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The Chernoff bound is a well-known upper bound on the tail of binomial distributions of parameter 1∕2 involving

the binary entropy function. Hoeffding’s inequality (or the Chernoff-Hoeffding inequality) is a generalization for

binomial distributions of parameter 1 − 1∕!, involving the !-ary entropy function (with ! ≥ 2), which can be

written in terms of the Kullback-Leibler divergence and is related to the bound in Fano’s inequality. We give an

information theoretic proof of that bound, and sketch some applications to channel and source coding. We also

derive a refined bound which is always sharper.

1. Introduction

The Chernoff bound is a concentration inequality for sums of sym-

metric Bernoulli random variables (of parameter
1

2
), of popular use in

information theory [3,11,10], extremal combinatorics [1], and theoret-

ical computer science in general [7]. It can be written as

"∑

#=0

(
$

#

)
≤ exp

(
$ℎ2(

"

$
)
)

(1)

where ℎ2(&) is the binary entropy function defined for 0 < & < 1 as

ℎ2(&) = −& log&− (1− &) log(1− &). (2)

Hoeffding’s inequality [4] for sums of Bernoulli random variables of

parameter 1− 1

!
is a similar inequality:

"∑

#=0

(
$

#

)
(! − 1)# ≤ exp

(
$ℎ!(

"

$
)
)

(3)

where ℎ!(&) is the !-ary entropy function defined for 0 < & <
!−1

!
as

ℎ!(&) = −& log&− (1− &) log(1− &) + & log(! − 1), (4)
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also called Hilbert entropy function in [6, § 13.5] and in

[12, p. 14]—although we could not find an explanation as to why such

a function is named after Hilbert.

Remark 1 (Base of Logarithms and Exponentials). Throughout this note,

logarithms and exponentials can be taken to any base. The reciprocal

function of the logarithm log(⋅) is denoted exp(⋅) in the same base. Thus

for example,

• to base 2, log2 = 1 and exp(&) = 2&;

• to base !, log ! = 1 and exp(&) = !&;

• to natural base ', log& = ln& and exp(&) = '&.

It is customary, in coding theory [6,9,12], to use logarithms to base 2

in the expression (2) of the binary entropy, and logarithms to base ! in

the expression (4) of the !-ary entropy. With this convention, the upper

bound in Chernoff’s inequality (1) writes 2
$ℎ2(

"

$
)
while the upper bound

in Hoeffding’s inequality (3) writes !
$ℎ! (

"

$
)
.

In this work, we recall the classical analytic proof of Hoeffding’s in-

equality, which is in fact a naive saddle point method [5]. Then we give

an information theoretic proof, which yields a sharper inequality for a
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modified parameter ", hereby denoted "′. We give several applications

of this bound, notably to combinatorial coding and source coding.

This note is arranged as follows. The next section collects the no-

tions and notations needed in the rest of the paper. Section 3 recalls the

analytic proof and Section 4 derives the information theoretic proof.

Section 5 discusses an improvement of the information theoretic bound

using the modified parameter "′. Finally, Section 6 gives applications

to channel and source coding.

2. Information theoretic background

Definition 2 (!-ary Entropies). Let ! > 1 be an integer. The !-ary entropy
of a probability distribution ((0,(1,… ,(!−1) is

)((0,(1,… ,(!−1) =

!−1∑

#=0

(# log
1

(#
. (5)

The !-ary relative entropy (a.k.a. Kullback-Leibler divergence) between

two probability distributions ((0,(1,… ,(!−1) and (*0, *1,… , *!−1) is

+((0,(1,… ,(!−1‖*0, *1,… , *!−1) =

!−1∑

#=0

(# log
(#
*#
. (6)

In particular, the binary entropy and binary relative entropy are

ℎ2(() ≜)((,1− () = ( log
1

(
+ (1− () log

1

1− (

"2((‖*) ≜+((,1− (‖*,1− *) = ( log
(

*
+ (1− () log

1− (

1− *
.

