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Abstract. The Bayesian Cramér-Rao Bound (BCRB) is generally at-
tributed to Van Trees who published it in 1968. According to Stigler’s law
of eponymy, no scientific discovery is named after its first discoverer. This
is the case not only for the Cramér-Rao bound itself—due in particular
to the French mathematicians Fréchet and Darmois—but also for the van
Trees inequality: The French physician, geneticist, epidemiologist and
mathematician Marcel-Paul (Marco) Schützenberger, in a paper of just
fifteen lines written in 1956—more than a decade before van Trees—had
not only derived the BCRB but, as a close examination of his proof shows,
used a very original approach based on the Weyl-Heisenberg uncertainty
principle on the square root of the posterior distribution. This work
reviews and extends Schützenberger’s approach to Fisher information
matrices, which opens up new perspectives.

1 An Overview of the (So-Called) Cramér-Rao Inequality

The well-known Cramér-Rao bound (CRB) allows one to easily evaluate the best
possible parametric estimation performance in terms of quadratic risk. It is a
fact known today by researchers in the field—at least in France [2]—that the
bound was established for a real parameter θ ∈ R by the French mathematician
Maurice Fréchet for i.i.d. observations in his 1943 seminal paper [11]. As Fréchet
recalls on the first page of his article,

« Le contenu de ce mémoire a formé une partie de notre cours de statistique
mathématique à l’Institut Henri Poincaré pendant l’hiver 1939-1940. »
[The contents of this memoir formed part of our mathematical statistics
course at the Institut Henri Poincaré during the winter of 1939-1940.]

The extension to non-i.i.d. observations and to the vector case of several pa-
rameters θ ∈ Rd was soon made by his colleague Georges Darmois in 1945 [4].
Contrary to what is sometimes asserted, their student Daniel Dugué had not, it
seems, already established this inequality in his 1937 thesis [7]. Fréchet cites the
early 1898 work of Pearson and Filon [14], as well as later works of Edgeworth [8]
and Fisher [9], but as he points out, these authors only proved an approximate
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bound for large values of n under an asymptotic normality assumption. He also
cites Doob [6]:

« qui semble avoir obtenu le premier la formule non asymptotique et
sans l’hypothèse de normalité faite par ses prédécesseurs » [who seems
to have been the first to obtain the non-asymptotic formula without the
normality assumption made by his predecessors]

yet the relationship between the inequalities that Doob derived on Fisher infor-
mations and the CRB is not clear. The very same bound (in the scalar and vector
cases) was eventually independently established by C. R. Rao [15] in 1945 and
by Cramér in his excellent book [3, Chap. 32] in 1946, and is now known as the
“Cramér-Rao bound”.

The bound can be written as follows. For an unbiased estimator θ̂(x) of
parameter θ ∈ Rd, computed from observations x = (x1, x2, . . . , xn), and under
some well-known regularity conditions1, the quadratic risk Rθ (which equals the
estimator’s covariance) is lower bounded by the inverse of the Fisher information
matrix (FIM):

Rθ = Cov(θ̂(X)) = E
{
(θ̂(X)− θ)(θ̂(X)− θ)t

}
≥ 1

Jθ
. (1)

Here “≥” is the Loewner order on the set of symmetric matrices, defined by
A ≥ B ⇐⇒ A−B is positive semi-definite, and the FIM Jθ is defined as the
covariance matrix of the score (gradient of log-likelihood):

Jθ = Cov(∇ log pθ(X)) = E
{
∇ log pθ(X)∇t log pθ(X)

}
, (2)

where pθ(x) = pθ(x1, x2, . . . , xn) describes the parametric model of the joint
distribution of the n observations and ∇ denotes the gradient w.r.t. θ. A classical
calculation gives

Jθ = −E
{
∇∇t log pθ(X)

}
, (3)

where ∇∇t is the Hessian operator w.r.t. θ. The latter identity shows that
for independent and identically distributed (i.i.d.) observations we simply have
Jθ = nJθ,1 where Jθ,1 is the Fisher information for a single observation (n = 1).

