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Abstract In the context of secret sharing computation in some finite Abelian group,
given noisy observations of each share, how can one measure the information leakage
of the secret? We review various instances of this problem, where it boils down to
establishing some variation of a “Mrs. Gerber’s lemma” (MGL): Find a lower bound
on some randomness measure of a sum of discrete random variables in the Abelian
group in terms of the product of individual randomnesses of each discrete random
variable. We focus on Sibson’s 𝛼-information for positive and negative orders 𝛼. The
MGL is obtained for all orders, except in the interval [ 3

2 , 2], solving a conjecture by
Hirche. We also compare the resulting various security bounds from the literature.

1 Introduction

Consider a random variable 𝐾 representing a secret, such as a cryptographic key
or a password. In many instances of privacy and secrecy problems, an adversary
inevitably observes some leakage random variable 𝑌 as the output of a side channel
𝑋 → 𝑌 where 𝑋 is some computed sensitive variable that depends on the secret 𝐾 .
This is prone to side channel attacks where the secret 𝐾 may be recovered from many
side channel uses (leakage measurements) [8].

During the execution of a typical cryptographic algorithm, each sensitive vari-
able 𝑋 is known to depend on the bitwise XOR (modulo 2 addition) of the secret 𝐾
and a (plain or cipher) text𝑇 which is uniformly distributed and independent of𝐾 , and
can be publicly known. The same secret 𝐾 is combined with the every component in
the text sequence 𝑇𝑚 = (𝑇1, 𝑇2, . . . , 𝑇𝑚), where 𝑚 is the number of measurements.
We let 𝑋𝑚 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) and 𝑌𝑚 = (𝑌1, 𝑌2, . . . , 𝑌𝑚) be the corresponding
vectors of 𝑚 sensitive variables and measurements, respectively. Therefore, the ad-
versary aims at recovering 𝐾 from the knowledge of the text sequence 𝑇𝑚 and the
observed leakage sequence 𝑌𝑚.
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To mitigate such a threat, a quite common countermeasure is secret sharing, also
known as masking [10]. We assume that both 𝐾 and the sensitive variable 𝑋 take
values in an Abelian group G of finite order𝑀 , and that they are uniformly distributed
over G: 𝐾, 𝑋 ∼ U(G). The Abelian group usually depends on the cryptographic
implementation. During the sensitive computations, 𝑋 is split into multiple shares
𝑋0, 𝑋1, . . . , 𝑋𝑑 such that 𝑋 is independent of any subset of at most 𝑑 shares, yet
it can be fully recovered by combining all shares: 𝑋 = 𝑋0 + 𝑋1 + . . . + 𝑋𝑑 in
additive notation in the Abelian group G. For example, 𝑋1, 𝑋2, . . . , 𝑋𝑑 are chosen
i.i.d. ∼ U(G) independent of 𝑋 and 𝑋0 is set to 𝑋0 = 𝑋 − 𝑋1 − · · · − 𝑋𝑑 . Here 𝑑 is
the masking order: 𝑑 = 0 means no protection at all and first-order masking is the
usual secret sharing scheme with two shares.

In this situation, the adversary has to rely on all possible leakage observations
𝑌0, 𝑌1, . . . , 𝑌𝑑 and on the publicly known texts 𝑇 in order to retrieve the secret. A
practical attack would exploit many (say, 𝑚) measurements for each of the 𝑑 + 1
independent side channels 𝑋𝑖 → 𝑌𝑖 , 𝑖 = 0, 1, . . . , 𝑑. A fairly common assumption is
that all side channels are stationary and memoryless. Thus, the adversary performs
𝑚 measurements (side channel uses) of the vector channel

𝑋 → X = (𝑋0, . . . , 𝑋𝑑) →
𝑑∏
𝑖=0

𝑃𝑌𝑖 |𝑋𝑖
→ Y = (𝑌1, . . . , 𝑌𝑑). (1)

where the corresponding 𝑚 vector inputs (secret shares) and outputs (leakages) are
denoted by X𝑚 = (X1,X2, . . . ,X𝑚) and Y𝑚 = (Y1,Y2, . . . ,Y𝑚), respectively.

Because shares are refreshed each time, the plaintext are independent and
uniformly distributed, and the channel is memoryless, all 𝑚 components of
(𝑋𝑚,X𝑚,Y𝑚) are assumed i.i.d. Upon observation Y𝑚, the adversary performs
a guess 𝐾̂ to recover the secret 𝐾 . The overall attack can be seen as a Markov chain

𝐾 → (𝑋𝑚, 𝑇𝑚) → (X𝑚, 𝑇𝑚) → (Y𝑚, 𝑇𝑚) → 𝐾̂ (2)

and the attack is considered successful if 𝐾̂ = 𝐾 .
The primary goal of the secret sharing scheme of order 𝑑 > 0 is to ensure

that the number of measurements that the adversary has to make to recover the
secret successfully is prohibitively large, for any type of attack, given the available
information leakage. In order to quantify the robustness of this countermeasure, the
defender can choose any specific criterion (figure of merit) for the attack success, as
well as any specific information measure to evaluate the amount of leakage.

1.1 Figure of Merit: Probability of Success

The most common criterion to quantify the successfulness of an attack is the proba-
bility of success [4]

P𝑠 = P𝑠 (𝐾 |𝑇𝑚,Y𝑚) (3)
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given by the maximum a posteriori (MAP) rule [19, 9], which maximizes P(𝐾̂ = 𝐾).
Under this criterion, the optimal attack given observation y𝑚 takes the form

𝑘̂ = arg max
𝑘
𝑝𝐾 |𝑇𝑚 ,Y𝑚 (𝑘 |𝑡𝑚, y𝑚). (4)

Since the secret is uniformly distributed, this amounts to maximizing likelihood
𝑘̂ = arg max𝑘 𝑝𝑇𝑚 ,Y𝑚 |𝐾 (𝑡𝑚, y𝑚 |𝑘). It should be noted that the MAP rule corresponds
to the most unfavorable situation for the defender, which is in line with the desire to
establish the best possible level of security.

Another quite common criterion in the side channel analysis literature is the
guesswork [32, 33] or guessing entropy𝐺 (𝐾 |𝑇𝑚,Y𝑚) [29], which can be generalized
to 𝜌th-order guessing moments 𝐺𝜌 (𝐾 |𝑇𝑚,Y𝑚) [2]. To simplify the presentation we
restrict ourselves to the success probability P𝑠 . Most of the derivations presented
below, however, can be also carried out for the guessing entropies 𝐺𝜌 instead.

1.2 Information Leakage Measure: 𝜶-Information

The defender may choose any measure of information leakage L(𝐾; Y𝑚, 𝑇𝑚) which
is theoretically defined from the joint distribution of the secret and the leakages.
Sometimes, it is convenient to consider an equivalent measure of the formL′ = 𝜑(L)
instead of L, where 𝜑 is a differentiable increasing function satisfying 𝜑(0) = 0.
This essentially does not change the methodology presented below.

