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@ Bayesian Information Gain (BIG) Framework
© Zero Error BIG Framework
© Fixed Error rate BIG Framework

@ Adaptive Error rate BIG Framework



Bayesian Information Gain (BIG) Framework

A special case of Bayesian Experimental Design [Liu+al CHI'2017]

Three key random variables: Information gain:
@ O: User's intended target 0 IGOBIX=x,Y=y)=
@ X: System feedback H(®) - H(O|X =x,Y =y)
—— ~
@ Y: User input entropy conditional entropy

Feedback X =x

P ‘ = Prior knowledge: P(© = ) o~
' « User behavior model: P(Y = y|® = 6,X = x) A

Computer, * Updated knowledge: P(@ =6 |X =x,Y =)
?_ + Information Gain: /G(©|X =x,Y =y) ——
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Bayesian Update in the BIG Framework

Update prior

p(9) Prlor Choose x ]—{Observe y]—{Bayesmn Update]—» p(0)x,y)

Figure 1: Bayesian update cycle: inference of 6 with direct feedback

Posterior distribution:

User behavior model (likelihood):
p(y | x,0)
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The BIG Framework: Information-Theoretic Utility

Utility Function in BIG: Conditional Mutual Information
Ux)=1(8;Y|IX =x)=H(Y|X =x)—H(Y|0,X =x)

Expected reduction in uncertainty about target © averaged over all
possible responses Y
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The BIG Framework: Information-Theoretic Utility

Utility Function in BIG: Conditional Mutual Information
Ux)=1(8;Y|IX =x)=H(Y|X =x)—H(Y|0,X =x)

Expected reduction in uncertainty about target © averaged over all
possible responses Y

Optimal Feedback Selection

x* =argmax/(©; Y|X = x)

Maximizing mutual information is a logical choice that likely reduces the
expected number of interactions needed to identify the user’s target.
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Impact of User Errors on BIG

Zero Error Assumption
User model, likelihood:

1, ify="f(x,0)

0, otherwise

p(y|X, 0) = {

where f(x,0) is the “correct” response
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Impact of User Errors on BIG

Zero Error Assumption
User model, likelihood:
1, ify="f(x,0)

0, otherwise

p(y|X, 0) = {

where f(x,0) is the “correct” response

If user makes an error by providing y’' # f(x, 0*):

el oy = PO 07)p(0) _ 0 p(67) _
e 7 R R

= The true target 0* is eliminated permanently!
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Impact of User Errors on BIG

Zero Error Assumption
User model, likelihood:
1, ify="f(x,0)

0, otherwise

p(y|X,9) = {

where f(x,0) is the “correct” response

If user makes an error by providing y’' # f(x, 0*):

el oy = PO 07)p(0) _ 0 p(67) _
e 7 R R

= The true target 0* is eliminated permanently!

Need for Error-Robust Models
@ With this user model, BIG is not resilient to user errors

@ Need robust models that can recover from occasional errors
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Example of User Error Impact

Binary Search Example: Target space © = {1,2,3,4,5,6}, true target

0*=4
Initial distribution: Uniform prior
p(0) = 1/6
1
05 Target
T
0
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Example of User Error Impact

Binary Search Example: Target space © = {1,2,3,4,5,6}, true target

0* =4
Initial distribution: Uniform prior After error: User asked “Is § < 47 "
p(0) =1/6 but incorrectly answers “No”

1 1
05 Target 05 Target
T
0 0
1 2 3 4 5 6 1 2 3 4 5 6

Consequence of Error with Zero Error Model:
e Update: p(#) =0 for 6 € {1,2,3,4}, p(0) =1/2 for 6 € {5,6}

@ System cannot recover without starting over
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Fixed Error rate Model

Error Model Parameters
@ eo: Error rate parameter (0 < ¢g < 1)

@ g(y|x): Distribution of errors (often uniform on incorrect responses)

Likelihood Function with Error Parameter

p(ylx;0,€0) = (L — €0) - 0(y, f(x,0)) + €0 - q(y|x)
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Fixed Error rate Model

Error Model Parameters
@ eo: Error rate parameter (0 < ¢g < 1)

@ g(y|x): Distribution of errors (often uniform on incorrect responses)

Likelihood Function with Error Parameter
p(ylx,0,e0) = (L — €0) - 6(y, f(x,0)) + €0 - q(y|x)

Effect on Posterior Update
With ey > 0, even if y' # f(x,0%):

>0

e €0 q(y'|x) - p(6*)
p7xy) = p(y’[x)

Key Insight: The user target probability decreases but remains non-zero!
This enables recovery from user errors.
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Parameter Mismatch Problem in BIG

Critical Challenge: What happens when the user's true error rate €*
differs from our model assumption ¢p?

o Case 1: €* < ¢ (Overestimation)

e System becomes unnecessarily cautious
e Result: High accuracy but excessive queries
e System attributes less confidence to correct user responses
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Parameter Mismatch Problem in BIG

Critical Challenge: What happens when the user's true error rate €*
differs from our model assumption ¢p?

o Case 1: €* < ¢ (Overestimation)

e System becomes unnecessarily cautious

o Result: High accuracy but excessive queries

e System attributes less confidence to correct user responses
e Case 2: ¢* > ¢ (Underestimation)

e System trusts user responses too much
e Result: Reduced accuracy, potential failure
e Errors have stronger impact on posterior distribution

Key Problem: The fixed error rate model requires accurate knowledge of
the user's error rate—information typically unavailable in advance!
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Experimental Evidence: Impact of Epsilon Mismatch

