

Communications Numériques et Théorie de l'Information CNTI

Tables pour l'entropie H_2 et la capacité du CBS.

G. Rodriguez Guisantes.

Dépt. COMELEC

Mars 2008.

Soit une source binaire avec alphabet $A = \{0,1\}$ et probabilités des symboles p(0) = p et p(1) = 1 - p. La quantité d'information de chaque symbole de cette source est définie par :

$$i_k = \log_2\left(\frac{1}{P(k)}\right).$$

On appelle entropie binaire $H_2(p)$ de cette source :

$$H_2(p) = E[i_k] = -p \log_2(p) - (1-p) \log_2(1-p).$$

Cette fonction joue un rôle très important en théorie de l'information. La figure 1 représente $H_2(p)$ en fonction de la probabilité p. Le tableau 1 donne quelques valeurs numériques de la fonction $H_2(p)$.

La capacité du Canal Binaire Symétrique (CBS) avec probabilité de transition p, peut s'exprimer en fonction de H_2 selon :

$$C_{\text{CBS}} = 1 - H_2(p).$$

La figure 2 représente la capacité du \mathbf{CBS} en fonction de p.

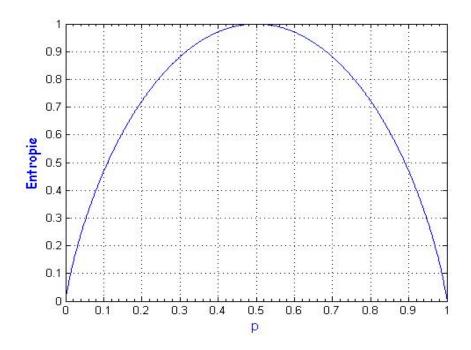


Fig. 1 – Entropie binaire en fonction de la probabilité p.

x	$H_2(x)$	x	$H_2(x)$	x	$H_2(x)$	x	$H_2(x)$
0.00	0.000	0.130	0.557	0.260	0.827	0.390	0.965
0.01	0.081	0.140	0.584	0.270	0.841	0.400	0.971
0.020	0.141	0.150	0.610	0.280	0.855	0.410	0.977
0.030	0.194	0.160	0.634	0.290	0.869	0.420	0.981
0.040	0.242	0.170	0.658	0.300	0.881	0.430	0.986
0.050	0.286	0.180	0.680	0.310	0.893	0.440	0.990
0.060	0.327	0.190	0.701	0.320	0.904	0.450	0.993
0.070	0.366	0.200	0.722	0.330	0.915	0.460	0.995
0.080	0.402	0.210	0.741	0.340	0.925	0.470	0.997
0.090	0.436	0.220	0.760	0.350	0.934	0.480	0.998
0.10	0.469	0.230	0.778	0.360	0.943	0.490	0.999
0.11	0.500	0.240	0.795	0.370	0.951	0.500	1.000
0.120	0 0.529	0.250	0.811	0.380	0.958		

Tab. 1 – Quelques valeurs de $H_2(p)$.

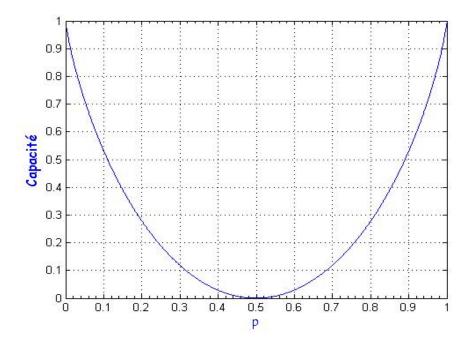


Fig. 2 – Capacité du ${\bf CBS}$ en fonction de la probabilité de transition p.