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Résumé – Ce travail examine les relations entre la complexité de l’échantillon et la complexité du modèle dans l’apprentissage à
faible rang des réseaux neuronaux quadratiques superficiels (QSNN). Nous proposons un nouveau cadre enseignant-étudiant à
double corrélation qui intègre des corrélations entre paramètres pour mieux refléter les propriétés des données réelles. Ce cadre étend
les théories existantes sur les QSNN en analysant l’influence de la taille d’échantillon sur l’erreur de généralisation pour des modèles
appris à faible rang ou présentants un biais intrinsèque. Nos résultats révèlent un comportement à deux phases dans les lois d’échelle
de la capacité de généralisation selon la taille d’échantillon, et démontrent que les corrélations paramétriques du modèle enseignant
améliorent considérablement la généralisation des modèles à rang réduit. Des simulations numériques étendues confirment ces
résultats et offrent des perspectives théoriques ainsi que des recommandations pratiques pour concevoir des architectures de réseaux
neuronaux efficaces dans le contexte de l’apprentissage à faible rang.

Abstract – We investigate the interplay between sample complexity and model complexity in low-rank learning of quadratic shallow
neural networks (QSNN), within a novel doubly-correlated teacher-student framework that incorporates parameter correlations
to reflect real-world data properties. This framework generalizes existing theories for QSNN by analyzing the impact of sample
size on generalization loss for models under low-rank learning or exhibiting inherent bias. We observe a two-regime behavior in
the scaling law of generalization ability with respect to sample size and show that parameter correlations in the teacher model
significantly enhance the generalization of rank-reduced models. Extensive numerical simulations confirm the results and offer
theoretical insights and practical guidance for designing efficient neural network architectures under low-rank learning.

1 Introduction
Neural networks have achieved remarkable success in

fields such as computer vision, natural language processing,
and speech recognition. However, their over-parameterized
nature—where the number of model parameters far exceeds
what is needed to represent the target function—leads to in-
creased computational costs and challenges for deployment
on resource-constrained devices [15]. While model compres-
sion and low-rank approximation techniques can reduce over-
parameterization, most remain heuristic and lack a unified
theoretical foundation [1].

This work addresses fundamental questions for training
efficient neural networks from scratch: How much can over-
parameterization be reduced during training? What is the
minimum sample size required for a good generalization per-
formance? Can real-world data properties, such as parameter
correlations, facilitate model reduction?

We study Quadratic Shallow Neural Networks (QSNN) in
a teacher-student framework, where a fixed “teacher” model
generates labels and a “student” model is trained to approxi-
mate the teacher. While matrix sensing provides theoretical
insights into the interplay between approximation, data com-
plexity, and parameterization [6, 17], its conclusions generally
do not extend to neural networks with nonlinear activations.
For QSNNs, recent works have established sample complex-
ity results for full-rank students learning from random teach-

ers [3, 16, 12]. Quadratic activations are popular in theoretical
studies due to their convexity, enabling analytical results and
robust validation. Additionally, it has been demonstrated that
stacking multiple quadratic layers can approximate more com-
plex neural networks [11].

We extend current QSNN theory by analyzing sample com-
plexity for both full-rank and low-rank students and proposing
a teacher model that better reflects parameter correlations in
real-world data. This provides a more accurate and complete
description of neural scaling laws in teacher-student scenarios
with low-rank learning.

Our main contributions include:
— Analytical derivation of the optimal generalization loss

for rank-reduced QSNN models;
— A doubly-correlated teacher-student framework closer

to real-world data, where the teacher’s parameters are
generated using a correlated stochastic process

— More generalized extension of sample complexity the-
ory to both full-rank and low-rank networks, revealing a
two-regime neural scaling law;

— Empirical results demonstrating the impact of parame-
ter correlations and rank constraints on generalization
performance.

These findings bridge the gap between theory and practice
for the scaling law of low-rank deep learning, offering new
insights for training-time model compression.
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2 Problem Formulation
Consider a teacher-student setup with single-hidden-layer

NN structure. For input datum x ∈ Rd and weight matrix
W ∈ Rm×d given input dimension d and number of neurons
m, the QSNN is defined as:

f(W ;x) =
1

m
xTWTWx. (1)

With a fixed weight matrix W ∗ ∈ Rm∗×d, the teacher net-
work generates labels as f(W ∗;x). Given a dataset of n sam-
ples X = {x1, . . . , xn} drawn from a distribution X and
corresponding labels {f(W ∗;x1), . . . , f(W

∗;xn)}, the train-
ing seeks a student model that minimizes the training loss
L̂(W ;X ) based on Mean Squared Error (MSE) on the dataset:

L̂(W ;X ) =
1

n

∑
x∈X

(f(W ;x)− f(W ∗;x))
2
. (2)

The generalization loss L(W ) is defined as the expected MSE
over the distribution X:

L(W ) = Ex∼X

[
(f(W ;x)− f(W ∗;x))