(7)

Note that ℎ2(() is defined for 0 ≤ ( ≤ 1 and increasing for 0 ≤ ( ≤ 1∕2.
Maximum entropy is a classical concept (see e.g., [3, Chap. 12], [11,

Chap. 4]):

Proposition 3 (Max !-ary Entropy).

1. The maximum !-ary entropy is attained for a uniform distribution:

)((0,(1,… ,(!−1) ≤ log ! (8)

with equality if and only if (# = 1∕! for all #.
2. The maximum !-ary entropy under the constraint (0 = 1−, is attained

for the distribution (1− ,,
,

!−1
,… ,

,

!−1
):

)((0 = ,,(1,… ,(!−1) ≤ ℎ!(,) ≜ ℎ(,) + , log(! − 1) (9)

with equality if and only if (# =
,

!−1
for # ≠ 0.

Proof. We use the basic information inequality [3,11,10]

+((0,(1,… ,(!−1‖*0, *1,… , *!−1) ≥ 0 (10)

with equality = 0 if and only if (# = *# for all #:

1. Take *# = 1∕! for all #:

+((0,… ,(!−1‖
1

!
,… ,

1

!
) = log ! −)((0,… ,(!−1) ≥ 0.

2. Take *1 = (1 = , and *# =
,

!−1
for # ≠ 0:

+((0…(!−1‖,,
,

!−1
… ,

!−1
) = ℎ(,) + , log(! − 1) −)((0…(!−1) ≥

0. □

Remark 4 (Fano Bound). The second inequality in Proposition 3 is a par-

ticular instance of Fano’s inequality for unconditional entropies, where

, represents a probability of error (see e.g., [3, § 2.10], [11, § 4.3],

and [10, § 3.6]). For instance, if - ∈ {0,1,… , !− 1} is an error random
variable having distribution ((0,(1,… ,(!−1), then- = 0 represents zero
error, of probability (0 = 1− , while - ≠ 0 is the error event of proba-
bility (1 +⋯+ (!−1 = ,. The Fano inequality writes

)(-) ≤ ℎ!(,) = ℎ2(,) + , log(! − 1), (11)

where the term ℎ2(,) is the (binary) entropic uncertainty that an error

occurs (or not), and the second term, weighted by the error probability

,, the remaining maximum entropy for the remaining possible ! − 1

nonzero values of -, which is log(! − 1).

Notice that ℎ!(,) is well-defined and concave for 0 ≤ , ≤ 1 but in-

creasing only for 0 ≤ , ≤ 1− 1

!
. In the binary case one recovers of course

the binary entropy.

By the above derivation of the maximum entropy attained by the

uniform distribution when ((0,(1,… ,(!−1) = (1 − ,,
,

!−1
,… ,

,

!−1
), one

has

+(1− ,,
,

!−1
,… ,

,

!−1
‖ 1

!
,… ,

1

!
) = log ! −)(1− ,,

,

!−1
,… ,

,

!−1
)

= log ! − ℎ!(,) (12)

This divergence is, therefore, equal to the difference log !−ℎ!(,), which

can be interpreted as the loss of the maximal !-ary entropy due to the

error probability constraint (1 = 1 − , (instead of 1∕!). We make the

following trivial, but apparently not so well-known remark:

Lemma 5 (Max Entropy Loss). The loss of maximal !-ary entropies due to

the error probability constraint (1 = 1−, (instead of 1∕!) equals the binary

divergence between the probability parameters 1− , and 1∕!:

log ! − ℎ!(,) = "2(1− ,‖ 1

!
) = "2(,‖1−

1

!
) (13)

Direct Proof by Calculation. log !−ℎ2(,)−, log(!− 1) = , log(, !

