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We propose a new way of evaluating the regularity of a graph of a function f. Our
approach is based on measuring the growth rate of the lengths of less and less regularized
versions of f. This leads to a new index, that we call regularization dimension, dimy .
We derive some analytical properties of dimpr and compare it with other fractional
dimensions. A statistical estimator is derived, and numerical experiments are performed,
which suggest that dimg may be computed in a robust way. Finally, we apply the
regularization dimension to the study of Ethernet traffic.
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1 Introduction

There are two main ways of measuring the regularity of a non-differentiable function
f : K = R where K is a compact set of IR. The first one is based on the investiga-
tion of the Holder properties of f!. These can be considered from a global point of
view, i.e. one seeks the largest a, > 0 such that 3C' > 0,Vz,y € K, |f(z) — f(y)]| <
Clz —y|*. A local approach is to look only in a neighborhood of z; for the largest

[f(z) = f(y)l

exponent such that : sup ~————— is finite and then to make p tend to 0.

z,yEB(z0,p) |$ - y|al
) —
Finally, the pointwise exponent is the largest a,, such that sup M
,y€B(x0,p) pr
is finite.

The second way of evaluating the regularity of f is to measure the dimension
of its graph I'. Again, several definitions exist, and we only mention here the most
frequently used ones, in the case of a subset E of R??:

Definition 1 (Hausdorff dimension) Let {E;}1<i<oo be a d-cover of E, i.e. a
countable family of sets such that

o0
Ec|JE:, |E|<6 E CR, Vi
=0

Consider

M3(E) =inf Y _|Ej|*
=0
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Let
HP(E) = lim H3(E) = sup H3(E)
6—0 5>0
H?(E) is called the s-dimensional Hausdorff outer measure of E. The Hausdorff

dimension of E is:
dimpy E =inf{s: H*(E) = 0} = sup{s : H*(E) = oo}

Finally, one often considers the box dimension which is easier to compute. We
assume now that E is bounded:
Definition 2 (Box-counting dimension) Let Ns(E) be the smallest number of
sets of diameter equal to & which can cover E. The lower and upper box-counting
dimension of E are respectively defined by
—_— —log Ns(E
dimp E = T 20 E)
s—0 —logd
log Ns(E
dim, B = lim 2520 E)
650 —logd

From now on, we will write dimp in place of dimp.

The following relations always hold :
dimygl < dimpl’ < dimpl.

For many “nice” curves, all these definitions give the same result, which is moreover

related to the Holder exponent. For example, if X is a fractional Brownian motion of

index H, then almost surely: dimgX = dimpX = dimpX =2 — H and V¢, o(t) =
oo

a,(t) = ay = H. For a Weierstrass function W (t) = Z A" sin(A™1),0 < h < 1,

1
one has dimgW < dim,W = dimpW =2 — h and Vt,Vt, a;(t) = a,(t) = oy = h.
More generally, a relation of the kind: dimI’ = 2 — h, where h is a kind of “self-
fimilarity” index, holds for many curves, such as some non Gaussian stationary
processes® 4.

As can be seen from the previous definitions, all the dimensions are somehow

related to the geometric properties of I', and in particular its length. More precisely,
one can think of dimp as measuring the growth rate of the lengths of approxima-
tions of I' at finer and finer resolutions. We propose in this paper to investigate
more thoroughly this idea, and to define a new dimension based on measuring the
lengths of regularized versions of I'. The main advantages of this approach are that
it allows us to make use of a whole body of tools developed in regularization the-
ory, to establish insightful links with wavelet theory and multifractal analysis, and
finally to obtain robust estimators, the statistical properties of which can be well
described.
Section 2 defines the regularization dimension and gives its basic properties. Com-
parisons with other dimensions and links with wavelet analysis and multifractal
theory are developed in section 3. Section 4 describes an estimator of dim% and
shows numerical experiments. Finally, section 5 presents an application to the
analysis of Ethernet traffic.



