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Bayesian Information Gain (BIG) Framework

A special case of Bayesian Experimental Design [Liu+al CHI’2017]

Three key random variables:

Θ: User’s intended target

X : System feedback

Y : User input

Information gain:

IG (Θ|X = x ,Y = y) =
H(Θ)︸ ︷︷ ︸
entropy

−H(Θ|X = x ,Y = y)︸ ︷︷ ︸
conditional entropy
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Bayesian Update in the BIG Framework

p(θ) Prior Choose x Observe y Bayesian Update p(θ|x , y)

Update prior

Figure 1: Bayesian update cycle: inference of θ with direct feedback

Posterior distribution:

p(θ | x , y) = p(y | x , θ) · p(θ)
p(y | x)

User behavior model (likelihood):

p(y | x , θ)
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The BIG Framework: Information-Theoretic Utility

Utility Function in BIG: Conditional Mutual Information

U(x) = I (Θ;Y |X = x) = H(Y |X = x)− H(Y |Θ,X = x)

Expected reduction in uncertainty about target Θ averaged over all
possible responses Y

Optimal Feedback Selection

x∗ = argmax
x

I (Θ;Y |X = x)

Maximizing mutual information is a logical choice that likely reduces the
expected number of interactions needed to identify the user’s target.
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Impact of User Errors on BIG

Zero Error Assumption
User model, likelihood:

p(y |x , θ) =

{
1, if y = f (x , θ)

0, otherwise

where f (x , θ) is the “correct” response

If user makes an error by providing y ′ ̸= f (x , θ∗):

p(θ∗|x , y ′) = p(y ′|x , θ∗)p(θ∗)
p(y ′|x)

=
0 · p(θ∗)
p(y ′|x)

= 0

⇒ The true target θ∗ is eliminated permanently!

Need for Error-Robust Models

With this user model, BIG is not resilient to user errors

Need robust models that can recover from occasional errors
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Example of User Error Impact

Binary Search Example: Target space Θ = {1, 2, 3, 4, 5, 6}, true target
θ∗ = 4

Initial distribution: Uniform prior
p(θ) = 1/6

1 2 3 4 5 6
0

0.5

1

Target

After error: User asked “Is θ ≤ 4? ”
but incorrectly answers “No”

1 2 3 4 5 6
0

0.5

1

Target

Consequence of Error with Zero Error Model:

Update: p(θ) = 0 for θ ∈ {1, 2, 3, 4}, p(θ) = 1/2 for θ ∈ {5, 6}
System cannot recover without starting over
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Fixed Error rate Model

Error Model Parameters

ϵ0: Error rate parameter (0 ≤ ϵ0 ≤ 1)

q(y |x): Distribution of errors (often uniform on incorrect responses)

Likelihood Function with Error Parameter

p(y |x , θ, ϵ0) = (1− ϵ0) · δ(y , f (x , θ)) + ϵ0 · q(y |x)

Effect on Posterior Update
With ϵ0 > 0, even if y ′ ̸= f (x , θ∗):

p(θ∗|x , y ′) = ϵ0 · q(y ′|x) · p(θ∗)
p(y ′|x)

> 0

Key Insight: The user target probability decreases but remains non-zero!
This enables recovery from user errors.
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Parameter Mismatch Problem in BIG

Critical Challenge: What happens when the user’s true error rate ϵ∗

differs from our model assumption ϵ0?

Case 1: ϵ∗ < ϵ0 (Overestimation)

System becomes unnecessarily cautious
Result: High accuracy but excessive queries
System attributes less confidence to correct user responses

Case 2: ϵ∗ > ϵ0 (Underestimation)

System trusts user responses too much
Result: Reduced accuracy, potential failure
Errors have stronger impact on posterior distribution

Key Problem: The fixed error rate model requires accurate knowledge of
the user’s error rate—information typically unavailable in advance!
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Experimental Evidence: Impact of Epsilon Mismatch

Underestimation
of Errors

Underestimating errors degrades accuracy

Overestimation
of Errors

Overestimating errors increases query count
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Learning the Error Rate: Joint Inference

Key Idea: Learn θ and ϵ simultaneously
Instead of fixing ϵ0, treat it as an unknown parameter to be inferred

Fixed Error rate:

ϵ0 is fixed

Update only p(θ|x , y)
Limited adaptability

Adaptive Error rate:

ϵ is a random variable

Update joint distribution p(θ, ϵ|x , y)
Self-adjusts to actual error patterns

Likelihood:

p(y |x , θ, ϵ) = (1− ϵ) · δ(y , f (x , θ)) + ϵ · q(y |x)

This is now a parameterized family of likelihood functions where each ϵ
value defines a different likelihood model
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BIG Algorithm with Joint Estimation

BIG with Fixed Error rate or Zero Error Model:

p(θ) Prior
Choose x∗

argmaxx I (Θ;Y |X = x)
Observe y Bayesian Update p(θ|x , y)

Update prior

Figure 2: Bayesian update cycle: inference of θ with direct feedback

BIG with Adaptive Error rate Model:

p(θ) Prior

p(ϵ) Prior

Choose x∗

argmaxx I (Θ;Y |X = x)
Observe y Bayesian Update p(θ, ϵ|x , y)

Update prior

Figure 3: Bayesian update cycle: joint inference of θ and ϵ with direct feedback
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Experimental Results: Adaptive Error rate Model
Performance
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Mathematical Continuity Between Error Models

Establishing a Formal Relationship Between Models

We will now demonstrate the mathematical continuity between our three
error models:

1 Zero Error → Fixed Error rate

2 Fixed Error rate → Adaptive Error rate

3 Complete Hierarchy

Importance of Continuity: This continuity establishes that our three
models form a coherent mathematical framework, where each model
naturally extends from the previous one while preserving its essential
properties.
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Continuity Between Fixed and Zero Error rate Models

Proposition 1: Likelihood Continuity

The zero error model is a limiting case of the fixed error rate model as
ϵ0 → 0.