1−!
)

+ (1− ,) log(!(1− ,)) = "2(,||1−
1

!
) = "2(1− ,‖ 1

!
). □

The above proof does not actually explain the fundamental reason

why these two divergences+(1−,,
,

!−1
,… ,

,

!−1
‖ 1

!
,… ,

1

!
) and "2(,||1−

1

!
) coincide. The following information theoretic proof is more satisfac-

tory in this respect, and applies to any divergence +(.‖/) between

probability distributions . and / satisfying the data processing inequal-

ity (DPI):

+(0 (. )‖0 (/)) ≤+(.‖/) (14)

where0 is any Markov channel [3,10,11]. Not only does the Kullback-

Leibler divergence satisfies the DPI, but more generally, any Csiszár 1 -

divergence or Rényi ,-divergence also satisfies the DPI [10].

Information Theoretic Proof of Lemma 5. On one hand, by the DPI

applied to the channel- ∈ {0,1,… , !−1}→ 1-≠0 = 2 ∈ {0,1}we have

"2(1−,‖ 1

!
) =+(1−,,,‖ 1

!
,
!−1

!
) ≤+(1−,,

,

!−1
,… ,

,

!−1
‖ 1

!
,… ,

1

!
). (15)

On the other hand, by the DPI applied to the channel 2 ∈ {0,1}→- =

2 3 ∈ {0,1,… , !−1} where 3 is uniformly distributed in {1,… , !−1},

we obtain the opposite inequality:

+(1− ,,
,

!−1
,… ,

,

!−1
‖ 1

!
,… ,

1

!
) ≤+(1− ,,,‖ 1

!
,
!−1

!
)

= "2(1− ,‖ 1

!
). (16)

This shows the desired equality of divergences for any type of divergence

satisfying the data processing inequality. □

3. Hoeffding’s inequality: classical proof

Theorem 6 (Hoeffding’s Inequality [4]). Let " be a natural integer such

that
"

$
≤ 1− 1

!
. Then

2
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"∑

#=0

(
$

#

)
(! − 1)# ≤ exp

(
$ℎ!(

"

$
)
)
. (17)

Remark 7. The classical form of Hoeffding’s inequality is rather an up-

per bound on the cumulative binomial distribution of parameter (:

"∑

#=0

(
$

#

)
(#(1− ()$−# ≤ exp

(
−$"2(

"

$
‖()

)
(18)

but this amounts the same for ( = 1 − 1

!
since then (#(1 − ()$−# = (! −

1)#!−$ and by Lemma 5,

!$ exp
(
−$"2(

"

$
‖1− 1

!
)
)
= exp

(
$(log ! − "2(

"

$
‖1− 1

!
))
)

= exp
(
$ℎ!(

"

$
)
)
. (19)

The classical proof of Hoeffding’s inequality uses a (generalized)

Chernoff inequality for sum of i.i.d. Bernoulli variables, but it can be

rewritten as a simple proof as follows.

“Classical Proof”. Let , = "

$
and & ∈ (0,1]. Since for # ≤ ", &#−" ≥ 1,

we have the following Markov inequality:

"∑

#=0

(
$

#

)
(! − 1)# ≤

$∑

#=0

(
$

#

)
(! − 1)#&#−"

= (1 + (! − 1)&)$&−" = exp($4(&)) (20)

where

4(&) = −, log&+ log(1 + (! − 1)&) (21)

has derivative

4′(&) = −
,

&
+

! − 1

1 + (! − 1)&
≷ 0 ⟺ & ≷

1

! − 1
⋅

,

1− ,
(22)

Thus &∗ = 1

!−1
⋅

,

1−,
, which lies in (0,1] since , ≤ 1 − 1

!
, achieves the

minimum

6(&∗) = −, log
( 1

! − 1
⋅

,

1− ,

)
+ log

1

1− ,
= ℎ!(,). □ (23)

Remark 8 (Saddle Point Method). In hindsight, &∗ is a saddle point in

the sense of [5] for the generating functions 1 (7) = (1 + (! − 1)7) and

8(7) = 1. Using the techniques in [5] it is possible to derive an asymp-

totic equivalent for $→∞ and fixed ! of the left-hand side of Hoeffd-

ing’s inequality. This equivalent coincides with the right-hand side up to

subexponential terms as is already clear from [6, Lemma 2.10.3 p. 91].