2
]
. (3)

We present the state-of-the-art sample complexity theory
for the teacher-student setup in single hidden layer QSNNs
as defined in Equation 1. For full-rank students and teachers
(i.e., W has rank min(m, d) and W ∗ has rank min(m∗, d)), if
m ≥ m∗, there exists a threshold nc for the training sample
size n, determined by d and m∗. If n > nc, the student model
has a positive probability of generalizing, meaning it can learn
the solution 1

mWTW = 1
m∗W

∗TW ∗, achieving an optimal
generalization loss L(W ) = 0. Conversely, if n ≤ nc, the
student model will overfit with probability 1. The formula for
nc is given in [12].

nc =


d(m∗ + 1)− m∗(m∗ + 1)

2
if m∗ < d

d(d+ 1)

2
if m∗ ≥ d.

(4)

The case of m∗ ≥ d in Equation 4 is proved in [5]. For
the case where m∗ < d, [12] provides a rigorous proof for
m∗ = 1 and a heuristic explanation for m∗ > 1, although the
latter can be confirmed through numerical simulations. As
shown in Figure 1, a notable decrease in validation losses to
nearly zero is evident when the sample size exceeds nc.

We extend QSNN sample complexity theory by studying
rank-reduced student networks and parameter correlations in
the teacher model. For low-rank training, we constrain the
student network’s rank to r < min(m, d) by factorizing the
weight matrix W into W = W1W

T
2 where W1 ∈ Rm×r and

W2 ∈ Rd×r. When r < dm
d+m , the number of parameters of

the low-rank model is less than that of the original structure.
This factorization is equivalent to inserting a linear hidden
layer between the input and original hidden layer (Figure 2).
Unlike full-rank students which can achieve zero error, we find
that rank-reduced students exhibit persistent generalization
bias across all hyperparameter settings, as demonstrated in
Theorem 1. This indicates that the current sample complexity
framework does not extend to the low-rank case.
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Figure 1 – Training losses and validation losses from multiple ran-
dom teacher/student initialization and training with different n under
the hyperparameters d = 200 and m∗ = 120. The vertical dashed
red line indicates the corresponding sample complexity nc = 16940.
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Figure 2 – Structure of the QSNN with and without low-rank factor-
ization.

Theorem 1. If X ∼ N (0, Id), fix an arbitrary teacher model
W ∗ ∈ Rm∗×d with W ∗TW ∗ = U diag(s∗1, . . . , s

∗
d)U

T where
s∗1 ≥ · · · ≥ s∗d ≥ 0 and U an orthogonal matrix. For any
student W ∈ Rm×d of rank at most r < d, the generalization
loss-optimal W o satisfies:

W oTW o = U diag
(
s∗1 +

S
r+2 , . . . , s

∗
r +

S
r+2 , 0, . . . , 0

)
UT ,

(5)
with S =

∑d
i=r+1 s

∗
i .

Proof. With A = 1
mWTW and A∗ = 1

m∗W
∗TW ∗, as X ∼

N (0, Id), the generalization loss becomes

L(W ) = E
[
(XT (A∗ −A)X)2

]
= tr(∆)2 + 2||∆||2F , (6)

where ∆ = A∗ −A is symmetric.
Assume A = U diag(b1, . . . , bd)U

T with bi ≥ . . . bd ≥ 0
and rank(A) ≤ r, and let bi = 0 for i > r. Writing χi =
s∗i − bi for each i, the objective becomes:

L(W ) =
( r∑
i=1

χi + S
)2

+ 2

r∑
i=1

χ2
i (7)

with S =
∑d

i=r+1 s
∗
i . Because L(W ) in Equation 7 is strictly

convex and symmetric in the variables χ1, . . . , χr, minimizing
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L(W ) reduces to minimizing a single-variable function:

g(χ) = (rχ+ S)2 + 2rχ2, (8)

which yields optimal χo = − S
r+2 and thus boi = s∗i +

S
r+2 for

i ≤ r.
This solution is feasible since all singular values s∗i are non-

negative. The result thus follows from unitary invariance.

When both the teacher and the student are rank-1, the op-
timization problem reduces to the classical phase retrieval
problem. Notably, the optimal solution in this case differs
from the standard Eckart–Young–Mirsky theorem [4] due to
the presence of the quadratic activation. For a full-rank W ,
the generalization loss L(W ) can be made zero by the trivial
solution WTW = W ∗TW ∗, which corresponds to the condi-
tions in Equation 4. However, when W is constrained to be
low-rank, the residual singular values introduce an unavoid-
able approximation error, implying that some loss must be
tolerated in low-rank learning. Despite this, numerous studies
on real-world regression tasks have shown that rank-reduced
neural networks can often achieve generalization performance
comparable to that of full-rank networks [2, 8, 14], indicating
that the loss in precision due to residual singular values is often
negligible in practice. Several works attribute the strong gen-
eralization ability of low-rank models to inherent correlations
in the parameters of real-world mappings [10, 9]. Motivated
by these observations, we introduce the analytical framework
described in the next section.