Fixed Error rate Likelihood:

p(y |x , θ, ϵ0) = (1− ϵ0)δ(y , f (x , θ)) + ϵ0 · q(y |x)

Zero Error Likelihood:

p(y |x , θ) = δ(y , f (x , θ))

Likelihood Continuity:

lim
ϵ0→0

p(y |x , θ, ϵ0) = lim
ϵ0→0

[(1− ϵ0)δ(y , f (x , θ)) + ϵ0 · q(y |x)]

= δ(y , f (x , θ)) = p(y |x , θ)
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Continuity Between Adaptive and Fixed Error rate Models

Proposition 2: Likelihood Continuity

The fixed error rate model is a limiting case of the adaptive model as the
distribution p(ϵ) approaches a Dirac delta at ϵ0.

Adaptive model with discrete distribution on ϵ:

Let pn(ϵ) be a sequence of discrete distributions

As n → ∞, pn(ϵ) → δ(ϵ− ϵ0)

Likelihood in adaptive model:

p(y |x , θ, E) =
∑
ϵ

p(ϵ) · p(y |x , θ, ϵ)

=
∑
ϵ

p(ϵ) · [(1− ϵ)δ(y , f (x , θ)) + ϵ · q(y |x)]

Limit as pn(ϵ) → δ(ϵ− ϵ0):

lim
n→∞

p(y |x , θ, E) = (1− ϵ0)δ(y , f (x , θ)) + ϵ0 · q(y |x)

Hugo Miquel Bayesian Experimental Design with Learned Errors 14 / 17



Continuity Between Adaptive and Fixed Error rate Models

Proposition 2: Likelihood Continuity

The fixed error rate model is a limiting case of the adaptive model as the
distribution p(ϵ) approaches a Dirac delta at ϵ0.

Adaptive model with discrete distribution on ϵ:

Let pn(ϵ) be a sequence of discrete distributions

As n → ∞, pn(ϵ) → δ(ϵ− ϵ0)

Likelihood in adaptive model:

p(y |x , θ, E) =
∑
ϵ

p(ϵ) · p(y |x , θ, ϵ)

=
∑
ϵ

p(ϵ) · [(1− ϵ)δ(y , f (x , θ)) + ϵ · q(y |x)]

Limit as pn(ϵ) → δ(ϵ− ϵ0):

lim
n→∞

p(y |x , θ, E) = (1− ϵ0)δ(y , f (x , θ)) + ϵ0 · q(y |x)

Hugo Miquel Bayesian Experimental Design with Learned Errors 14 / 17



Continuity Between Models: Complete Picture

Model Hierarchy
Each model can be derived as a special case of the more general one:

Zero error model: special case of fixed error rate model with ϵ0 = 0

Fixed error rate model: special case of adaptive model with
p(ϵ) = δ(ϵ− ϵ0)

Significance
This continuity establishes a hierarchy of models where each generalizes
the previous one:

Zero Error ⊂ Fixed Error rate ⊂ Adaptive Error rate Model

As special cases, the simpler models can be recovered from the more
general ones.
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Conclusion and Future Work

Summary of Contributions:

Extended BIG framework to handle user errors

Developed three models with increasing sophistication

Proved mathematical continuity between models

Future Directions:

Using posterior distributions as priors for subsequent interactions,
enabling continuous learning across multiple BIG instances

Extending our discrete proofs to continuous distributions

Exploring alternative utility functions beyond mutual information

Validating the adaptive model in practical applications

Hugo Miquel Bayesian Experimental Design with Learned Errors 16 / 17



Conclusion and Future Work

Summary of Contributions:

Extended BIG framework to handle user errors

Developed three models with increasing sophistication

Proved mathematical continuity between models

Future Directions:

Using posterior distributions as priors for subsequent interactions,
enabling continuous learning across multiple BIG instances

Extending our discrete proofs to continuous distributions

Exploring alternative utility functions beyond mutual information

Validating the adaptive model in practical applications

Hugo Miquel Bayesian Experimental Design with Learned Errors 16 / 17



Thank You!

Thank you for your attention!
Questions?

Contact:
hugo.miquel@telecom-paris.fr
julien.gori@sorbonne-universite.fr
olivier.rioul@telecom-paris.fr



Important Note on Continuous Distributions

Caution for Continuous ϵ Distributions
Our proof uses a discrete distribution for ϵ converging to a Dirac delta.

For continuous distributions:

The integral form would be:

p(y |x , θ, E) =
∫ 1

0
p(ϵ) · p(y |x , θ, ϵ) dϵ

Taking the limit requires exchanging limit and integration:

lim
n→∞

∫ 1

0
pn(ϵ) · p(y |x , θ, ϵ) dϵ =

∫ 1

0
lim
n→∞

pn(ϵ) · p(y |x , θ, ϵ) dϵ

This exchange requires additional assumptions and justification
(uniform convergence, dominated convergence theorem, etc.)
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