4. Hoeffding’s inequality: information theoretic proof

The above classical proof works for any real ! > 1 but does not

explain why this particular !-ary entropy ℎ!(⋅) comes into play. The

following proof of Hoeffding’s inequality is in this respect much more

satisfactory.

Information Theoretic Proof. The l.h.s. of Hoeffding’s inequality is

the number of words & in (!!)
$
of Hamming weight 9) (&) ≤ " and

length $. Let - = (-1,-2,… ,-$) be chosen uniformly at random from

this set, where each -. ∈ !! . Since - is uniformly distributed, its en-

tropy equals

)(-) = log

"∑

#=0

(
$

#

)
(! − 1)#. (24)

By symmetry, the -. ’s are identically distributed, and we have the fol-

lowing well-known entropic inequality [3,11,10]

)(-) =)(-1,-2,… ,-$)

≤)(-1) +)(-2) +⋯+)(-$) = $)(-1). (25)

Again by symmetry, conditioned on fixed Hamming weight 9) (-) = #,

the probability that -1 ≠ 0 is #

$
. Thus

ℙ(-1 = 0 ∣9) (-) = #) = 1−
#

$
. (26)

It follows from Proposition 3 (part 2) that, conditioned on 9) (-) = #,

)(-1 ∣9) (-) = #) ≤ ℎ!
( #
$

)
. (27)

(In fact equality holds, but this is not needed in the proof). Since ℎ!(,)

is increasing for , ≤ 1− 1

!
,

)(-1 ∣9) (-) = #) ≤ ℎ!
("
$

)
(28)

where the r.h.s. does not depend on # = 9) (-). Therefore, taking the

expectation over 9) (-) ∈ {0,1,… ,"} we obtain

)(-1) ≤ ℎ!
("
$

)
(29)

which ends the proof. □

Remark 9 (Reduction from the !-ary to the Binary Case). Hoeffding’s

inequality in the !-ary case may also be easily deduced from the cor-

responding inequality in the binary case, but only provided that
"

$
≤ 1

2
:

"∑

#=0

(
$

#

)
≤ exp

(
$ℎ2(

"

$
)
)

(30)

Indeed, if the latter inequality holds, then

"∑

#=0

(
$

#

)
(! − 1)# ≤ (! − 1)"

"∑

#=0

(
$

#

)
≤ (! − 1)" exp

(
$ℎ2(

"

$
)
)

= exp
(
$ℎ!(

"

$
)
)

(31)

Thus, if
"

$
≤ 1

2
, we may use the same information theoretic proof as

above, simplified to the binary case ! = 2, where part 2 of Proposition 3
is not even needed. Note, however, that this simplified proof does not

extend to values of " such that
1

2
<

"

$
≤ 1− 1

!
.

5. Improved bound

As a consequence of the above information theoretic proof in the

preceding section, we have the following refined bound.

Corollary 10. For any " ≤ $ define

"′ =

∑"
#=0 #

(
$

#

)
(! − 1)#

∑"
#=0

(
$

#

)
(! − 1)#

≤ ". (32)

Then the following bound improves (17) with a smaller exponent "′ ≤ ":

"∑

#=0

(
$

#

)
(! − 1)# ≤ exp

(
$ℎ!(

"′

$
)
)
. (33)

Proof. A closer look at the above information theoretic proof in the

preceding section shows in fact the inequality

"∑

#=0

(
$

#

)
(! − 1)# ≤ exp($

"∑

#=0

(#ℎ!(
#

$
)), (34)

where

3
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Table 1

Bounds for $ = 20, ! = 3.

