc

k

n

j, up to a scale normalization.

It is well known that : b

k

n

d

= N(0; �), where

d

= means equal in distribution and

N(0; �) denotes a normal law of mean 0 and variance �

2

. Since f is determin-

istic, x

k

n

d

= N(f

k

n

; �). Note at this point that it is straightforward to show that

dim

R

�

b

= 2:5 almost surely (a.s.) (For the graph B of a Brownian motion,

dim

R

B = 1:5 a:s:, and if Z is the graph of the increments of Y , i.e. the derivative

distribution, dim

R

Z = dim

R

Y + 1 a.s.).This implies that dim

R

~

� = 2:5 a.s.

In order to access to dim

R

�, we thus need to re�ne our analysis. From an

intuitive point of view, the situation is clear : at low resolutions, i.e. for large scales,

L

n

(X) � L

n

(f), while at �ne scales, the noise is predominant and L

n

(X) � L

n

(b).

A way to obtain a useful estimation is then to evaluate dim

R

not as a limit at �ne

scales but over a restricted ranges of scales, i.e. for a � a(n

?

), a(n

?

) depending on

a

b can be de�ned as the derivative distribution of a Brownian motion (B

t

; t 2 IR

+

). Thus, it is

not a bounded function, and the term of \graph" is not rigorous. Nevertheless, the de�nition of

dim

R

still holds although not all the results on bounded functions remain valid. For instance, (4)

is not always true for distributions.
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the Signal to Noise Ratio (SNR). In the following, we describe a method to compute

n

?

and to estimate L

n

(f). An easy calculation leads to :

Ejx

k

n

j = �

r

2

�

exp(�

f

k

n

2

2�

2

) + jf

k

n

j erf(

jf

k

n

j

p

2�

)

, where E denotes expectation. The �rst term of the sum above corresponds to the

contribution of noise, i.e. �

q

2

�

, weighted by exp(�

f

k

n

2

2�

2

), which tends to 0 when the

SNR goes to in�nity, while the second term corresponds to the contribution of f , i.e.

jf

k

n

j, weighted by erf(

jf

k

n

j

p

2�

), which tends to 0 when the SNR goes to 0. Summing

this over all the positions k leads to the same structure for L

n

(X) i.e. L

n

(X) =

A(n) +B(n) where A(n) =

P

k

�

q

2

�

exp(�

f

k

n

2

2�

2

) and B(n) =

P

k

jf

k

n

jerf(

jf

k

n

j

p

2�

).

Now, simple algebra yields : E exp(�

x

k

n

2

2�

2

) =

1

p

2

exp(�

f

k

n

2

4�

2

). Hence :

Ejx

k

n

j = E

2�

p

�

exp(�

x

k

n

2

�

2

) + jf

k

n

jerf(

jf

k

n

j

p

2�

) (13)

Thus,

~

A(n) =

P

k

2�

p

�

exp(�

x

k

n

2

�

2

) is an unbiased estimator of A(n). The ratio

R(n) =

~

A(n)

L

n

(X)

will give the relative importance of the noise term in L

n

(X). More-

over, L

n

(X)�

~

A(n) is then an unbiased estimator of B(n) which is a lower bound of

L

n

(f). Practically, R(n) allows us to �nd n

?

and formula (13) will let us estimate

f

k

n

from the x

k

n

: the method is now either to estimate Efc

k

n

= jx

k

n

j�

2�

p

�

exp(�

x

k

n

2

�

2

)g

(problem 1.1) and to �nd each f

k

n

by solving jf

k

n

jerf(

jf

k

n

j

p

2�

) = Ec

k

n

(problem 1.2) or

to estimate Ef

P

k

c

k

n

g (problem 2.1) and to �nd

P

f

k

n

using

P

k

jf

k

n

jerf(

jf

k

n

j

p

2�

) =

Ef

P

k

c

k

n

g (problem 2.2). Among these four problems, two are easy to solve : the

problems 1.2 and 2.1 (because

P

k

c

k

n

is actually a good estimator of Ef

P

k

c

k

n

g).

An approximated solution to problem 1.1 is to estimate Ec

k

n

by the mean of the

continuous wavelet transform coe�cients of X over an interval of the order of mag-

nitude of the scale around the position k. Experiments (see section 4.2) show that

this method gives good result. This �rst method will be referred to the method of

local mean.

Problem 2.2 may be approximatively solved by assuming that :

X

k

jf

k

n

jerf(

jf

k

n

j

p

2�

) �

X

k

jf

k

n

jerf(

jf

n

j

p

2�

);

where jf

n

j is the mean value of jf

k

n

j and is directly related to

P

k

jf

k

n

j. Experiments

show that this assumption is too optimistic. This second method will be referred

to as the method of global mean.
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4.2 Numerical Results

Noise free signal

We estimated dim

R

with a Gaussian kernel on 2

11

points samples of fractional

Brownian motions (fBm) and deterministic Weierstrass functions (WF) with varying

exponent H = 0::1. For an fBm or a WF of constant Holder exponent H , the

theoritical regularization dimension of the graph is 2�H .