2 Definition and Basic Properties

2.1 Regularization Dimension

Let T" be the graph of a bounded function f : R — IR whose support K is a closed
bounded ball. Let x(t) be a kernel function of Schwartz class S such that :

[x=1 (1)

Let xq(t) = x(%) be the dilated version of x at scale a. Let f, be the convolution
of f with x,:
fo = f*Xa-

Condition (1) insures that x, tend to the Dirac distribution and f, to f in the sense
of distributions as a goes to 0. Since f, € S, the length of its graph I'; on K is

finite and given by :
Lo = / VI Fdt @)
K

Definition 3 (Regularization Dimension) Define:

(3)

dimpg(T) is called the regularization dimension of T.

We will see in section 3 that (3) does not depend on the choice of kernel x and that
x may in fact be chosen among a wider class of functions.

2.2  Basic properties

We now list some basic properties of dimy which are easy to prove. Recall that f
is assumed to be a bounded function on a compact set.
Proposition 1

1 <dimg(T') <2 (4)

Proposition 2
sup L, < 00 = dimpg(l') =1
a

We say in that case that T is of finite curve length.
Proposition 3 Let I' be the graph of fi + fo and T';,i = 1,2 the ones of f; then:

o dimgr () = dimg(T'2) = dimg (L) < dimg(Ty).
o dimg (1) > dimg(T2) = dimg(T) = dimg (Ty).
If f1 and fs have disjoint supports then :
dimg (L' =T UTs) = max(dimg (T'y), dimz (T2)).
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Proposition 4 Let | be a Lipschitzian function over K, i.e. :
30,V € K |i@) - 1(y)] < Cla — yl.
Let T be the graph of f and T the graph of g(t) = f(t).1(t). Then:
dimz (T'") < dimy (T)

1

If moreover I does not vanish on K then ;

is also Lipschtzian and :

Proposition 5 Let I' be the graph of f, T';,i = 1,2 the ones of f;. If f1 and fs are
bounded and compactly supported and f = fi1 * fo then [ is bounded and compactly

supported and :
dimy (') < min(dimy (T1), dimg (T'2))

If fi € L' and f5 is bounded and compactly supported and f = fi % fo, then f is

bounded and for any closed bounded ball B :

Proposition 6 Suppose f is globally Holderian with exponent H €]0,1] over K.

Then :
dimr(l')<2-H

‘. :/K|f;<t>|

Z. =/|f;<t>| =120l

Proposition 7 Define:

and :

Then, : R
sup L, < 00 <= sup L, < 00 <= sup L, < ©
a a a

Moreover, if T is of infinite curve length then :

— log(L,
dimz D = 1+ T <281E0) _
a—0—log(a) a—0 —log(a)

2.3 Towards a local point of view
Proposition 8 Let g : R — R be such that :

1. glx=f

2. AP, polynomial such that ¥t € K,|g(t)| < |P(t)].
Then :

dimg () = 1+ T 28Ma) _ | flos(Ma)
a—0 —log(a) a—0 — log(a)

where Mo = [ /1 + g, (t)?dt and M, = IArAGIE
4

(5)

(6)



In view of the previous proposition, it becomes natural to define a local dimen-
sion :
Definition 4 (Local regularization dimension) Let I' be the graph of a real
function f such that f is locally bounded and bounded by a polynomial over R. Let
B be a bounded closed ball and

L.(B) = /B V14 (f *xa) (t)2dt (8)

Then we define :

. _ ——log(L4(B))
dimr(T|g) =1+ ilg%) = log(a)

9)

Global and local dimensions
From propositions 7 and 8, it follows that if f is of infinite length over B we can
as well define:

£.(B) = /B 1(F % xa) ()]dt
£.(B) = /B (W) * xa)' (1) dt

La(B) = /R [(Up-f) *xa) (B)ldt = [[(Lp-f) * Xa) Il L1,

where 1p is characteristic function of B, without changing (9).
As a consequence, this local dimension can be seen as the global one applied on
1g.f. Thus, any result in the global case still holds in the local case.

Pointwise dimension
With the same conditions on f as in definition 4, one can then define a pointwise
dimension :

Definition 5 (Pointwise Regularization dimension) Let M = (z, f(x)) be in
T and B(z,¢€) be the ball centered on x of radius €.Define :

dsz(M) = lim dimR(F|B(m,e)) (10)
e—0

Note that proposition 3 implies that, dimg(I'|p(s,)) is an increasing function of e.
Thus, the limit above is always defined.