In the sequel, we put emphasis of Sibson’s 𝛼-information [44] 𝐼𝛼 (𝐾; Y𝑚, 𝑇𝑚)
(𝛼-information in short) because it satisfies all the ideal properties needed to achieve
the defender’s objective, as seen below. Here 𝛼 is a real-valued parameter that can
be positive or negative. Typical values encountered in the side channel literature are
𝛼 = 1 (Shannon’s mutual information), 𝛼 = 2 (quadratic leakage [23, 26]), 𝛼 = +∞
(maximal leakage [22]) and 𝛼 = −∞ (maximal cost leakage [22, 15], essentially
equivalent to the complementary Doeblin coefficient [5]). Section 2 lists useful
properties of 𝛼-information.

Other information measures, different from L = 𝐼𝛼 or 𝜑𝛼 (𝐼𝛼), were also pro-
posed in the literature [37, 12, 36]. Since they do not have all the properties of 𝐼𝛼,
specific inequalities (such as Pinsker and reverse Pinsker inequalities) must be used
to establish a link with 𝛼-information [13, 30], so that the methodology presented
below can be applied. These other information measures are reviewed in Section 5.

1.3 General Methodology

The defender’s objective is to apply information theoretic tools to evaluate the
minimum number of measurements 𝑚 that can achieve a given figure of merit P𝑠 .
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That evaluation depends on the choice of the information leakage measure L. Ideally,
one can relay on the following information-theoretic ingredients:

1.3.1 (Generalized) Fano Inequality

This inequality allows one to lower bound the information leakage L(𝐾;𝑇𝑚,Y𝑚) by
some “distance” between the probability of success P𝑠 (𝐾 |𝑇𝑚,Y𝑚) given observation
𝑇𝑚,Y𝑚, and the probability of success P𝑠 (𝐾) = 1

𝑀
in the case of blind estimation

of the secret (without any observation). Fano’s inequality has the following general
form:

𝑑 (P𝑠 , 1
𝑀
) ≤ L(𝐾 ; 𝑇𝑚,Y𝑚) (5)

The classical Fano inequality [16] corresponds to the case L = 𝐼 (mutual informa-
tion) and 𝑑 = Kullback-Leibler divergence. In general, Fano’s inequality implies that
if leakage L is small enough, then the probability of success P𝑠 > 1

𝑀
cannot be

too large compared to its minimum value 1
𝑀

. This is essentially the reason why the
countermeasure is implemented. Similar “Fano inequalities” may also be derived for
the guessing entropy 𝐺𝜌 [7].

1.3.2 Text Switching Inequality

In order to handle the presence of the (publicly known) text sequence 𝑇𝑚 which is
independent of the secret 𝐾 , the leakage measure should satisfy the following “text
switching” property

L(𝐾 ; 𝑇𝑚,Y𝑚) ≤ L(𝐾,𝑇𝑚 ; Y𝑚). (6)

This ensures that a small information upon the observation of the leakage will
enforce a small information on the secret. This is easily checked in the case of mutual
information L = 𝐼 (where 𝛼 = 1) using the chain rule property and the fact that 𝑇𝑚
is independent of 𝐾: 𝐼 (𝐾;𝑇𝑚, 𝑌𝑚) = 𝐼 (𝐾;𝑇𝑚) + 𝐼 (𝐾;𝑌𝑚 |𝑇𝑚) = 𝐼 (𝐾;𝑌𝑚 |𝑇𝑚) =

𝐼 (𝐾,𝑇𝑚;𝑌𝑚) − 𝐼 (𝑇𝑚;𝑌 ) ≤ 𝐼 (𝐾,𝑇𝑚;𝑌𝑚). We show in the sequel that the results
also holds for Sibson’s 𝛼-information even though it does not verify the chain rule
property.

1.3.3 (Pre) Data Processing Inequality (DPI)

The pre-DPI applied to the Markov chain (𝐾,𝑇𝑚) → 𝑋𝑚 → Y𝑚 yields

L(𝐾,𝑇𝑚 ; Y𝑚) ≤ L(𝑋𝑚; Y𝑚) (7)

Thus, overall information leakage will be small if all shares do not leak too much
information.
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1.3.4 Tensorization Property

A nice property of the information measure is when it “tensorizes”, e.g., the informa-
tion measure of a product joint distribution equals the sum of individual information
measures [35, Chapter 6]. Then for the i.i.d. vector (𝑋𝑚,Y𝑚) we simply have

L(𝑋𝑚; Y𝑚) = 𝑚L(𝑋; Y). (8)

This allows one to work with a single-letter expression L(𝑋; Y). Notice that only
the inequality L(𝑋𝑚; Y𝑚) ≤ 𝑚L(𝑋; Y) would be sufficient to obtain a lower bound
on the number of measurements.

1.3.5 Mrs. Gerber’s Lemma (a.k.a. Discrete Entropy Power Inequality)

The crucial step is now to upper bound the single letter expression of the information
leakage measure L(𝑋; Y), where 𝑋 = 𝑋0 + . . . + 𝑋𝑑 and Y = (𝑌0, . . . , 𝑌𝑑), in
terms of the information leakage measures for each share L(𝑋𝑖;𝑌𝑖), 𝑖 = 0, 1, . . . , 𝑑.
Typically—possibly with an appropriate 𝜑(L) in place of L—the (generalized) Mrs.
Gerber’s lemma (MGL) writes

L(𝑋; Y) ≤
𝑑∏
𝑖=0

L(𝑋𝑖;𝑌𝑖). (9)

As seen below, this reduces to the classical Mrs. Gerber’s Lemma [47] (a.k.a. the
binary analog [43] of the entropy power inequality [28]) when G = Z2 is the binary
group.

In general, the MGL step is crucial because it allows one to efficiently evaluate
L(𝑋𝑖;𝑌𝑖) for a single side-channel (such as a AWGN channel), avoiding a cumber-
some evaluation L(𝑋; Y) due to the (𝑑 + 1)-dimensional noise present in Y (“curse
of dimensionality”). Thus, a security bound can be derived without having to mount
the complete attack.

Furthermore, for small values of L(𝑋𝑖;𝑌𝑖), it can be easily checked that the share
by share evaluation with MGL has much greater precision than a direct evaluation.
In fact, if (say) L(𝑋𝑖;𝑌𝑖) = 𝛿 and each term is evaluated up to an additive error term
of the same order ≈ 𝛿, the error on L(𝑋; Y) is ≈ 𝛿 with a direct evaluation, but only
≈ 𝛿𝑑+1 using MGL.

1.3.6 Putting All Ingredients Together

Combining all previous steps:
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𝑑 (P𝑠 , 1
𝑀
) ≤ L(𝐾 ; 𝑇𝑚,Y𝑚) (Fano)
≤ L(𝐾,𝑇𝑚 ; Y𝑚) (text switch)
≤ L(𝑋𝑚; Y𝑚) (pre-DPI)
= 𝑚L(𝑋; Y) (tensorization)

≤ 𝑚∏𝑑
𝑖=0 L(𝑋𝑖;𝑌𝑖). (Mrs. Gerber’s Lemma)

(10)

we obtain an inequality of the form

𝑚 ≥
𝑑 (P𝑠 , 1

𝑀
)∏𝑑

𝑖=0 L(𝑋𝑖;𝑌𝑖)
. (11)

This gives a lower bound on the number of side channel uses (measurements)
required to achieve a given success probability P𝑠 (in the numerator). The secret
sharing scheme will be all the more efficient as a countermeasure as the denominator
is small, i.e., the information leakage per share is sufficiently small.