"
∑"

#=0

($
#

)
(! − 1)# exp

(
$ℎ! (

"′

$
)
)
(33) exp

(
$ℎ! (

"

$
)
)
(Hoeffding)

1 41 96 106

2 801 2,288 2,664

3 99,201 30,512 37,557

5 583,569 1,806,877 2,452,059

6 3,064,209 9,133,781 12,944,339

7 12,986,769 36,516,145 53,809,632

8 45,235,089 117,823,292 179,450,647

9 131,230,609 311,350,993 485,699,607

10 320,420,753 681,702,205 1,073,741,823

(# = ℙ(9) (-) = #|9) (-) ≤ ") =

($
#

)
(! − 1)#

∑"
#=0

($
#

)
(! − 1)#

. (35)

Since ℎ!(,) is concave,

"∑

#=0

(#ℎ!(
#

$
) ≤ ℎ!(

"∑

#=0

(#
#

$
), (36)

and, combining with (34) we obtain

"∑

#=0

(
$

#

)
(! − 1)# ≤ exp($ℎ!(

"′

$
)) (37)

where

"′ = #(9) (-)|9) (-) ≤ ") =

"∑

#=0

#(# (38)

is given by (32). □

Remark 11. From (38) we may interpret "′ as the average Hamming

weight in the Hamming ball of radius ", whose volume ," is the de-

nominator in the expression (32).

The numerics like those of Table 1 show that (33) is significantly

tighter than Hoeffding’s inequality.

Some elementary properties of the " ↦ "′ transformation are as fol-

lows.

Proposition 12. Consider the mapping Φ ∶ " ↦ "′ for any " ∈ {0,1,… ,

$}. Then

1. The map " ↦ "′ is strictly increasing;

2. $′ = $
!−1

!
, where $′ =Φ($);

3.
"′

$
≤ !−1

!
(even when

"

$
does not satisfy this inequality);

4. If
"

$
→ , ∈ (0,1− 1

!
] when $→∞ then ℎ!(

"′

$
)→ ℎ!(,);

5. "′ ≥
√

"

8(1−"∕$)
;

6. for any 0 ≤ . ≤ ", "′ ≤ " − .
,"−.
,"

where ,. denotes the volume of the

Hamming ball of radius .. In particular, letting <. =
($
.
)(!−1).

,"
≪ 1 be

the proportion of words of weight . in the Hamming ball of radius ",

we have

"′ ≤min
(
" − 1 + <" , " − 2 + 2(<"−1 + <" )

)
. (39)

Proof. 1. Let , =
∑"

#=0

($
#

)
(!−1)# be the volume of the Hamming ball

of radius ",> =
∑"

#=0 #
($
#

)
(!−1)#, and ℎ =

( $

"+1

)
(!−1)"+1. We need

to check that "′ < (" + 1)′, that is,

>

,
<

> + (" + 1)ℎ

, + ℎ
, (40)

that is, >ℎ < (" + 1), ℎ by clearing denominators. Now we have,

by definition, > ≤ ", < (" + 1), . The result follows.

2. Here $′ is the average of a binomial law of parameter ( = 1− 1∕!,

which equals $( = $
!−1

!
.

3. Immediate by 1 and 2.

4. Since "′ ≤ ", by the monotonicity of the !-ary entropy we have

ℎ!(
"′

$
) ≤ ℎ!(

"

$
), and therefore

lim sup
$→∞

ℎ!(
"′

$
) ≤ ℎ!(,).

The inequality

lim inf
$→∞

ℎ!(
"′

$
) ≥ ℎ!(,)

is obtained by taking logs and dividing by $ the inequality (33),

upon letting $→∞ and invoking [6,5]

lim
$→∞

1

$
log(

"∑

#=0

(
$

#

)
(! − 1)#) = ℎ!(,).

The result follows by combining the inequalities of superior and

inferior limits.