3 Links between dimy, other fractal indexes and wavelets

3.1 Link with boz-counting dimension

Proposition 9 If f is continuous, the following relation holds :
dimgrl’ < dimpl.
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Proof The proof makes use of the results of 12.4 in ® relating dimp with the
oscillations of f. More precisely :

. e logVar:(f)
dimg(T) = 1%(2 T logr ), (11)
where Var,(f) = [, osc,(t)dt and Vt € K,7 > 0,0sc,(t) = sup |f(x) — f(y)l-

z,yeB(t,T)
Now, L, can easily be related to the oscillations of f:

Vi€ K Ya> 0, f1(t) = / F(@) () (t — v)da = / (F(@) - F(1)(xa) (¢t — 2)de

To simplify the proof, we suppose that the support of x is compact and included in
[—1,1]. We have:

[fa®)] < /B(t )If(w)—f(t)l-l(xa)’(t—w)ldw (12)

< osca(t) /B PCOKEELE

osc, (t
< [ 2
a
It follows that : Varo(f)
~ arg
Lo < XM ———=
a
5 . . . . . . T IOg(Za)
If £, is finite, dim I is 1 and the result holds. Otherwise, dimgxI’ = 1+ lim ————+
a—0— log(a)

and (11) gives the result. O

3.2  Wavelet and regularity

Formula 7 in proposition 7 gives us a direct link with wavelet analysis. When £, is
infinite, the regularization dimension is directly related to the variations of L!-norm
of the wavelet transform of f as a time function with respect to scale.

Indeed, f.(b) is the wavelet transform of f at scale a and time b with ¢ (t) = x'(—1)
as analyzing wavelet. Since we took y € S, ¢ has one vanishing moment and is
fast decreasing. It also verifies the admissibility condition. One can then make use
of classical properties to investigate dimy from a new point of view. In particular,
in a recent study ®, the link between the wavelet coefficients of f and dimpgI' has
been established. In the same paper, an example is given of a function f, such
that dimzrD’ < dimpl'. However, it seems that in “many” cases the two dimensions
coincide.

3.8  Link with multifractal analysis

The following function is classical in multifractal analysis” :

q
(q) = lim 28 IC(@ D)

050 loga



where C'(a, b) is the wavelet coefficient of f at scale a and position b using a wavelet
of sufficient regularity. Thus, as seen previously, [ |C(a,b)|db is directly related to
L,. More precisely, we have obviously :

Proposition 10

dimgrT = max(1,2 — 7(1))

Several conclusions can be drawn from this relation. First, as announced in section
2.1, dimyiI" does not depend of the choice of the kernel x as long as x' is a wavelet
with sufficient regularity (which is always the case for x € S). Second, since it is
always true that ! :

(1) = igf(a — fo(a))

where f, is the large deviation multifractal spectrum of f, we set that dimg is
related to multifractal spectrum of f. Third, there are a number of cases where it
has been shown that dim,I’ = 2 — 7(1), e.g. in the case of attractors of affine IFS.
In all these situations, we have :dimpgl’ = dimgT.

4 Estimation of Regularization dimension

4.1 Statistical Properties

For practical purposes, it is important to investigate the behavior of £, and dimz
when noise is added to the data. In this section, we consider the simple case where
the deterministic signal f is corrupted with additive white Gaussian noise b of mean
0 and variance o2. To simplify, we will use a discrete version £,, of £, corresponding
to the discrete wavelet transform. We will denote a(n) the scale corresponding to
the index n. Let X = f + b be the signal to analyzed, ¥ = f¥ + b% its wavelet
coefficients using an orthonormal wavelet basis, n being the scale index and k being
the position index. Let I' be the graph of f, [ the graph of X, and ['y the “graph”®
of b. Then £, = |c¥|, up to a scale normalization.

It is well known that: b~ 4 N(0,0), where £ means equal in distribution and
N(0,0) denotes a normal law of mean 0 and variance . Since f is determin-

istic, =% 2 N(fF, o). Note at this point that it is straightforward to show that
dimgz ', = 2.5 almost surely (a.s.) (For the graph B of a Brownian motion,
dimrB = 1.5a.s., and if Z is the graph of the increments of Y, i.e. the derivative

distribution, dimgr Z = dimzY + 1 a.s.).This implies that dimgrl = 2.5 a.s.