Remark 1 It is also possible to proceed in an hybrid way. If L1 and L2 are two
leakage measures such that L1 ≤ L2, L1 verifies the first properties and L2 the
remaining ones then a similar result holds, where the divergence on the left hand-
side is associated to L1 and the L measure in the right-hand side is L2. This is
simply done by inserting the extra step L1 ≤ L2 in the derivation above. Section 5
contains multiple examples.

2 Preliminaries on 𝜶-Information

Throughout this chapter, we assume that all considered probability distributions 𝑃
are dominated by a common dominating measure 𝜇 and write the corresponding
densities as the Radon-Nykodym derivatives 𝑝 = d𝑃

d𝜇 . All considered integrals with
respect to 𝜇 are integrals of positive measurable functions and as such are well
defined (possibly infinite). We also use natural logarithms log = log𝑒 (expressed in
nats).

2.1 𝜶-Divergence

For any 𝛼 ∈ R we use the special notation [27]

⟨𝑝∥𝑞⟩𝛼 ≜
(∫

𝑝𝛼𝑞1−𝛼𝑑𝜇

) 1
𝛼

. (12)

which is easily seen to be independent of the choice of the dominating measure 𝜇.
Since

∫
𝑝𝛼𝑞1−𝛼𝑑𝜇 =

∫
𝑞1−𝛼𝑝1−(1−𝛼)𝑑𝜇, one has the following reflection formula:
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⟨𝑝∥𝑞⟩𝛼𝛼 = ⟨𝑞∥𝑝⟩1−𝛼
1−𝛼 . (13)

Because the usual Rényi 𝛼-divergence 𝐷𝛼 (𝑝∥𝑞) = 𝛼
𝛼−1 log⟨𝑝∥𝑞⟩𝛼 is typically

negative for negative 𝛼 [45], we use the following definition.

Definition 1 (Signed Rényi Divergence)

𝐷𝛼 (𝑝∥𝑞) ≜
|𝛼 |
𝛼 − 1

log⟨𝑝∥𝑞⟩𝛼 =
sgn(𝛼)
𝛼 − 1

log⟨𝑝∥𝑞⟩𝛼𝛼 (14)

where sgn is the sign function. For binary (Bernoulli) distributions,

𝑑𝛼 (𝑝∥𝑞) ≜ 𝐷𝛼 (B(𝑝)∥B(𝑞)) = sgn(𝛼)
𝛼 − 1

log(𝑝𝛼𝑞1−𝛼 + (1 − 𝑝)𝛼 (1 − 𝑞)1−𝛼) (15)

In particular 𝑑∞ (𝑝∥𝑞) = log max{ 𝑝
𝑞
,

1−𝑝
1−𝑞 } and 𝑑−∞ (𝑝∥𝑞) = − log min{ 𝑝

𝑞
,

1−𝑝
1−𝑞 }.

The limiting case 𝛼 = 1 gives the usual Kullback-Leibler divergence 𝐷 (𝑝∥𝑞). In
particular 𝑑 (𝑝∥𝑞) ≜ 𝐷KL (B(𝑝)∥B(𝑞)) = 𝑝 log 𝑝

𝑞
+ (1 − 𝑝) log 1−𝑝

1−𝑞 .

In terms for the signed Rényi divergence, the reflection formula (13) reads

𝐷𝛼 (𝑝∥𝑞)
|𝛼 | =

𝐷1−𝛼 (𝑞∥𝑝)
|1 − 𝛼 | . (16)

This is equivalent to the skew symmetry formula of [45, Lemma 10].
It is well known [45, Theorem 2] by Jensen’s inequality that the usual Rényi

𝛼-divergence is nonnegative for 𝛼 > 0. As a result of the reflection formula (16),
since either 𝛼 or 1−𝛼 is positive, the signed Rényi divergence is always nonnegative
for any 𝛼 ∈ R:

𝐷𝛼 (𝑝∥𝑞) ≥ 0 (17)

with equality if and only if 𝑝 = 𝑞 𝜇-a.e. (see Proposition 1 of [15] for negative 𝛼).

2.2 𝜶-Information

Let 𝑝𝑋 denote the probability density (w.r.t. 𝜇) of a random variable 𝑋 . For two
random variables 𝑋,𝑌 one has:

𝐷𝛼 (𝑝𝑋 |𝑌=𝑦 ∥𝑝𝑋) =
|𝛼 |
𝛼 − 1

log⟨𝑝𝑋 |𝑌=𝑦 ∥𝑝𝑋⟩𝛼

for fixed𝑌 = 𝑦. Taking the expectation over𝑌 inside the logarithm we obtain Sibson’s
𝛼-mutual information [44, 46]:

Definition 2 (Sibson’s 𝛼-Information)

𝐼𝛼 (𝑋;𝑌 ) ≜ |𝛼 |
𝛼 − 1

logE𝑦 ⟨𝑝𝑋 |𝑌=𝑦 ∥𝑝𝑋⟩𝛼 . (18)



8 Olivier Rioul and Julien Béguinot

In particular, for negative 𝛼 this definition is equivalent to the one of [15]. The
limiting case 𝛼 = 1 gives the usual mutual information 𝐼 (𝑋;𝑌 ). Considering a
discrete random variable 𝑋 for simplicity, the limiting case 𝛼 = +∞ is known as the
maximal leakage [22, Def. 1]:

𝐼∞ (𝑋;𝑌 ) = log
∫
𝑦

max
𝑥:𝑝𝑋 (𝑥 )>0

𝑝𝑌 |𝑋𝑑𝜇𝑌 (19)

while the limiting case 𝛼 = −∞ is the maximal cost leakage [22, Def. 11]:

𝐼−∞ (𝑋;𝑌 ) = − log
∫
𝑦

min
𝑥:𝑝𝑋 (𝑥 )>0

𝑝𝑌 |𝑋𝑑𝜇𝑌 . (20)

The latter quantity turns out to be equivalent to the complementary Doeblin
coefficient [5, Definition 9]

E(𝑋 → 𝑌 ) = 1 − exp(−𝐼−∞ (𝑋;𝑌 )) (21)

that was used in [5] to derive side channel security proofs.

2.3 𝜶-Entropy and Conditional 𝜶-Entropy

We use the “𝛼-norm” notation [27]

∥𝑝∥𝛼 =

(∫
𝑝𝛼𝑑𝜇

)1/𝛼
(22)

to define the (conditional) Rényi 𝛼-entropy [38, 1] as follows.