A simple proof of (1) is based on the matrix Cauchy-Schwarz inequality (see
Subsection A.1):

Covθ̂(X) ≥ Cov{θ̂(X),∇log pθ(X)}·Cov(∇ log pθ(X))−1·Cov{∇log pθ(X), θ̂(X)}
(4)

where the inter-covariance Cov{θ̂(X),∇log pθ(X)} = Cov{∇log pθ(X), θ̂(X)}t

simply reduces to E
(
θ̂(X)∇

tpθ(X)
pθ(X)

)
= ∇t E(θ̂(X)) = ∇tθ = I since the estimator

1 Essentially, that the parametric model of the joint distribution of the n observations,
pθ(x) = pθ(x1, x2, . . . , xn), has support that does not depend on θ, is twice differ-
entiable, and uniformly integrable as well as its first and second derivatives on its
support.
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is unbiased. Fréchet [11] and Cramér [3] also extended this inequality to the case
of a biased estimator, with (possibly non-zero) bias Bθ̂(θ) = E(θ̂(X)) − θ, in
which case ∇t E(θ̂(X)) = ∇t(θ +Bθ̂(θ)). This gives the following modified CRB
with the gradient of the bias:

Rθ = Kθ+Bθ̂(θ)Bθ̂(θ)
t ≥ (I+∇tBθ̂(θ))·J

−1
θ ·

(
I+∇tBθ̂(θ)

)t
+Bθ̂(θ)Bθ̂(θ)

t. (5)

The interest of such an improved bound is limited since it generally depends
on the estimator itself via its bias. Subsequently, many other versions of the
Cramér-Rao bound have been discussed and have allowed to take into account
different regularity conditions from the classical framework [1], constraints in
the parameter vector [13], a periodicity constraint inherent to certain estimation
problems [17], and more recently the geometric structure of the parameters [21].
The Cramér-Rao bound has have found numerous applications in engineering
problems, sometimes at the limit of abuse [23].

2 An Overview of the (So-Called) van Trees Inequality

One of the most important extensions of the Cramér-Rao bound is the Bayesian
Cramér-Rao bound (BCRB) in a Bayesian context where the parameter of interest
θ ∈ Rd is assumed random and follows a known prior distribution p(θ). The
model of the data distribution p(x|θ) depends on the variable θ and the quadratic
risk matrix is no longer defined for a fixed “true” value of θ, but averaged over
the prior distribution:

R ≜ Ex,θ

{
(θ̂(X)− θ)(θ̂(X)− θ)t

}
, (6)

where the expectation is now over the joint distribution p(x, θ) = p(x|θ)p(θ).
The BCRB is almost always attributed to van Trees who proved it in his

reknown textbook [24] published in 1968:

R ≥ J−1 = (J̃+ Eθ Jθ)
−1 (7)

where J is the joint FIM :

J = Ex,θ

{
∇ log p(X, θ)∇t log p(X, θ)

}
. (8)

A calculation identical to that which proves (3) from (2) gives (with appropriate
regularity and decay assumptions on the prior):

J = −Ex,θ{∇∇t log p(X, θ)}. (9)

Since p(x, θ) = p(θ)p(x|θ) under the logarithm, we have the relation J = J̃+Eθ Jθ

where
J̃ = Eθ

{
∇ log p(θ)∇t log p(θ)

}
= −Eθ{∇∇t log p(θ)} (10)

is the prior FIM, and where Jθ is the classical Fisher information given by (2)-(3)
for pθ(x) = p(x|θ), which equals Jθ = nJθ,1 in the case of i.i.d. observations
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(conditionally to θ). We see in particular that the influence of the a priori
eventually disappears for a very large number of observations since J = J̃ +
nEθJθ,1 ∼ Eθ Jθ when n → ∞, which reduces to the classical bound when Jθ

does not depend on θ.
Van Trees’ proof (which is detailed only in the scalar case d = 1) is directly

inspired by the Cauchy-Schwarz inequality (4) used in the classical case, but
applied to the joint distribution p(x, θ) in place of pθ(x) = p(x|θ). In the general
case d ≥ 1 this reads (see Subsection A.1)

R ≜ Rθ̂(X)−θ ≥ Rθ̂(X)−θ,∇log p(X,θ) ·R
−1
∇ log p(X,θ) ·R∇log p(X,θ),θ̂(X)−θ (11)

where the cross-covariance matrix equals

Rθ̂(X)−θ,∇log p(X,θ) =

∫∫
(θ̂(x)−θ)∇tp(x, θ)

=

∫∫
(∇tθ)p(x, θ) +

∫
∇
∫
(θ̂(x)−θ)p(x, θ)

= I+

∫
∇{p(θ)Bθ(θ)} = I

(12)

under the following assumption on the bias:

lim
|θ|→∞

p(θ)Bθ̂(θ) = 0, (13)

a crucial assumption under which van Trees proves the inequality (7). Moreover,
the equality condition in the Cauchy-Schwarz inequality (11) implies that the
BCRB is achieved when the posterior distribution p(θ|x) is Gaussian. All these
results obtained by van Trees have become classical today, and reproduced
verbatim in most textbooks. But few know that he was preceded by more than a
decade by Marcel-Paul Schützenberger.