In order to access to dimgI', we thus need to refine our analysis. From an
intuitive point of view, the situation is clear: at low resolutions, i.e. for large scales,
Ln(X) ~ Ly(f), while at fine scales, the noise is predominant and £, (X) ~ £,,(b).
A way to obtain a useful estimation is then to evaluate dimy not as a limit at fine
scales but over a restricted ranges of scales, i.e. for a < a(n*), a(n*) depending on

@b can be defined as the derivative distribution of a Brownian motion (B¢, t € Ry). Thus, it is
not a bounded function, and the term of “graph” is not rigorous. Nevertheless, the definition of
dimp still holds although not all the results on bounded functions remain valid. For instance, (4)
is not always true for distributions.



the Signal to Noise Ratio (SNR). In the following, we describe a method to compute
n* and to estimate £, (f). An easy calculation leads to:

k2 k
ik = o\ [Zexp(-L) 4 5t er s U1

, where E denotes expectation. The first term of the sum above corresponds to the

contribution of noise, i.e. 0’\/7 weighted by exp(— f =), which tends to 0 when the
SNR goes to infinity, while the second term corresponds to the contribution of f, i.e.
|f%|, weighted by erf(\‘g:!), which tends to 0 when the SNR goes to 0. Summing
this over all the positions k leads to the same structure for £,(X) i.e. £,(X) =

A(n) + B(n) where A(n) = 5 0/2 exp(~§2) and B(n) = 5, £ lerf(Lal).

2 2

k2

Ta_ 5) = L ex (—f" ). Hence:
307) = 5 OXP(— 7 ) :

Now, simple algebra yields: E exp(—%

Elat| = E—exp(—”“"—kz> 1f¥erf(dnly (13)
=8 V2o

.2

Thus, A(n) = 3, fexp( Z3-) is an unbiased estimator of A(n). The ratio

R(n) = é(&z) will give the relative importance of the noise term in £,,(X). More-

over, £, (X)— A(n) is then an unbiased estimator of B(n) which is a lower bound of
Ly (f). Practically, R(n) allows us to find n* and formula (13) will let us estimate

2

7\
f¥ from the 2" : the method is now either to estimate E{ck = |z%|— f Z exp(——2)}

(problem 1.1) and to find each f* by solving |fn|erf( 17al ) = Eck (problem 1.2) or

to estimate E{)_, ¢} (problem 2.1) and to find an using Y, | fEler f( ‘f"‘)

E{3>", c&} (problem 2.2). Among these four problems, two are easy to solve. the
problems 1.2 and 2.1 (because Y, ¢l is actually a good estimator of E{}, ck}).
An approximated solution to problem 1.1 is to estimate Ec’ by the mean of the
continuous wavelet transform coefficients of X over an interval of the order of mag-
nitude of the scale around the position k. Experiments (see section 4.2) show that
this method gives good result. This first method will be referred to the method of
local mean.

Problem 2.2 may be approximatively solved by assuming that :

where | f,,| is the mean value of | f¥| and is directly related to 3", | f¥|. Experiments
show that this assumption is too optimistic. This second method will be referred
to as the method of global mean.



4.2  Numerical Results
Noise free signal

We estimated dimpi with a Gaussian kernel on 2!! points samples of fractional
Brownian motions (fBm) and deterministic Weierstrass functions (WF) with varying
exponent H = 0..1. For an fBm or a WF of constant Holder exponent H, the
theoritical regularization dimension of the graph is 2 — H.

Table 1: This table contains estimated regularization dimensions of fBms and WFs for different
Holder exponents. The scale regression range is the same for all values of H.

H | Estimated dimp | 2 — H
WF fBm
0.1 |1.91 1.93 1.9
0.2 | 1.81 1.77 1.8
0.3 | 1.71 1.74 1.7
04 | 1.61 1.55 1.6
0.5 | 1.52 1.49 1.5
0.6 | 1.43 1.41 1.4
0.7 | 1.35 1.35 1.3
0.8 | 1.27 1.26 1.2
0.9 | 1.20 1.12 1.1

Noisy signal

We applied the different methods explained in section 4.1 with a Gaussian kernel
on a Weierstrass function on [0,1] of Holder exponent 0.5 corrupted by a white