Table 1: This table contains estimated regularization dimensions of fBms and WFs for di�erent

H�older exponents. The scale regression range is the same for all values of H.

H Estimated dim

R

2�H

WF fBm

0.1 1.91 1.93 1.9

0.2 1.81 1.77 1.8

0.3 1.71 1.74 1.7

0.4 1.61 1.55 1.6

0.5 1.52 1.49 1.5

0.6 1.43 1.41 1.4

0.7 1.35 1.35 1.3

0.8 1.27 1.26 1.2

0.9 1.20 1.12 1.1

Noisy signal

We applied the di�erent methods explained in section 4.1 with a Gaussian kernel

on a Weierstrass function on [0; 1] of H�older exponent 0:5 corrupted by a white

Gaussian noise of SNR = 10 log

10

R

f

2

�

2

equal to �6:0db (see �gure 1).

0 200 400 600 800 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 200 400 600 800 1000

−6

−4

−2

0

2

4

6

Figure 1: Left: Graph of the Weierstrass function of H�older exponent 0:5. Right : Graph of the

same signal corrupted by a Gaussian noise with SNR = �6:0db.
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Results are displayed in �gure 2 : one observes that the di�erent components of

L

n

(X) separate from each other when R(n) becomes larger than 10%. When R(n)

reaches a plateau close to 1, the estimation of L

n

(f) by the method of local mean

still gives good results. Hence the experimental conclusions :

� For n such that R(n) < 10%, any of the estimations of L

n

(f) gives good

results, which is explained by the theoretical analysis of section 4.1.

� For n such that R(n) has not reached a plateau, the method of local mean

gives the best results and allows to estimate dim

R

with good accuracy.

We then have both a method to choose the regression range and to estimate dim

R

on data corrupted with additive Gaussian noise. These conclusions have been con-

�rmed by other experiments with di�erent signals and di�erent signal-noise ratios.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−6

−5

−4

−3

−2

−1

0

1

Figure 2: loglog plot of estimators of L

n

(f) versus scale. � are the L

n

(X), the dashed line is

L

n

(f) (reference signal), + are the estimations of L

n

(f) by the method of global mean, o are the

estimations of L

n

(f) by the method of local mean, ? are the estimations of B(n). At last, the

plain line is the decimal logarithm of R(n)

5 Application to the study of Ethernet Tra�c

5.1 Introduction

The self-similar nature of Ethernet tra�c has been investigated in two di�erent

ways : �rst it has been proven that it has a fractal-like behavior

8

. A di�erent

approach

1

showed that Ethernet Tra�c has multifractal properties. A model based

on superposition of many ON/OFF sources has also been proposed

9

. Here, we

apply the regularization dimension on such data, and we investigate the validity of

this model.

10



5.2 Tra�c model

Using the notations and the results of the authors of the model

9

, let W

(m)

(t); t � 0

be the binary time series generated by one source : W

(m)

(t) = 1 means there is

a packet at time t, W

(m)

(t) = 0 means there is no packet. For M independent

and identically distributed sources, the tra�c data is a superposition of all sources

packets emission : W

M

(t) =

P

M

m=1

W

(m)

(t). De�ne the aggregated cumulative

packet tra�c as the following time series : W

�

M

(T t) =

R

Tt

0

W

M

(u)du, where T is a

scale parameter. The model rests on some assumptions on the ON- and OFF periods

distributions of each source described by some parameters. These parameters which

we won't discuss here de�ne one type of source. Now, assume R types of sources and

proportions M

(r)

=M of sources of type r = 1; : : : ; R, with M

(r)

=M not converging

to 0, as M !1. Then, one can calculate for each type of sources the positive real

parameters �

(r)

1

; �

(r)

2

; �

(r)

L

; H

(r)

< 1 and a slowly varying function at in�nity L

(r)

(e.g. a constant) such that the following result holds :

Theorem 1 For large M

(r)

; r = 1; : : : ; R and large T , the aggregated cumulative

packet tra�c W

�

M

(T t) behaves statistically like :

T (

R

X

r=1

M

(r)

�

(r)

1

�

(r)

1

+ �

(r)

2

)t+

R

X

r=1

T

H

(r)

q

L

(r)

(T )M

(r)

�

(r)

L

B

H

(r)

(t) (14)

where B

H

(r)

(t) are independent fBms of exponents H

(r)

.

In terms of increments of W

�

M

(T t), W

�

M

(T t)�W

�

M

(Tu) =

R

Tt

Tu

W

M

(u)du, this the-

orem tells that they approximatively equal a constant plus a weighted sum of inde-

pendent fBm increments. Our purpose is now to use this model to analyze Tra�c

data via the regularization dimension.