Definition 3 (Signed Arimoto-Rényi 𝛼-Entropy ) Similarly as for 𝛼-divergence,
we use a slightly modified definition:

𝐻𝛼 (𝑋) = 𝐻𝛼 (𝑝𝑋) ≜
|𝛼 |

1 − 𝛼 log ∥𝑝𝑋 ∥𝛼 =
sgn(𝛼)
1 − 𝛼 log ∥𝑝𝑋 ∥𝛼𝛼 . (23)

𝐻𝛼 (𝑋 |𝑌 ) ≜
|𝛼 |

1 − 𝛼 logE𝑌 ∥𝑝𝑋 |𝑌 ∥𝛼 . (24)

The limiting case 𝛼 = 1 gives the usual entropy 𝐻 (𝑋) and equivocation 𝐻 (𝑋 |𝑌 ).
Note that for a binary (Bernoulli) random variable,

ℎ̃𝛼 (𝑝) ≜ 𝐻𝛼 (B(𝑝)) = |𝛼 |
𝛼 − 1

log((𝑝𝛼 + (1 − 𝑝)𝛼) 1
𝛼 ). (25)

In the limiting case 𝛼 = 1, ℎ(𝑝) ≜ 𝐻 (B(𝑝)) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝).

We may also consider Hayashi’s conditional 𝛼-entropy [18], generalized to in-
clude negative values of 𝛼:
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Definition 4 (Signed Hayashi’s 𝛼-Entropy)

𝐻𝐻𝛼 (𝑋 |𝑌 ) ≜
sgn(𝛼)
1 − 𝛼 logE𝑌 ∥𝑝𝑋 |𝑌 ∥𝛼𝛼 . (26)

2.4 Properties of 𝜶-Information

Sibson’s 𝛼-information may also be defined via the so called Sibson’s identity:

Lemma 1 (Sibson’s Identity) Let 𝑞∗
𝑌
(𝑦) = 𝑝𝑌 (𝑦)

⟨𝑝𝑋|𝑌=𝑦 ∥ 𝑝𝑋 ⟩𝛼
E𝑦 ⟨𝑝𝑋|𝑌=𝑦 ∥ 𝑝𝑋 ⟩𝛼 . Then for any 𝑞𝑌

we have
𝐷𝛼 (𝑝𝑋𝑌 ∥𝑝𝑋𝑞𝑌 ) = 𝐷𝛼 (𝑞∗𝑌 ∥𝑞𝑌 ) + 𝐼𝛼 (𝑋;𝑌 ) (27)

As a consequence, since 𝐷𝛼 (𝑞∗𝑌 ∥𝑞𝑌 ) ≥ 0 with equality if and only if 𝑞∗
𝑌
= 𝑞𝑌 a.e.,

𝐼𝛼 (𝑋;𝑌 ) = min
𝑞𝑌

𝐷𝛼 (𝑝𝑋𝑌 ∥𝑝𝑋𝑞𝑌 ) (28)

where the minimum is achieved when 𝑞𝑌 = 𝑞∗
𝑌

.

Proof. Easy calculation. See [46, Def. 4] for positive𝛼 and [15, Def. 3] for negative𝛼.
⊓⊔

Lemma 2 (Uniform Expansion Property [27]) If 𝑋 is uniformly distributed then

𝐼𝛼 (𝑋;𝑌 ) = 𝐻𝛼 (𝑋) − 𝐻𝛼 (𝑋 |𝑌 ). (29)

Proof. Easy calculation. ⊓⊔

Lemma 3 (Data Processing Inequality) For any Markov chain 𝑋 → 𝑌 → 𝑍 → 𝑇 ,

𝐼𝛼 (𝑋;𝑇) ≤ 𝐼𝛼 (𝑌 ; 𝑍). (30)

Let 𝑃,𝑄 be two distributions and 𝑊 a channel. Let 𝑃𝑊 and 𝑄𝑊 be the respective
output distributions of random variable with distribution 𝑃 (resp.𝑄) passed through
the channel𝑊 . Then

𝐷𝛼 (𝑃𝑊 ∥𝑄𝑊 ) ≤ 𝐷𝛼 (𝑃∥𝑄). (31)

Proof. Equation (30) is proved in [34] for 𝛼 > 0, which applies verbatim to 𝛼 < 0.
Equation (31) for positive 𝛼 is well known and proved for instance in the reference ar-
ticle [45, Theorem 1]. Equation (31) is proved for negative 𝛼 in [15, Proposition 1.4]
using the results for positive 𝛼 together with the the reflection formula (13). ⊓⊔

Lemma 4 (Text Switching Inequality) Let 𝑇 and 𝐾 be two independent random
variables and 𝑌 be some side information about the pair (𝐾,𝑇). For any 𝛼 ≠ 0,

𝐼𝛼 (𝐾 ; 𝑇,𝑌 ) ≤ 𝐼𝛼 (𝐾,𝑇 ; 𝑌 ). (32)

This was proved directly with involved calculations for 𝛼 > 0 in [26, Lemma 2].
The proof carries over verbatim for 𝛼 < 0. We provide a simpler proof:
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Proof. Since 𝐾 and 𝑇 are independent, using the representation (28),

𝐼𝛼 (𝐾 ; 𝑇,𝑌 ) = min
𝑄𝑇𝑌

𝐷𝛼 (𝑃𝐾𝑇𝑌 ∥𝑃𝐾𝑄𝑇𝑌 ) (33)

= min
𝑄𝑇𝑌

𝐷𝛼 (𝑃𝐾𝑇𝑌 ∥𝑃𝐾 |𝑇𝑄𝑇𝑌 ) (34)

≤ min
𝑄𝑌

𝐷𝛼 (𝑃𝐾𝑇𝑌 ∥𝑃𝐾 |𝑇𝑃𝑇𝑄𝑌 ) (35)

= min
𝑄𝑌

𝐷𝛼 (𝑃𝐾𝑇𝑌 ∥𝑃𝐾𝑇𝑄𝑌 ) (36)

= 𝐼𝛼 (𝐾,𝑇 ; 𝑌 ). (37)

⊓⊔

Remark 2 Notice that the quantity in equation (34) corresponds to a definition of
the conditional Sibson’s 𝛼-information which is the suitable definition for leakage
evaluation as explained in [27].

Lemma 5 (Tensorization) If 𝑋1, . . . , 𝑋𝑚 is and i.i.d sequence and the channel
𝑋𝑖 → 𝑌𝑖 is stationary and memoryless then

𝐼𝛼 (𝑋1, . . . , 𝑋𝑚;𝑌1, . . . , 𝑌𝑚) = 𝑚𝐼𝛼 (𝑋1;𝑌1). (38)

Proof. Easy calculation. ⊓⊔

3 Generalized Fano Inequalities for 𝜶-Information

One important ingredient in our framework is Fano’s inequality. The classical Fano
inequality can be written as a lower bound on mutual information, and can be
generalized to 𝛼-information for positive or negative 𝛼.