2

Gaussian noise of SNR = 10log;, % equal to —6.0db (see figure 1).

n
|

N

==——

0
0
I

s -

[S) =Zoo aoco [=YY=) so00 1000 o =YeYe) aoco [=YY=)

Figure 1: Left: Graph of the Weierstrass function of Holder exponent 0.5. Right: Graph of the
same signal corrupted by a Gaussian noise with SNR = —6.0db.
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Results are displayed in figure 2 : one observes that the different components of
L,(X) separate from each other when R(n) becomes larger than 10%. When R(n)
reaches a plateau close to 1, the estimation of L, (f) by the method of local mean
still gives good results. Hence the experimental conclusions:

e For n such that R(n) < 10%, any of the estimations of £, (f) gives good
results, which is explained by the theoretical analysis of section 4.1.

e For n such that R(n) has not reached a plateau, the method of local mean
gives the best results and allows to estimate dimy with good accuracy.

We then have both a method to choose the regression range and to estimate dimy
on data corrupted with additive Gaussian noise. These conclusions have been con-
firmed by other experiments with different signals and different signal-noise ratios.

1

Figure 2: loglog plot of estimators of L, (f) versus scale. ¢ are the £,(X), the dashed line is
Ly (f) (reference signal), + are the estimations of L (f) by the method of global mean, o are the
estimations of L, (f) by the method of local mean, x are the estimations of B(n). At last, the
plain line is the decimal logarithm of R(n)

5 Application to the study of Ethernet Traffic

5.1 Introduction

The self-similar nature of Ethernet traffic has been investigated in two different
ways: first it has been proven that it has a fractal-like behavior 8. A different
approach! showed that Ethernet Traffic has multifractal properties. A model based
on superposition of many ON/OFF sources has also been proposed ?. Here, we
apply the regularization dimension on such data, and we investigate the validity of
this model.
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5.2 Traffic model

Using the notations and the results of the authors of the model?, let W (™) (t),t >0
be the binary time series generated by one source: W™ (t) = 1 means there is
a packet at time ¢, (™) (t) = 0 means there is no packet. For M independent
and identically distributed sources, the traffic data is a superposition of all sources
packets emission: Wy (t) = Z%zl W™ (t). Define the aggregated cumulative

packet traffic as the following time series: W3, (Tt) = OTt Wi (u)du, where T is a
scale parameter. The model rests on some assumptions on the ON- and OFF periods
distributions of each source described by some parameters. These parameters which
we won’t discuss here define one type of source. Now, assume R types of sources and
proportions M (" /M of sources of type r = 1,..., R, with M(" /M not converging
to 0, as M — oo. Then, one can calculate for each type of sources the positive real
parameters uy),ugﬂ), U(LT), H() < 1 and a slowly varying function at infinity L")
(e.g. a constant) such that the following result holds:

Theorem 1 For large M), r = 1,...,R and large T, the aggregated cumulative
packet traffic Wi, (Tt) behaves statistically like :

t+ZTH " EO(TYMD) 6 By (t) (14)

where By (t) are independent fBms of exponents H(").

In terms of increments of W;,(T't), W;,(Tt) — W;;(Tu) fT Wi (u)du, this the-
orem tells that they approximatively equal a constant plus a weighted sum of inde-
pendent fBm increments. Our purpose is now to use this model to analyze Traffic
data via the regularization dimension.

R ( )

Ty MO o

r=1 /j’ +

5.3 Using Regularization dimension for studying the data

We already gave the result of the regularization dimension calculated on an fBm of
Holder exponent H in section 4.2: 2 — H. More precisely, at any scale, the mean of
the absolute value of the wavelet coefficients at scale a behaves like Ca® !, where
C' is a constant. In our case, £, applied to a path of an fBm is an estimator of this
value. Thus, the linear regression over any range of scales of the loglog plot of £,
VS a let us access to H.

Now, for a finite weighted sum of independent fBms of different Holder expo-
nents H;, let EC(a) be the mean of the absolute value of the wavelet coefficients at
a scale a. EC(a) is bounded as follows:

Ca *1<EC' <ZCa

for any j. Thus, choosing j such that CjaHf"l is predominant in ), Ciatli—1

“around” a given scale @ , the linear regression of the loglog plot of £, VS a around
a let us access to H;. For instance, the term with smallest H; will prevail at small
scales and the term with highest H; will prevail at high scales. For the terms with
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H; between these two extremal values, the behavior will depend on the weights C;.
In figure 3, we give an example of this method applied to the sum of two indepen-
dent fBms of exponents 0.4 and 0.8.

