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0. Summary

This paper studies the impact of data correlation on the
performance of low rank approximation during training of
Quadratic Shallow Neural Networks (QSNN)

1. Background

▶ Neural networks are over-parameterized, leading to high
computational costs [1, 8]

▶ Post-training model compression obtained by low-rank
approximation effectively reduces over-parameterization [3, 7, 4]

2. Key Questions

▶ Can low rank approximation be applied during training? With
which consequences on the performance?

▶ What is the sample size required for target generalization loss?
▶ What data properties facilitate model compression?

3. Problem Formulation (Toy Example)

Teacher-Student Learning of QSNN
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Current State-of-the-Art (Hard Sample Complexity) [2, 6]
Full-rank student needs at least

nc =

{
d(m∗ + 1)− m∗(m∗+1)

2 if m∗ < d
d(d+1)

2 if m∗ ≥ d
(1)

samples to enable perfect generalization (stronger than simple
convergence)

4. Low-Rank Learning

▶ Factorize: W = W1W T
2 where W1 ∈ Rm×r , W2 ∈ Rd×r

▶ Degree-of-freedom (DOF) reduction when r < dm
d+m

Theorem: For Gaussian data distribution, the loss-optimal rank-r
student (W o) is determined by the teacher’s singular values (s∗

i ) [2]
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where S =
∑d

i=r+1 s∗
i .

5. Doubly-Correlated Teacher-Student Framework

▶ Teacher weights generated by stable 2D AR(1) process with
correlation parameter ϕ (0 < ϕ < 1)

▶ Captures correlation behaviors in real-world data
▶ Higher ϕ concentrates SV near largest components (see Fig.)
Key Insight: Parameter correlations in teacher significantly
enhance generalizability of rank-reduced students [5]
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Figure: SV of A∗ = 1
m∗W ∗TW ∗ to indices, where d = 200, m∗ = 120. W ∗ generated

by stable 2D AR(1) process with different ϕ

6. Generalized Sample Complexity

New: Generalization loss in terms of the sample size behaves like
L̄(W ∗, n) ≈ A(W ∗) exp(−αn) + L(W o) (3)

▶ Low-sample regime: Exponential decay L(W ) ∝ e−αn

▶ High-sample regime: Plateau determined by rank constraint
and teacher’s residual singular values s∗

i

7. Experimental Results
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(a) m∗ = 120, d = 200, m = 120, ϕ = 0
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(b) m∗ = 200, d = 120, m = 200, ϕ = 0
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(c) m∗ = 120, d = 200, m = 120,
ϕ = 99%
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(d) m∗ = 200, d = 120, m = 200,
ϕ = 99%

Findings:
▶ Exponential decay in low-sample regime determined by teacher
▶ Loss saturates to bias based on rank constraint
▶ Parameter correlations reduce sample complexity
▶ On low-correlation data and high-rank students, sample

complexity reduces to hard threshold (vertical red-dashed line)

Parameter correlations make low-rank learning feasible!
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