3.1 The Classical Fano Inequality

Let 𝑋 be a 𝑀-ary random variable and 𝑋 → 𝑌 → 𝑋̂ be a Markov chain. Fano’s
inequality [16] is classically seen as upper bound on the equivocation 𝐻 (𝑋 |𝑌 ) in
terms of the probability of error P𝑒 (𝑋 |𝑌 ) = P(𝑋 ≠ 𝑋̂) = 1 − P𝑠 (𝑋 |𝑌 ):

𝐻 (𝑋 |𝑌 ) ≤ ℎ(P𝑒 (𝑋 |𝑌 )) + P𝑒 (𝑋 |𝑌 ) log(𝑀 − 1). (39)

For uniformly distributed 𝑋 , it can be rewritten as a lower bound on mutual infor-
mation [17]:

𝐼 (𝑋;𝑌 ) ≥ 𝑑 (P𝑠 (𝑋 |𝑌 )∥P𝑠 (𝑋)) = 𝑑 (P𝑠 (𝑋 |𝑌 )∥ 1
𝑀
). (40)
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This second reformulation in terms of KL divergence is perhaps more intuitive. The
probability of success P𝑠 (𝑋 |𝑌 ) cannot be too different from a blind guess P𝑠 (𝑋) if
mutual information 𝐼 (𝑋;𝑌 ) is small. This is illustrated in Figure 1.

d(Ps(X|Y )∥ 1
M

)log M

I(X;Y )

11
M

Ps(X|Y )

Fig. 1: Illustration of Fano’s inequality seen as a lower bound on mutual information

3.2 Extension to 𝜶-Information

Fano’s inequality can be generalized to Sibson’s 𝛼-Information as shown for 𝛼 > 0
in [42, Theorem 3] for uniform 𝑋 and in [39, Theorem 1] for arbitrary 𝑋 . The proof
easily carries over to negative values of 𝛼 as well:

Lemma 6 (𝛼-Fano Inequality) For any 𝛼 ∈ R,

𝐼𝛼 (𝑋;𝑌 ) ≥ 𝑑𝛼 (P𝑠 (𝑋 |𝑌 )∥P𝑠 (𝑋)) (41)

Proof. The proof from [39] derived for 𝛼 > 0 using the data processing inequality
for 𝛼-information and for 𝛼-divergence, can be applied verbatim to negative 𝛼. ⊓⊔

Lemma 6 is illustrated in Figure 2 for 𝛼 = 2 and 𝛼 = −1, respectively. While the
binary divergence is always bounded by log𝑀 for 𝛼 > 0, it tends to +∞ for 𝛼 < 0
as success increases. As a result, when 𝛼 < 0, the Fano bound on the probability of
success will never be vacuous.

In particular, for a uniformly distributed 𝑀-ary random variable 𝑋 ,

𝐼∞ (𝑋;𝑌 ) ≥ 𝑑∞ (P𝑠 (𝑋 |𝑌 )∥P𝑠 (𝑋)) = log(𝑀P𝑠 (𝑋 |𝑌 )) (42)

and

𝐼−∞ (𝑋;𝑌 ) ≥ 𝑑−∞ (P𝑠 (𝑋 |𝑌 )∥P𝑠 (𝑋)) = − log

(
1 − 1

𝑀

1 − P𝑠 (𝐾 |𝑌 )

)
(43)
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dα(Ps(X|Y )∥ 1
M

)log M

Iα(X;Y )

11
M

Ps(X|Y )

d̃α(Ps(X|Y )∥ 1
M

)

log M

Iα(X;Y )

11
M

Ps(X|Y )

Fig. 2: Illustration of Fano’s inequality seen as a lower bound on 𝛼-information. Top:
𝛼 = 2. Bottom: 𝛼 = −1.

One recovers the bound on the success rate derived in [5, Proposition 1] in terms of
complementary Doeblin coefficient.

4 Mrs. Gerber’s Lemma or Discrete Entropy Power Inequalities

In the context of secret sharing, the crucial ingredient in our framework is Mrs.
Gerber’s Lemma. The classical Mrs. Gerber’s Lemma in the binary group can be
written as a lower bound on equivocation (or an upper bound of mutual information)
in term of the individual equivocations for each share. Thanks to a pivotal lemma
derived in this section, MGL can be generalized to conditional 𝛼-entropies for
positive or negative 𝛼.
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4.1 Original Mrs. Gerber’s Lemma

First consider the case of two binary shares. Let 𝑋0, 𝑋1 be two independent Bernoulli
random variables (taking values in Z2 = {0, 1}) with respective parameters 𝑝0, 𝑝1.
Then 𝑋 = 𝑋0+𝑋1 (addition modulo 2) is a Bernoulli random variable with parameter
𝑝 = 𝑝0 (1 − 𝑝1) + (1 − 𝑝0)𝑝1 = 𝑝0 ∗ 𝑝1 where ∗ denotes binary convolution :
𝑥 ∗ 𝑦 = 𝑥(1 − 𝑦) + (1 − 𝑥)𝑦. In particular,

𝐻 (𝑋) = ℎ(𝑝) = ℎ(ℎ−1 (𝐻 (𝑋0) ∗ ℎ−1 (𝐻 (𝑋1))). (44)

If each share leaks through a side-channel 𝑋𝑖 → 𝑌𝑖 (𝑖 = 0, 1), letting𝑌 = (𝑌0, 𝑌1),
we obtain 𝐻 (𝑋 |𝑌 = 𝑦) = ℎ(ℎ−1 (𝐻 (𝑋0 |𝑌0 = 𝑦0) ∗ ℎ−1 (𝐻 (𝑋1 |𝑌1 = 𝑦1))) for every
𝑦 = (𝑦0, 𝑦1), hence

𝐻 (𝑋 |𝑌 ) = E𝑦0 ,𝑦1 [ℎ(ℎ−1 (𝐻 (𝑋0 |𝑌0 = 𝑦0)) ∗ ℎ−1 (𝐻 (𝑋1 |𝑌1 = 𝑦1)))] . (45)

The expectation can be moved inside this expression to obtain an expression in terms
of the equivocations𝐻 (𝑋𝑖 |𝑌𝑖), thanks to the original Mrs. Gerber’s Lemma of Wyner
and Ziv [47]:

Lemma 7 (Original Mrs. Gerber’s Lemma [47]) The function ℎ(ℎ−1 (𝑥) ∗ ℎ−1 (𝑦))
is convex in one variable when the other is fixed (convex in 𝑥 for fixed 𝑦 and vice
versa).

A simple proof will be given below as a particular case.
As an immediate consequence one obtains the following lower bound:

𝐻 (𝑋 |𝑌 ) ≥ ℎ(ℎ−1 (𝐻 (𝑋0 |𝑌0)) ∗ ℎ−1 (𝐻 (𝑋1 |𝑌1))). (46)

Shamai and Ziv [43] reformulated this as a binary analog of the entropy-power
inequality:

𝜎(𝑋 |𝑌 ) ≥ 𝜎(𝑋0 |𝑌0) ∗ 𝜎(𝑋1 |𝑌1) (47)

where 𝑋0, 𝑋1 are binary random variable and 𝜎(𝑋 |𝑌 ) ≜ ℎ−1 (𝐻 (𝑋 |𝑌 )). By induc-
tion, we obtain that for a 𝑑th-order secret sharing scheme,

𝜎(𝑋 |𝑌 ) ≥ 𝜎(𝑋0 |𝑌0) ∗ . . . ∗ 𝜎(𝑋𝑑 |𝑌𝑑). (48)

We give yet another attractive reformulation in terms of mutual information:

Theorem 1 (Reformulated Mrs. Gerber’s Lemma)

𝐻 (𝑋 |𝑌 ) ≥ 𝜙

(∏𝑑
𝑖=0 𝜙

−1 (𝐻 (𝑋𝑖 |𝑌𝑖))
)

(49)

where 𝜙(𝑥) = ℎ( 1−𝑥
2 ) ∈ [0, log 2]. Equivalently, for any uniformly distributed 𝑋 ,

𝐼 (𝑋;𝑌 ) ≤ 𝜑

(∏𝑑
𝑖=0 𝜑

−1 (𝐼 (𝑋𝑖;𝑌𝑖))
)

(50)
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where 𝜑(𝑥) = log 2 − 𝜙(𝑥).