Increments A log(L)

0 T
-0.2 (CossRsSCecRon ml
:OMOOOOOOOOOO
I-04r [Seseveeassesisny 7
> @
3 00000 P
= oo
<-061 4
-0.8 Mo 4
1 L L L L L
0 1 2 4 5 6
Log(scale)
Estimated Regularization Dimension = 1.5441
-35 T T T T T
4+ 4
a -4.51- —
(=3
o
- o
-551- g

Log(scale)

Figure 3: loglog plot of Lq versus scale and its increments applied to a sum of two independent
fBms of exponents Hj,2 = 0.4,0.8. The chosen range of scales shows the transition between the
two slopes corresponding to Hy 2: 1—0.4 = —0.6 at small scales and 0.8 —1 = —0.2 at high scales.

We applied this analysis derived from the regularization dimension (we look
for regularization dimensions localized in scales) to Ethernet traffic data. We
considered a 47813 points sample of Ethernet traffic data measured at Berkeley
Wa(n),n=1,...,N. We worked directly on samples of the increments of the
series W3, (T't): ( ) = ZA T(n—1)+1 Wa(k),n =1,...,N/T, which, according to
the model, should behave, for T' big enough, like a constant plus a sum of increments
of independent fBms. The constant is not seen by our method because £, uses a
convolution of the signal with the derivative of a Schwartz kernel function (here
we took a Gaussian kernel). Working on increments just multiplies L, by a factor
a~! and adds a factor 1 to the regularization dimension. It follows that H equals
3—dimg(I"), where ['" is the graph of the increments of an {Bm of Holder exponent
H and that £, applied to A(n),n =1,..., N/T should behave like Cjai=2, the
predominant term in ), Ciafli—! around a given scale @ . Then, the only prepro—
cessing of the data was to adjust the scale parameter T': on one hand, T has to be
big enough for applying the model ; on the other hand, the bigger T', the smaller the
length of the sample A(n),n =1,..., N/T, which also reduces the range of scales
on which the estimator £, is reliable. Up to these slight differences, we made the
same analysis of the data as for the sum of the two fBms. The result is that the
traffic data exhibit a behavior similar to a sum of fBms (compare figure 4 and figure

12



Increments A log(L)
-0.8 T T T T

1.3 1.4 1.5 16 17 1.8 1.9 2 21 22 23
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regularization dimensions: 2.4183, 2.1346
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S46f
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Figure 4: loglog plot of Lq versus scale and its increments applied to Ethernet traffic data. The
chosen range of scales shows the transition between H; = 0.87 at small scales and Ha = 0.6 at

high scales. Hence the two regularization dimensions ~ 2.4,2.13

x10° Aggregated traffic, T=200
T T

0.8

0.6

0.4 Il Il Il Il
0 50 100 150 200 250
Sum of two fBm of Holder exponents 0.60 and 0.87
0.15 T T

011 b
0.05 b

-0.05 b
—01F i
-0.15 b

02 I I I I
0 50 100 150 200 250

Figure 5: Aggregated traffic and increments of the sum of two fBm of same H;.
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3). Thus, our results do not invalidate the model. Furthermore, they let us find
two values H;—1 2 ~ 0.6,0.87. We took T' = 200 which means that A had a length
N/T = 239. To access smaller and higher scales and maybe other H;—34 , one
should have a longer sample Wy (n),n =1,..., N and take a higher T'.

To give a visual idea of the model we used, we plot the aggregated traffic with
T = 200 and the increments of a sum of two fBm of Holder exponents 0.6 and 0.87
on the figure 5.

5.4 Conclusion : Fractal vs multifractal

The multifractal approach takes in account the coexistence of different Holder ex-
ponents along the time axis. Here, because the regularization dimension is a fractal
exponent and not a multifractal index, we tracked different Holder exponents along
the scale axis. As the model described in 5.2 seems to be validated by our study, it
would be interesting to study the effects of this model in a multifractal approach.
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