3 Marcel-Paul Schützenberger’s 1956 Contribution

It was only in 2007, during the publication of a collection of articles on Bayesian
bounds [25], that van Trees mentioned that his BCRB bound had been derived
independently by “Shutzenberger” (sic) and commented:

“This derivation is a model of economy (1/3 of a page) but does not appear
to have been noticed by either the engineering or statistical communities.”

Figure 1 shows the third of a page in question, a small paragraph of about fifteen
lines. It is actually a simple announcement in the AMS bulletin which was later
republished in more detail (and in French) in [19].

The author of this note is in fact Marcel-Paul Schützenberger, French physi-
cian, geneticist, epidemiologist and mathematician, a colorful character [16] who
defended his thesis in 1953 under the direction of Georges Darmois, after having
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Fig. 1: The entirety of the publication [18] written in 1956.

completed his medical thesis entitled Contribution to the study of sex at birth.
Already in his 1953 thesis, he established deep connections between statistics
(Fisher information in particular) and information theory (Shannon’s mutual
information). He also discovered the famous Pinsker inequality with optimal first
and second-order constants, 7 years before Pinsker himself and 17 years before
the precise republication of this inequality by Kullback—see [16] for more details.

Schützenberger was certainly aware of the work of Maurice Fréchet, his thesis
jury president, on the so-called CRB which he actually called the Fréchet-Cramér
inequality. Invited by Claude Shannon to MIT during the 1956-57 academic year,
he wrote his article on the BCRB before November 1956. It is likely that his
inspiration came in particular from discussions with David Slepian, who was
working at Bell Laboratories at the time on estimation problems [20] and was well
acquainted with the CRB via Cramér’s book [3]. In fact, Slepian is mentioned in
a footnote by Schützenberger [19] as having “independently obtained” the BCRB,
although Slepian’s work has apparently not been published.

A second researcher is also mentioned in the same footnote by Schützen-
berger [19], as having independently obtained the BCRB: “Mr J. Dard (article to
appear in Annals of Mathematical Statistics)”. As it seems, this is no other than
John J. Gart, whose article was indeed published in this journal in 1959 [12].
This article is also included at the end of van Trees’ collection [25] without much
comment. Gart’s proof simply rewrites the inequality of the classical case (4) by
also averaging over the a priori p(θ), to obtain a Bayesian version of (5) where
the derivative of the bias Bθ̂(θ) appears but where the a priori information J̃
has disappeared. Unfortunately, Gart only considers the diagonal terms in the
FIM without taking into account the inter-parameter correlations.
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Schützenberger’s work on the BCRB is particularly interesting. It is one of
his very last in the field of statistics. He never returned to this field afterwards,
focusing from his time at MIT on the theory of codes, formal languages, au-
tomata, word combinatorics, etc.—all domains of theoretical computer science
and combinatorics for which he is best known today.

Albeit fallen into oblivion, Schützenberger’s proof of the BCRB is surprisingly
original. The original publication deals only with the scalar case θ ∈ R, but can
be easily extended to the vector case θ ∈ Rd as shown below.

First of all, a careful decryption of his article (Fig. 1) shows that the emphasis
is placed on the posterior p(θ|x) rather than on the prior, and on the following
posterior FIM :

J̃(x) = Eθ|x
{
∇ log p(θ|x)∇t log p(θ|x)

}
= −Eθ|x

{
∇∇t log p(θ|x)

}
(14)

which hardly seems to be mentioned anywhere in the literature and satisfies the
relation J = Ex J̃(x), as can be seen by expanding p(x, θ) = p(x)p(θ|x) in J—the
unconditional data distribution p(x) disappears in the differentiation since it
does not depend on θ.