Proof. The binary convolution ∗ is transformed into a multiplicative product under
the discrete Fourier transform (DFT) over Z2. Since DFT(1 − 𝑝, 𝑝) = (1, 1 − 2𝑝), it
follows that DFT(1 − 𝑝 ∗ 𝑞, 𝑝 ∗ 𝑞) = (1, (1 − 2𝑝) (1 − 2𝑞)) and similarly for several
factors. Taking the inverse DFT yields(

1 − 𝜎(𝑋0 |𝑌0) ∗ . . . ∗ 𝜎(𝑋𝑑 |𝑌𝑑)
𝜎(𝑋0 |𝑌0) ∗ . . . ∗ 𝜎(𝑋𝑑 |𝑌𝑑)

)
=

1
2

(
1 + ∏𝑑

𝑖=0 (1 − 2𝜎(𝑋𝑖 |𝑌𝑖))
1 − ∏𝑑

𝑖=0 (1 − 2𝜎(𝑋𝑖 |𝑌𝑖))

)
. (51)

Therefore,

𝐻 (𝑋 |𝑌 ) ≥ ℎ

(
1 − ∏𝑑

𝑖=0 (1 − 2ℎ−1 (𝐻 (𝑋𝑖 |𝑌𝑖)))
2

)
= 𝜙

(∏𝑑
𝑖=0 𝜙

−1 (𝐻 (𝑋𝑖 |𝑌𝑖))
)

(52)

Finally 𝐼 (𝑋;𝑌 ) = 𝐻 (𝑋)−𝐻 (𝑋 |𝑌 ) = log 2−𝐻 (𝑋 |𝑌 ) for uniformly distributed 𝑋 . ⊓⊔

Remark 3 Equation (49) may also be reformulated as

𝑑∑︁
𝑖=0

𝑁 (𝐻 (𝑋𝑖 |𝑌𝑖)) ≤ 𝑁 (𝐻 (𝑋 |𝑌 )) (53)

where 𝑁 (𝑥) = − log 𝜙−1 (𝑥) = − log(1 − 2ℎ−1 (𝑥)). In a sense, 𝑁 corresponds better
than 𝜎 to the “entropy power” for binary random variables.

Remark 4 Hirche proved a “Mr. Gerber’s Lemma” in the opposite direction [20,
Eqn. 4] which reformulates for uniform 𝑋 as

𝐼 (𝑋;𝑌 ) ≥ (log 2)∏𝑑
𝑖=0

𝐼 (𝑋𝑖 ;𝑌𝑖 )
log 2 = 𝜓

(∏𝑑
𝑖=0 𝜓

−1 (𝐼 (𝑋𝑖;𝑌𝑖))
)

(54)

where 𝜓(𝑥) = 𝑥 · log 2. A simple proof will also be given below as a particular case.

4.2 A Pivotal Lemma

The original MGL was noted to hinge on the convexity of the function ℎ(𝑝 ∗ ℎ−1 (𝑥))
for any fixed 𝑝 ∈ [0, 1

2 ] by Cheng [11]. It is easily seen to be equivalent to the
convexity of the mapping 𝑤𝑎 (𝑥) = 𝜙(𝑎𝜙−1 (𝑥)) for any fixed 𝑎 ∈ [0, 1].

More generally, for any twice differentiable function 𝜙 defined over [0, 1], con-
sider the two auxiliary functions

𝑤𝑎 (𝑥) = 𝜙(𝑎𝜙−1 (𝑥)) (55)

for any fixed 𝑎 ∈ [0, 1], and

𝑢(𝑥) = 𝜙′ (𝑥)
𝑥𝜙′′ (𝑥) . (56)
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In order to prove Mrs. Gerber’s lemma (or Mr. Gerber’s lemma [21] in the opposite
direction), the following technical result is pivotal since it characterizes the convexity
of an infinite family of functions by the behavior of a single function:

Lemma 8 Let 𝜙(𝑥) ≥ 0 be twice differentiable.
Assume that 𝜙(𝑥) is strictly increasing and convex. Then 𝑤𝑎 (𝑥) is convex for all

𝑎 ∈ [0, 1] if and only if 𝑢(𝑥) is increasing; and 𝑤𝑎 (𝑥) is concave for all 𝑎 ∈ [0, 1]
if and only if 𝑢(𝑥) is decreasing.

If instead 𝜙(𝑥) is strictly decreasing and concave, then 𝑤𝑎 (𝑥) is convex for all
𝑎 ∈ [0, 1] if and only if 𝑢(𝑥) is decreasing; and 𝑤𝑎 (𝑥) is concave for all 𝑎 ∈ [0, 1]
if and only if 𝑢(𝑥) is increasing.

Proof. Assume that 𝜙(𝑥) ≥ 0 is strictly increasing and convex. Then𝑤𝑎 (𝑥) is convex
for all 𝑎 ∈ [0, 1] if and only if its derivative

d𝑤𝑎
d𝑥

= 𝑎
𝜙′ (𝑎𝜙−1 (𝑥))
𝜙′ (𝜙−1 (𝑥))

(57)

is increasing, i.e., since 𝜙−1 is increasing, (log) 𝜙
′ (𝑎𝑥 )
𝜙 (𝑥 ) is increasing, that is

d
d𝑥

log
𝜙′ (𝑎𝑥)
𝜙(𝑥) ≥ 0, (58)

which computing the derivative is equivalent to

𝑎𝜙′′ (𝑎𝑥)
𝜙′ (𝑎𝑥) ≥ 𝜙′′ (𝑥)

𝜙′ (𝑥) (≥ 0) (59)

or taking the reciprocals and dividing by 𝑥,

𝜙′ (𝑥)
𝜙′′ (𝑥)𝑥 ≥ 𝜙′ (𝑎𝑥)

𝜙′′ (𝑎𝑥)𝑎𝑥 (60)

for any 𝑎 ∈ [0, 1], hence for any 𝑥′ = 𝑎𝑥 not greater than 𝑥. In other words, 𝑢(𝑥) is
decreasing. The proof for concave 𝑤𝑎 (𝑥) is similar with all inequalities reversed.