Accuracy by € Configuration
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Experimental Evidence: Impact of Epsilon Mismatch

Accuracy by € Configuration
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Learning the Error Rate: Joint Inference

Key Idea: Learn 6 and e simultaneously
Instead of fixing €, treat it as an unknown parameter to be inferred

Fixed Error rate: Adaptive Error rate:
@ ¢q is fixed @ ¢ is a random variable
e Update only p(f|x,y) e Update joint distribution p(6, €|x, y)
o Limited adaptability @ Self-adjusts to actual error patterns
Likelihood:

plylx,0,¢) = (1 —¢€)-d(y, f(x,0)) + € q(ylx)

This is now a parameterized family of likelihood functions where each ¢
value defines a different likelihood model
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BIG Algorithm with Joint Estimation

BIG with Fixed Error rate or Zero Error Model:

Update prior

. Choose x*
p(0) Prior [arg max, 1(©; Y|X = x) HObserve yHBayesmn Updatej—> p(0|x,y)

Figure 2: Bayesian update cycle: inference of 6 with direct feedback

BIG with Adaptive Error rate Model:

Update prior

p(0) Prior -

Choose x*
Lrg max, 1(©; Y|X = x) HObserve yHBayesmn Update]—> p(0,€lx,y)

Figure 3: Bayesian update cycle: joint inference of § and € with direct feedback

p(e) Prior
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Experimental Results: Adaptive Error rate Model

Performance

Average Queries vs User Error Rate
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Mathematical Continuity Between Error Models

Establishing a Formal Relationship Between Models

We will now demonstrate the mathematical continuity between our three
error models:

© Zero Error — Fixed Error rate
@ Fixed Error rate — Adaptive Error rate
© Complete Hierarchy

Importance of Continuity: This continuity establishes that our three
models form a coherent mathematical framework, where each model
naturally extends from the previous one while preserving its essential
properties.
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Continuity Between Fixed and Zero Error rate Models

Proposition 1: Likelihood Continuity

The zero error model is a limiting case of the fixed error rate model as
e — 0.
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Continuity Between Fixed and Zero Error rate Models

Proposition 1: Likelihood Continuity

The zero error model is a limiting case of the fixed error rate model as
e — 0.

Fixed Error rate Likelihood:
p(y|x,0,€e0) = (1 — €0)d(y, f(x,0)) + €0 - q(y[x)
Zero Error Likelihood:
p(ylx,0) = d(y, f(x,0))

Likelihood Continuity:
lim p(y[x,0,€0) = lim [(1 —€0)d(y, f(x,0)) + €0 - q(y[x)]
eg—0 e0—0

= 5(}/a f(Xve)) = p(y|X7 9)
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Continuity Between Adaptive and Fixed Error rate Models

Proposition 2: Likelihood Continuity

The fixed error rate model is a limiting case of the adaptive model as the
distribution p(e) approaches a Dirac delta at €.
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Continuity Between Adaptive and Fixed Error rate Models

Proposition 2: Likelihood Continuity

The fixed error rate model is a limiting case of the adaptive model as the
distribution p(e) approaches a Dirac delta at €.

Adaptive model with discrete distribution on e:
@ Let pp(€) be a sequence of discrete distributions
® As n — 00, pn(€) — d(e — €o)

Likelihood in adaptive model:

(v[x,0,8) = Zp (ylx,0,€)
_Zp(e [(1—€)d(y, f(x,0)) + € q(y]x)]

Limit as pp(€) — d(e — €p):
lim_p(y|x,0,€) = (1 - €)d(y, f(x,0)) + € - qly|x)
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Continuity Between Models: Complete Picture

Model Hierarchy
Each model can be derived as a special case of the more general one:

@ Zero error model: special case of fixed error rate model with ¢g =0

@ Fixed error rate model: special case of adaptive model with
p(e) = d(e — €o)

Significance
This continuity establishes a hierarchy of models where each generalizes
the previous one:

Zero Error C Fixed Error rate C Adaptive Error rate Model

As special cases, the simpler models can be recovered from the more
general ones.
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Conclusion and Future Work

Summary of Contributions:
o Extended BIG framework to handle user errors
@ Developed three models with increasing sophistication

@ Proved mathematical continuity between models
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Conclusion and Future Work

Summary of Contributions:
o Extended BIG framework to handle user errors
@ Developed three models with increasing sophistication
@ Proved mathematical continuity between models
Future Directions:

@ Using posterior distributions as priors for subsequent interactions,
enabling continuous learning across multiple BIG instances

o Extending our discrete proofs to continuous distributions
@ Exploring alternative utility functions beyond mutual information

@ Validating the adaptive model in practical applications
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Thank Y

Thank you for your attention!
Questions?

Feedback X - x
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Contact: P' ‘ + Prior knowledge: P(® = 8) '
. . « User behavior model: P(Y = y/@= 6, = x) a
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Important Note on Continuous Distributions

Caution for Continuous ¢ Distributions
Our proof uses a discrete distribution for € converging to a Dirac delta.

For continuous distributions:

@ The integral form would be:

1
p(y|x,0,&) = /0 p(e) - p(ylx, 0, ¢€) de

@ Taking the limit requires exchanging limit and integration:

1 1
jim / pa(€) - ply|x, 0, ) de = / im_pa(c) - ply[x.0.¢) de
0 0 n o0

n—o0

@ This exchange requires additional assumptions and justification
(uniform convergence, dominated convergence theorem, etc.)
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