The introduction of the posterior is indeed natural since the optimal estimator,
which minimizes the quadratic risk, is precisely given by the mean of the posterior
distribuition θ̂∗(x) = E(θ|x). Schützenberger, therefore, begins his derivation by
showing that it suffices to prove the BCRB (7) on the minimal risk

minRθ−E(θ|x) = Ex Cov(θ|x) (15)

where Cov(θ|x) = Eθ|x{(θ−E(θ|x))(θ−E(θ|x))t} is the covariance matrix of the
posterior. The crucial step in Schützenberger’s proof is the following inequality
that resembles the BCRB, but for a given observation vector:

Cov(θ|x) ≥ J̃(x)−1 (16)

Schützenberger (in the scalar case d = 1) simply says that this is a “classical
result” (cf. Figure 1) in [18]. However, he specifies in [19] that it is “Weyl’s
inequality”. Although this is not obvious, one can indeed see it as the Weyl-
Heisenberg inequality which constitutes the famous uncertainty principle in
quantum mechanics, which Hermann Weyl proves in his 1928 book on quantum
mechanics [26, App. 1]. The proof of this inequality (as well as the equality case)
is classical in the scalar case d = 1 and carried out in Subsection A.2 in the
general case of dimension d, where it is equivalent to the matrix inequality

Rt·f ≥
1

4
R−1

∇f (17)

for any function f ∈ L2(Rd) such that tf(t) ∈ L2 and ∇f ∈ L2.
Although he does not write it explicitly, the key point of Schützenberger’s

proof consists in applying Weyl’s inequality (17) to the function f(θ) =
√

p(θ|x)
for fixed x. After making a change of variable θ ←

(
θ − E(θ|x)

)
, this reads

Cov(θ|x) ≥ 1

4
R−1

∇
√
p(θ|x)

. (18)
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Now since ∇
√
p(θ|x) = 1

2
√
p(θ|x)

∇p(θ|x), we have

R∇
√
p(θ|x) = Eθ|x

1

4p(θ|x)
∇p(θ|x)∇tp(θ|x)

=
1

4
Eθ|x

{
∇ log p(θ|x)∇t log p(θ|x)

}
=

1

4
J̃(x),

(19)

which gives (16) for any fixed data x. Finally, taking the expectation over the
unconditional law p(x) yields the BCRB:

R ≥ Ex Cov(θ|x) ≥ Ex

(
J̃(x)−1

)
≥

(
Ex J̃(x)

)−1
= J−1 (20)

where the last inequality comes from the operator convexity of the function
A 7→ A−1 (see Subsection A.3). Like van Trees a decade later, Schützenberger
writes this bound in the form (7) with J = J̃+ nEθ Jθ,1 since he assumes i.i.d.
observations [18,19] (see Figure 1).

4 Conclusion and Perspectives

It is unfortunate that Schützenberger’s pioneering work has been forgotten for so
long. Admittedly, his abstract in [18] (Figure 1) is not easy to decipher and the
barely longer version [19] certainly had the drawback of being written in French.
Nevertheless, Schützenberger’s idea of a resemblance or equivalence between the
CRB and the uncertainty principle has reappeared several times independently
since then. As early as 1972, one speaks of the (non-Bayesian) CRB as “resembling
that of Heisenberg” [10, p. 198] without further precision. In 1991, Dembo et
al. [5] show an equivalence between the classical (non-Bayesian) CRB and the
uncertainty principle for a location parameter p(x|θ) = p(x− θ). It seems that
this kind of equivalence is not possible in general for the non-Bayesian CRB.

Schützenberger’s proof also has several advantages over the usual approach,
due to the fact that it is equivalent to an uncertainty inequality on the posterior:
First, unlike van Trees (or Gart), it does not assume conditions on the bias, such
as (13). Indeed, Weyl’s inequality is automatically verified as soon as the quantities
involved in the BCRB are finite. Second, the equality condition becomes obvious
since it is that of the Weyl-Heisenberg inequality, namely that the posterior
must be Gaussian. Finally, it opens new perspectives based on improvements or
variants of uncertainty inequalities.

A Appendix

A.1 Matrix Cauchy-Schwarz Inequality

Somewhat surprisingly, the generalization of the classical Cauchy-Schwarz in-
equality to matrices does not seem to be well known in the literature, except
perhaps in econometrics where Tripathi [22] proved it in the particular case where
the dominating measure µ below is a probability measure. As Tripathi noticed,
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“Although this inequality looks astonishingly familiar, I have been unable
to discover any references to it in the literature ”.

For completeness we give a simplified derivation in the more general case of any
dominating measure.