The case where 𝜙(𝑥) is strictly decreasing and concave follows similarly with
again all inequalities reversed because 𝜙−1 is decreasing. ⊓⊔

As an illustration, we obtain a simple proof of the original MGL:

Proof of Lemma 7. With the reformulation of Theorem 1, Lemma 7 is equivalent to
the convexity of 𝑤𝑎 (𝑥) = 𝜙(𝑎𝜙−1 (𝑥)) for all 𝑎 ∈ [0, 1], where 𝜙(𝑥) = ℎ( 1−𝑥

2 ).
Now from Lemma 8, one checks that 𝜙(𝑥) is strictly decreasing and concave, with

𝜙′ (𝑥) = − 1
2 log 1+𝑥

1−𝑥 < 0 and 𝜙′′ (𝑥) = −1
1−𝑥2 ≤ 0. Thus 𝑢(𝑥) = 1−𝑥2

2𝑥 log 1+𝑥
1−𝑥 , which is

easily checked to be decreasing for 𝑥 ∈ [0, 1]. ⊓⊔
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4.3 Extension to Sibson’s 𝜶-Information

As shown by Hirche [20], Mrs. Gerber’s lemma can be extended to Rényi entropies
of various orders. We present the corresponding derivations based on Lemma 8 and
extend them to negative orders 𝛼 < 0. This will allow one to refine and generalize
Hirche’s results.

If each share leaks through a side-channel 𝑋𝑖 → 𝑌𝑖 , 𝑖 = 0, 1, . . . , 𝑑, we obtain,
with the same notations as above,

𝐻𝛼 (𝑋 |𝑌 = 𝑦) = ℎ̃𝛼 ( ℎ̃−1
𝛼 (𝐻𝛼 (𝑋0 |𝑌0 = 𝑦0)) ∗ . . . ∗ ℎ̃−1

𝛼 (𝐻𝛼 (𝑋𝑑 |𝑌𝑑 = 𝑦𝑑))). (61)

This is equivalent to

𝐾𝛼 (𝑋 |𝑌 = 𝑦) = 𝑘𝛼 (𝑘−1
𝛼 (𝐾𝛼 (𝑋0 |𝑌0 = 𝑦0)) ∗ . . . ∗ 𝑘−1

𝛼 (𝐾𝛼 (𝑋𝑑 |𝑌𝑑 = 𝑦𝑑))) (62)

where
𝐾𝛼 (𝑋 |𝑌 ) = exp( 1 − 𝛼

|𝛼 | 𝐻𝛼 (𝑋 |𝑌 )) (63)

and

𝑘𝛼 (𝑝) ≜ 𝐾𝛼 (B(𝑝)) = ∥(𝑝, 1 − 𝑝)∥𝛼 ∈ [𝛿𝛼 ≜ 2
1−𝛼
𝛼 ,

1 + sgn(𝛼)
2

] . (64)

As a consequence,

𝐾𝛼 (𝑋 |𝑌 ) = E𝑌 [𝑘𝛼 (𝑘−1
𝛼 (𝐾𝛼 (𝑋0 |𝑌0 = 𝑦0)) ∗ . . . ∗ 𝑘−1

𝛼 (𝐾𝛼 (𝑋𝑑 |𝑌𝑑 = 𝑦𝑑)))] . (65)

Again using the discrete Fourier transform over Z2 we can diagonalize the convolu-
tion to obtain the product

𝐾𝛼 (𝑋 |𝑌 ) = E𝑌 [𝜙𝛼 (
∏𝑑
𝑖=0 𝜙

−1
𝛼 (𝐾𝛼 (𝑋𝑖 |𝑌𝑖 = 𝑦𝑖)))] (66)

where
𝜙𝛼 (𝑥) = 𝑘𝛼 ( 1−𝑥

2 ) ∈ [𝛿𝛼,
1 + sgn(𝛼)

2
] . (67)

We obtain again an inequality depending on the concavity or convexity of the map-
ping 𝑤𝑎 (𝑥) = 𝜙𝛼 (𝑎𝜙−1

𝛼 (𝑥)) for any 𝑎 ∈ [0, 1].
Note that 𝜙𝛼 (𝑥) ≥ 0 is defined over [0, 1], with

𝜙′𝛼 (𝑥) =
1
2
( (

1 + 𝑥
)𝛼−1 −

(
1 − 𝑥

)𝛼−1) ( (1 + 𝑥
)𝛼 +

(
1 − 𝑥

)𝛼) 1
𝛼
−1
. (68)

In particular, 𝜙′𝛼 (0) = 0 and 𝜙′𝛼 has the same sign as 𝛼−1 so that 𝜙𝛼 (𝑥) is increasing
for 𝛼 > 1 and decreasing for 𝛼 < 1. Next we have

𝜙′′𝛼 (𝑥) = 2(𝛼 − 1) (1 − 𝑥2)𝛼−2 ((1 − 𝑥)𝛼 + (1 + 𝑥)𝛼) 1
𝛼
−2 (69)
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In particular, 𝜙′′𝛼 (0) = (𝛼 − 1)𝛿𝛼 and 𝜙′′𝛼 has the same sign than 𝛼 − 1 so that 𝜙𝛼 is
convex for 𝛼 > 1 and concave for 𝛼 < 1.

Furthermore, since 𝜙𝛼 and 𝜙−1
𝛼 have the same monotonicity, it is obvious that for

any 𝛼 ≠ 1 and 𝑎 ∈ [0, 1], 𝑤𝑎,𝛼 (𝑥) = 𝜙𝛼 (𝑎𝜙−1
𝛼 (𝑥)) is increasing.

There are some interesting special cases 𝛼 = −1 and infinite 𝛼.

4.3.1 𝜶 = −1

𝜙−1 (𝑥) =
1 − 𝑥

2
1 + 𝑥

2
=

1 − 𝑥2

4
(70)

so that for 𝑥 ∈ [𝛿−1 = 1
4 , 0],

𝜙−1
−1 (𝑥) =

√
1 − 4𝑥. (71)

In particular, for any 𝑎 ∈ [0, 1] we obtain

𝜙−1 (𝑎𝜙−1
−1 (𝑥)) =

1 − (𝑎
√

1 − 4𝑥)2

4
=

1 − 𝑎2 (1 − 4𝑥)
4

. (72)

Since this is linear in 𝑥 we obtain a MGL which holds with equality:

𝐾−1 (𝑋 |𝑌 ) = 𝜙−1 (
𝑑∏
𝑖=0

𝜙−1
−1 (𝐾−1 (𝑋𝑖 |𝑌𝑖))). (73)

4.3.2 Limiting Cases 𝜶 = ±∞

Christoph Hirche showed a MGL for binary random variables with 𝛼 = +∞ and
noticed it holds with equality [20, Theorem IV] while Béguinot et al. [5] proved it
for 𝑀-ary random variables with 𝛼 = −∞. When 𝛼 = ±∞ we obtain two MGLs in
the limiting case that holds with equality:

Lemma 9 ((Reformulation) MGL for Maximal Leakage Cost Leakage)

𝐼∞ (𝑋;𝑌 ) = log
(
1 + ∏𝑑

𝑖=0 (𝑒𝐼∞ (𝑋𝑖 ;𝑌𝑖 ) − 1)
)
. (74)

𝐼−∞ (𝑋;𝑌 ) = − log
(
1 − ∏𝑑

𝑖=0 (1 − 𝑒−𝐼−∞ (𝑋𝑖 ;𝑌𝑖 ) )
)
. (75)

In fact,

𝑒−𝐼−∞ (𝑋;𝑌 ) + 𝑒𝐼∞ (𝑋;𝑌 ) =

∫
𝑦

(
max

𝑥:𝑝𝑋 (𝑥 )>0
𝑝𝑌 |𝑋 + min

𝑥:𝑝𝑋 (𝑥 )>0
𝑝𝑌 |𝑋

)
𝑑𝜇𝑌 (76)