5.3 Using Regularization dimension for studying the data

We already gave the result of the regularization dimension calculated on an fBm of

H�older exponent H in section 4.2 : 2�H . More precisely, at any scale, the mean of

the absolute value of the wavelet coe�cients at scale a behaves like Ca

H�1

, where

C is a constant. In our case,

~

L

a

applied to a path of an fBm is an estimator of this

value. Thus, the linear regression over any range of scales of the loglog plot of

~

L

a

VS a let us access to H .

Now, for a �nite weighted sum of independent fBms of di�erent H�older expo-

nents H

i

, let EC(a) be the mean of the absolute value of the wavelet coe�cients at

a scale a. EC(a) is bounded as follows :

C

j

a

H

j

�1

� EC(a) �

X

i

C

i

a

H

i

�1

for any j. Thus, choosing j such that C

j

a

H

j

�1

is predominant in

P

i

C

i

a

H

i

�1

\around" a given scale â , the linear regression of the loglog plot of

~

L

a

VS a around

â let us access to H

j

. For instance, the term with smallest H

i

will prevail at small

scales and the term with highest H

i

will prevail at high scales. For the terms with

11



H

i

between these two extremal values, the behavior will depend on the weights C

i

.

In �gure 3, we give an example of this method applied to the sum of two indepen-

dent fBms of exponents 0:4 and 0:8.

0 1 2 3 4 5 6
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−0.8

−0.6

−0.4

−0.2

0

Increments ∆ log(L)

Log(scale)

∆ 
L

o
g

(L
)

−1 0 1 2 3 4 5 6
−6

−5.5

−5

−4.5

−4

−3.5

Log(scale)

L
o

g
(L

)

Estimated Regularization Dimension = 1.5441

Figure 3: loglog plot of

~

L

a

versus scale and its increments applied to a sum of two independent

fBms of exponents H

1;2

= 0:4; 0:8. The chosen range of scales shows the transition between the

two slopes corresponding to H

1;2

: 1�0:4 = �0:6 at small scales and 0:8�1 = �0:2 at high scales.

We applied this analysis derived from the regularization dimension (we look

for regularization dimensions localized in scales) to Ethernet tra�c data. We

considered a 47813 points sample of Ethernet tra�c data measured at Berkeley

W

M

(n); n = 1; : : : ; N . We worked directly on samples of the increments of the

seriesW

�

M

(T t) : �(n) =

P

Tn

k=T (n�1)+1

W

M

(k); n = 1; : : : ; N=T , which, according to

the model, should behave, for T big enough, like a constant plus a sum of increments

of independent fBms. The constant is not seen by our method because

~

L

a

uses a

convolution of the signal with the derivative of a Schwartz kernel function (here

we took a Gaussian kernel). Working on increments just multiplies

~

L

a

by a factor

a

�1

and adds a factor 1 to the regularization dimension. It follows that H equals

3�dim

R

(�

0

), where �

0

is the graph of the increments of an fBm of H�older exponent

H and that

~

L

a

applied to �(n); n = 1; : : : ; N=T should behave like C

j

a

H

j

�2

, the

predominant term in

P

i

C

i

a

H

i

�1

around a given scale â . Then, the only prepro-

cessing of the data was to adjust the scale parameter T : on one hand, T has to be

big enough for applying the model ; on the other hand, the bigger T , the smaller the

length of the sample �(n); n = 1; : : : ; N=T , which also reduces the range of scales

on which the estimator

~

L

a

is reliable. Up to these slight di�erences, we made the

same analysis of the data as for the sum of the two fBms. The result is that the

tra�c data exhibit a behavior similar to a sum of fBms (compare �gure 4 and �gure

12
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Figure 4: loglog plot of

~

L

a

versus scale and its increments applied to Ethernet tra�c data. The

chosen range of scales shows the transition between H

1

= 0:87 at small scales and H

2

= 0:6 at

high scales. Hence the two regularization dimensions � 2:4; 2:13

0 50 100 150 200 250
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4 Aggregated traffic,T=200
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Figure 5: Aggregated tra�c and increments of the sum of two fBm of same H

i

.
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3). Thus, our results do not invalidate the model. Furthermore, they let us �nd

two values H

i=1;2

� 0:6; 0:87. We took T = 200 which means that � had a length

N=T = 239. To access smaller and higher scales and maybe other H

i=3;4;:::

, one

should have a longer sample W

M

(n); n = 1; : : : ; N and take a higher T .

To give a visual idea of the model we used, we plot the aggregated tra�c with

T = 200 and the increments of a sum of two fBm of H�older exponents 0:6 and 0:87

on the �gure 5.

5.4 Conclusion : Fractal vs multifractal

The multifractal approach takes in account the coexistence of di�erent H�older ex-

ponents along the time axis. Here, because the regularization dimension is a fractal

exponent and not a multifractal index, we tracked di�erent H�older exponents along

the scale axis. As the model described in 5.2 seems to be validated by our study, it

would be interesting to study the e�ects of this model in a multifractal approach.
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