3 Proposed Analytical Framework
We propose a doubly-correlated teacher-student framework,

where the teacher’s weight matrix W ∗ is generated by a stable
2D first-order autoregressive (AR(1)) process with correlation
parameter ϕ (0 ≤ ϕ < 1). This induces correlations between
adjacent elements, while mean and variance are preserved by
scaling the noise with

√
1− ϕ2. Though being a simplified

framework, such correlations in the parameters are observed in
real-world regression networks. The presence of correlations
between parameters strongly affect the singular value distri-
bution of W ∗. For uncorrelated weights, the singular values
follow the Marchenko-Pastur law [13]. Introducing correla-
tions deforms this distribution, concentrating singular values
near the largest as ϕ increases [7] (see Figure 3). This makes
low-rank approximation more effective as the least significant
singular values are ignorable without much loss of precision.

Proposition: In this doubly-correlated setup, the general-
ization loss as a function of sample size exhibits two regimes:
an initial exponential decay, followed by a plateau determined
by the model’s rank constraint and the teacher’s singular value
distribution.

This behavior can be understood via singular value align-
ment. In the low-sample regime, the model quickly learns
the leading singular value directions as training samples in-
crease, resulting in exponential decay of generalization loss
(L(W ) ∝ e−αn). For teachers with more uniform singular
values (low correlation), this decay is nearly vertical, regress-
ing to the hard sample size threshold in Equation 4. However,
as the sample size grows, depending on the inherent bias of the
student, the additional information primarily pertains to the
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Figure 3 – Singular values of A∗ = 1
m∗W

∗TW ∗ to indices, where
d = 200, m∗ = 120. W ∗ generated by stable 2D AR(1) process
with different ϕ.

lower singular directions, which correspond to fine-grained
variations that are not easily distinguishable. Further gains
are now limited not by sample size but by the alignment be-
tween the model’s limited singular modes and those of the
data distribution. The generalization loss then plateaus, set by
the model’s rank and the teacher’s singular spectrum (see The-
orem 1). The correlation parameter ϕ fundamentally shapes
this two-regime behavior. Higher correlation concentrates the
teacher’s singular values toward the largest components, not
only making the exponential decay occur sooner as the model
can more efficiently capture the dominant patterns, but also de-
creases the plateau level as the residual singular values become
smaller. Thus, the trade-off in the decision of low-rank learn-
ing is between model complexity and tolerable error, shaped
by data mapping correlations and sample size.

4 Numerical Simulation
We empirically validate the two-regime generalization loss

behavior using the doubly-correlated teacher-student setup
with m∗ = 120, d = 200, m = 120, and ϕ = 0.99. Students
are either two-layer full-rank networks or rank-constrained
three-layer bottleneck networks. All models are trained with
Adam optimizer (learning rate 10−3) and batch learning (using
a batch size equal to the sample size), for 105 epochs.

Experiments span various student ranks and random ini-
tializations. Figure 4 shows results for both uncorrelated and
correlated teachers, with the teacher model fixed within each
trial to ensure a stable singular value spectrum. Validation
losses are computed on large enough test sets and reported as
Normalized Root Mean Square Error (NRMSE) for compara-
bility. In all cases, the low-sample regime shows exponential
decay in generalization loss, with a rate determined by the
teacher’s singular values, not the student’s capacity. In the
high-sample regime, the loss saturates to a bias that depends
on student rank, corresponding to the irreducible error in The-
orem 1. For ϕ = 0, the exponential decay closely matches the
hard threshold nc from Equation 4. We note that the gap is due
to imperfect training. With perfect training, full-rank students
shall reach zero loss beyond nc.

Parameter correlations in the teacher help students achieve
lower generalization loss with less parameters, as seen by the
reduced bias in rank-reduced models, even though a small loss
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compared to the full-rank model is introduced due to the least
significant singular values being difficult to represent in the
training data.

5 Discussion
This work explores the potential of reducing certain de-

grees of over-parameterization when training a neural network.
From state-of-the-art parameterization theories on QSNN, we
derive theoretical insights into the two-regime behavior of
generalization loss to sample size and demonstrate the critical
role of parameter correlations in enhancing the generalization
performance of rank-reduced models. Our findings provide
practical guidance for deciding and designing low-rank learn-
ing of efficient neural networks. We note that our results on
sample complexity for low-rank QSNNs and correlated cases
are primarily empirical and heuristic, and a full theoretical
treatment is left for future work.

In addition, there are other future directions to explore, such
as: (i) more empirical evidence on real-world deep regression
tasks and the measurement of the correlation of parameters
in real-world datasets ; (ii) classification tasks with different
loss functions (e.g. cross-entropy loss) could be considered, as
thresholding the output of the network could further decrease
the precision tradeoff of rank reduction ; (iii) the interplay
between parameter correlations and explicit regularizations to
further improve training-time compression techniques.
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