Consider d-dimensional functions f : Rm → Cd, where f = (fi)i is written by
convention as a column vector, and whose components fi are square integrable
w.r.t. some measure µ (e.g., a probability measure):

∫
∥f∥2 dµ < +∞ (we write

f ∈ L2(µ)). We let

Rf,g ≜
∫

fg† dµ (21)

be the d × d′ “cross-correlation” matrix between f : Rm → Cd, g : Rm → Cd′
,

where † denotes the conjugate transpose. We also let Rf ≜ Rf,f =
∫
ff† dµ be

the “auto-correlation” matrix of f . Some obvious properties are: Rf = R−f =

Rif ≥ 0 (positive semi-definite), Rg,f = R†
f,g and Rf = R†

f (Hermitian sym-
metry), Rf+g = Rf + Rg + Rf,g + Rg,f (sesquilinearity), and under linear
transformations A,B, RAf,Bg = ARf,gB

† and RAf = ARfA
†.

If Rg > 0 (positive definite), the matrix Cauchy-Schwarz inequality reads

Rf ≥ Rf,gR
−1
g Rg,f . (22)

where ≥ denotes the Loewner order (A ≥ B iff A−B ≥ 0).

Proof. Let h = f −Rf,gR
−1
g g and expand Rh ≥ 0 using sesquilinearity: Rh =

Rf +Rf,gR
−1
g RgR

−1
g Rg,f − 2Rf,gR

−1
g Rg,f = Rf −Rf,gR

−1
g Rg,f . ⊓⊔

It is easily seen that equality holds in (22) iff f = Ag for some linear
transformation A. The case d = d′ = 1 reduces to the classical (scalar) Cauchy-
Schwarz inequality |

∫
fg∗ dµ|2 ≤

∫
|f |2 dµ

∫
|g|2 dµ.

For any f ∈ L1(µ) ∩ L2(µ), define µf =
∫
f dµ and similarly for g. Their

d× d′ cross-covariance matrix is defined as

Kf,g = Cov(f, g) ≜ Rf−µf ,g−µg
= Rf,g − µfµ

†
g. (23)

We also let Kf = Cov(f) ≜ Kf,f = Rf,g − µfµ
†
f be the “(auto)-covariance”

matrix of f . Applied to f −µf and g−µg, the matrix Cauchy-Schwarz inequality
reads

Rf ≥ Kf ≥ Kf,gK
−1
g Kg,f . (24)

A.2 Matrix Weyl-Heisenberg Inequality

Let µ = dx be the Lebesgue measure, let f, g be as in the preceding Subsection,
and let f̂ , ĝ be their respective (componentwise) Fourier transforms, e.g., f̂ =

(f̂j)j where f̂j(ν) =
∫
Rm fj(t)e

−2iπν·t dt (equality in the L2-sense). By Parseval
identities ⟨fj | gk⟩ = ⟨f̂j | ĝk⟩, one has the matrix Parseval-Plancherel identity

Rf,g = Rf̂ ,ĝ . (25)
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In particular let d = 1, f = g : Rm → C with Fourier transform f̂ , then ∇f ∈ L2

has Fourier transform 2iπνf̂(ν), and replacing we have

R∇f = 4π2Rνf̂ . (26)

Assume for simplicity that f takes real values and
∫
f2(t) dt = 1. The cross-

correlation Rt·f,∇f =
∫
tf(t)∇tf(t) dt = 1

2

∫
t∇tf2(t) dt = − 1

2I by integration
by parts. Applying (22) gives the matrix Weyl-Heisenberg inequality

Rt·f ≥
1

16π2
R−1

ν·f̂
. (27)

The general case where f takes complex values is proved similarly. One easily
sees that the equality case corresponds to the case where f(t) is a (multivariate)
Gaussian by solving a first-order differential equation. A classical argument
allows one to replace t by t− µt and ν by ν − µν , where µt =

∫
t|f(t)|2 dt and

µν =
∫
ν|f̂(ν)|2 dν. The matrix inequality (27) does not seem to be well-known;

it appears in [5, Thm. 19]. The case m = 1 reduces to the classical (scalar)
Weyl-Heisenberg inequality σ2

t ≥ 1
16π2σ

−1
ν , that is, σtσν ≥ 1

4π .

A.3 Operator Convexity of the Inverse

For completeness we give a simple proof that E(A−1) ≥
(
E(A)

)−1.

Proof. Let B = E(A) and expand 0 ≤ B−1(B − A)A−1(B − A)B−1 = A−1 −
2B−1 +B−1AB−1. Taking expectations gives E(A−1)−B−1 ≥ 0. ⊓⊔
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