5. Writing the definition "′ = >

,
. We know by Hoeffding’s inequal-

ity that , ≤ exp
(
$ℎ!(,)

)
where , = "

$
. Bounding below the sum

> by its last term yields > ≥ "
($
"

)
(! − 1)" . By [9, Chapter 10,

Lemma 7 p. 309] we get

($
"

)
≥ 2$ℎ2(,)√

8$,(1−,)
. The result follows then

upon noticing that like in Remark 9 (Equation (31)) we have

(! − 1)" exp
(
$ℎ2(

"

$
)
)
= exp

(
$ℎ!(

"

$
)
)
.

6. By splitting the sum >" =
∑"

#=0 #
($
#

)
(! − 1)# for # ≤ " − . and # >

" − .,

>" ≤ (" − .),"−. + "(," − ,"−.) = "," − .,"−.. (41)

Dividing by ," gives the announced inequality "
′ ≤ " − .

,"−.
,"

. Nu-

merical calculations show that the optimal value of . is typically

. = 1 or 2 for reasonable values of !,$ and ". Since
,"−1
,"

= 1 − <"

and
,"−2
,"

= 1− <" − <"−1 this yields (39). □

6. Applications

6.1. Improvement of Liu et al.’s cover metric bound

In [8, Lemma 2], Liu et al. proved a cover metric bound of the form

|? (@,")| ≤ (" + 1) exp
(
(A+ $)ℎ2(

"

A+ $
)
)
!A" (42)

where ? (@,") is the cover metric ball of center @ (a A−$ matrix with

entries in !!) with radius " of a cover metric code ? . Their proof is

based on the simple inequality

(
A+ $

"

)
≤ 2

(A+$)ℎ2(
"

A+$
)

(43)

but as seen in the following, Hoeffding’s inequality is stronger. The fol-

lowing lemma was also proved in [13].

Lemma 13 (Improved Lemma of Liu et al.).

|? (@,")| ≤ exp
(
(A+ $)ℎ2(

"

A+$
)
)
!A" (44)

Proof. Proceed as in the proof of [8, Lemma 2] to show that

|? (@,")| ≤
"∑

*=0

(
A+ $

*

)
!A* (45)

4
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then apply Hoeffding’s inequality with A + $ in place of $ and !A in

place of (! − 1) gives

|? (@,")| ≤ exp
(
(A+ $)ℎ!A+1(

"

A+$
)
)

(46)

where

ℎ!A+1(
"

A+$
) = ℎ2(

"

A+$
) + "

A+$
log(!A) (47)

which gives the announced inequality. □

6.2. Rate-distortion theory

When a block code is used as a codebook for data compression an

important parameter is the covering radius, which measures the largest

possible distortion [2]. A lower bound on the covering radius B of a

!-ary [$,.] code is the sphere covering bound

!$−. ≤
B∑

#=0

(
$

#

)
(! − 1)# (48)

Upon using Hoeffding’s inequality on the r.h.s. this bound entails, after

taking logarithms on both sides,

1−C ≤ ℎ!(
B

$
) (49)

where C = .

$
is the code rate. This finite bound is formally the same as

the asymptotic version of the sphere covering bound

1−C ≤)!(D), (50)

where C = limsup$→∞
.$
$
, and D = lim inf$→∞

B$
$
for a series of [$,.$]

codes of covering radii B$.

6.3. Gilbert-Varshamov bound

The Gilbert-Varshamov (GV) bound states that there are unrestricted

codes of length $ over an alphabet of size ! with a minimum distance "

as good as

|?| ≥
!$

"−1∑

#=0

($
#

)
(! − 1)#

.

It can actually be regarded as a consequence of the sphere cover-

ing bound of the previous paragraph for optimal codes [2]. Upon using

Hoeffding’s inequality on the r.h.s. this bound entails, after taking log-

arithms on both sides,

1−C ≤ ℎ!(
" − 1

$
), (51)

where C = .

$
is the code rate. This finite bound is formally the same as

the asymptotic version of GV bound

1−C ≤)!(E), (52)

where C = limsup$→∞
.$
$
, and E = lim inf$→∞

"$
$
for a series of length $

codes of minimum distances "$, and sizes |?$| = !.$ .
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