

Generalizability and Sample Complexity of Quadratic Shallow Neural Networks Under

Low-Rank Learning

Xiaolin WANG¹, Olivier RIOUL¹, Anissa MOKRAOUl², Pierre DUHAMEL³, Jacob BENESTY⁴ ¹ Télécom Paris, Institut Polytechnique de Paris ² Université Sorbonne Paris Nord ³ CentraleSupélec, Université Paris-Saclay ⁴ Université du Québec 25 August 2025

0. Summary

This paper studies the impact of data correlation on the performance of low rank approximation during training of **Quadratic Shallow Neural Networks (QSNN)**

1. Background

- Neural networks are over-parameterized, leading to high computational costs [1, 8]
- Post-training model compression obtained by low-rank approximation effectively reduces over-parameterization [3, 7, 4]

2. Key Questions

- Can low rank approximation be applied during training? With which consequences on the performance?
- What is the sample size required for target generalization loss?
- What data properties facilitate model compression?

3. Problem Formulation (Toy Example)

Teacher-Student Learning of QSNN

Current State-of-the-Art (Hard Sample Complexity) [2, 6] Full-rank student needs at least

$$n_c = \begin{cases} d(m^* + 1) - \frac{m^*(m^* + 1)}{2} & \text{if } m^* < d\\ \frac{d(d+1)}{2} & \text{if } m^* \ge d \end{cases}$$
(1)

samples to enable perfect generalization (stronger than simple convergence)

4. Low-Rank Learning

- ► Factorize: $W = W_1 W_2^T$ where $W_1 \in \mathbb{R}^{m \times r}$, $W_2 \in \mathbb{R}^{d \times r}$
- Degree-of-freedom (DOF) reduction when $r < \frac{dm}{d+m}$

Theorem: For Gaussian data distribution, the loss-optimal rank-r student (W^o) is determined by the teacher's singular values (s_i^*) [2]

$$W^{oT}W^{o} = U \operatorname{diag}(s_{1}^{*} + \frac{S}{r+2}, \dots, s_{r}^{*} + \frac{S}{r+2}, 0, \dots, 0) U^{T}$$
 (2)

where $S = \sum_{i=r+1}^{d} s_i^*$.

5. Doubly-Correlated Teacher-Student Framework

- Teacher weights generated by stable 2D AR(1) process with correlation parameter ϕ (0 < ϕ < 1)
- Captures correlation behaviors in real-world data
- Higher ϕ concentrates SV near largest components (see Fig.)

Key Insight: Parameter correlations in teacher significantly enhance generalizability of rank-reduced students [5]

Figure: SV of $A^* = \frac{1}{m^*} W^{*T} W^*$ to indices, where d = 200, $m^* = 120$. W^* generated by stable 2D AR(1) process with different ϕ

6. Generalized Sample Complexity

New: Generalization loss in terms of the sample size behaves like

$$\bar{L}(W^*, n) \approx A(W^*) \exp(-\alpha n) + L(W^o)$$
 (3)

- **Low-sample regime:** Exponential decay $L(W) \propto e^{-\alpha n}$
- High-sample regime: Plateau determined by rank constraint and teacher's residual singular values s_i^*

7. Experimental Results

Findings:

- Exponential decay in low-sample regime determined by teacher
- Loss saturates to bias based on rank constraint
- Parameter correlations reduce sample complexity
- On low-correlation data and high-rank students, sample complexity reduces to hard threshold (vertical red-dashed line)

Parameter correlations make low-rank learning feasible!

References

- [1] S. Du and J. Lee. On the Power of Over-parametrization in Neural Networks with Quadratic Activation. In Proceedings of the 35th ICML, pages 1329-1338. PMLR, July 2018.
- [2] D. Gamarnik, E. C. Kızıldağ, and I. Zadik. Stationary Points of Shallow Neural Networks with Quadratic Activation Function, July 2020,
- [3] K. Geyer, A. Kyrillidis, and A. Kalev. Low-Rank Regularization and Solution Uniqueness in Over-parameterized Matrix Sensing. In Proc. of the 23rd AISTATS, pages 930-940. PMLR, June 2020.
- [4] Y. Idelbayev and M. Á. Carreira-Perpiñán. Low-Rank Compression of Neural Nets: Learning the Rank of Each Layer. In 2020 IEEE / (CVPR), pages 8046–8056, June 2020.
- [5] G. Jin, X. Yi, L. Zhang, et al. How does Weight Correlation Affect the Generalisation Ability of Deep Neural Networks, arXiv:2010.05983. [6] S. S. Mannelli, E. Vanden-Eijnden, and L. Zdeborová. Optimization and Generalization of Shallow Neural Networks with Quadratic
- Activation Functions. In NeurIPS, volume 33, pages 13445-13455, Vancouver, Canada, 2020. [7] W. Roth, G. Schindler, B. Klein, et al. Resource-efficient neural networks for embedded systems. Journal of Machine Learning Research,
- 25(50):1–51, 2024.
- [8] N. Xiong, L. Ding, and S. S. Du. How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization. In 12th ICLR, Oct. 2023.