If 𝑋 is a non constant binary random variable then for all 𝑦, max𝑥:𝑝𝑋 (𝑥 )>0 𝑝𝑌 |𝑋 (𝑦 |𝑥)+
min𝑥:𝑝𝑋 (𝑥 )>0 𝑝𝑌 |𝑋 (𝑦 |𝑥) = 𝑝𝑌 |𝑋 (𝑦 |1) + 𝑝𝑌 |𝑋 (𝑦 |0) hence
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𝑦

(
max

𝑥:𝑝𝑋 (𝑥 )>0
𝑝𝑌 |𝑋 + min

𝑥:𝑝𝑋 (𝑥 )>0
𝑝𝑌 |𝑋

)
𝑑𝜇𝑌 = 2 (77)

and we obtain the identity (see [42, Eqn. 24])

𝑒−𝐼−∞ (𝑋;𝑌 ) + 𝑒𝐼∞ (𝑋;𝑌 ) = 2. (78)

Or equivalently
1 − 𝑒−𝐼−∞ (𝑋;𝑌 ) = 𝑒𝐼∞ (𝑋;𝑌 ) − 1. (79)

This shows that both MGLs for maximal leakage and maximal cost leakage are
equivalent.

4.3.3 Mrs. Gerber’s Lemma in the General Case

Christoph Hirche showed for 𝛼 > 0 a MGL for binary random variables [20, Theo-
rem IV]. We extend his results to all real values of 𝛼. Our derivation hinges on the
convexity or concavity of

𝑤𝑎,𝛼 (𝑥) = 𝜙𝛼 (𝑎𝜙−1
𝛼 (𝑥)) (80)

for any 𝑎 ∈ [0, 1].

Theorem 2 If 𝑤𝑎,𝛼 is convex and 𝛼 > 1 or 𝑤𝑎,𝛼 is concave and 𝛼 < 1 then

|𝛼 |
1 − 𝛼 log

(
𝜙𝛼 (0) + (𝜙𝛼 (1) − 𝜙𝛼 (0))

∏𝑑
𝑖=0

exp( 1−𝛼
|𝛼| 𝐻𝛼 (𝑋𝑖 |𝑌𝑖 ) )−𝜙𝛼 (0)
𝜙𝛼 (1)−𝜙𝛼 (0)

)
(81)

≤ 𝐻𝛼 (𝑋 |𝑌 ) ≤ 𝜃𝛼
(∏𝑑

𝑖=0 𝜃
−1
𝛼 (𝐻𝛼 (𝑋𝑖 |𝑌𝑖))

)
(82)

where 𝜃𝛼 (𝑥) = ℎ̃𝛼 ( 1−𝑥
2 ). If 𝑤𝑎,𝛼 is convex for all 𝑎 ∈ [0, 1] and 𝛼 < 1 or 𝑤𝑎,𝛼 is

concave for all 𝑎 ∈ [0, 1] and 𝛼 > 1, the inequalities are reversed.

Proof. Recall that

𝐾𝛼 (𝑋 |𝑌 ) = E𝑦0 ,...,𝑦𝑑𝜙𝛼
(∏𝑑

𝑖=0 𝜙
−1
𝛼 (𝐾𝛼 (𝑋𝑖 |𝑌𝑖 = 𝑦𝑖))

)
. (83)

Assume that 𝑤𝑎,𝛼 is convex then by Jensen’s inequality

𝐾𝛼 (𝑋 |𝑌 ) ≥ 𝜙𝛼
(∏𝑑

𝑖=0 𝜙
−1
𝛼 (𝐾𝛼 (𝑋𝑖 |𝑌𝑖))

)
.

Also since 𝑤𝑎,𝛼 is convex

𝑤𝑎,𝛼 (𝑦) ≤ 𝑤𝑎,𝛼 (𝜙𝛼 (0)) +
𝑤𝑎,𝛼 (𝜙𝛼 (1)) − 𝑤𝑎,𝛼 (𝜙𝛼 (0))

𝜙𝛼 (1) − 𝜙𝛼 (0)
(𝑦 − 𝑤𝑎,𝛼 (𝜙𝛼 (0))) (84)

= 𝜙𝛼 (0) +
𝜙𝛼 (𝑎) − 𝜙𝛼 (0)
𝜙𝛼 (1) − 𝜙𝛼 (0)

(𝑦 − 𝜙𝛼 (0)). (85)
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As a consequence

𝐾𝛼 (𝑋 |𝑌 ) ≤ 𝜙𝛼 (0) + (𝜙𝛼 (1) − 𝜙𝛼 (0))
∏𝑑
𝑖=0

𝐾𝛼 (𝑋𝑖 |𝑌𝑖 )−𝜙𝛼 (0)
𝜙𝛼 (1)−𝜙𝛼 (0) . (86)

Now if 𝛼 > 1 then
𝑥 ↦→ |𝛼 |

1 − 𝛼 log(𝑥)

is decreasing and we obtain

𝐻𝛼 (𝑋 |𝑌 ) ≤ |𝛼 |
1−𝛼 log(𝜙𝛼

(∏𝑑
𝑖=0 𝜙

−1
𝛼 (𝐾𝛼 (𝑋𝑖 |𝑌𝑖))

)
) = 𝜃𝛼

(∏𝑑
𝑖=0 𝜃

−1
𝛼 (𝐻𝛼 (𝑋𝑖 |𝑌𝑖))

)
(87)

and

𝐻𝛼 (𝑋 |𝑌 ) ≥ |𝛼 |
1−𝛼 log

(
𝜙𝛼 (0) + (𝜙𝛼 (1) − 𝜙𝛼 (0))

∏𝑑
𝑖=0

exp( 1−𝛼
|𝛼| 𝐻𝛼 (𝑋𝑖 |𝑌𝑖 ) )−𝜙𝛼 (0)
𝜙𝛼 (1)−𝜙𝛼 (0)

)
.

(88)

1. We obtained sandwiching bounds when 𝑤𝑎,𝛼 is convex and 𝛼 > 1. Clearly from
the derivation the same bounds holds if 𝑤𝑎,𝛼 is concave and 𝛼 < 1.

2. If 𝑤𝑎,𝛼 is convex and 𝛼 < 1 or 𝑤𝑎,𝛼 is concave and 𝛼 > 1 the inequalities are
flipped. ⊓⊔

Now let
𝑢𝛼 : 𝑥 ∈ [0, 1] ↦→ 𝜙′𝛼 (𝑥)

𝑥𝜙′′𝛼 (𝑥)
∈ [0,∞] . (89)

Plugging (68) and (69) into (89), we obtain

𝑢𝛼 (𝑥) =
((1 + 𝑥)𝛼−1 − (1 − 𝑥)𝛼−1) ((1 + 𝑥)𝛼 + (1 − 𝑥)𝛼)

4(𝛼 − 1) (1 − 𝑥2)𝛼−2𝑥
. (90)

Observe that the assertion ( (𝑤𝑎,𝛼 is convex for all 𝑎 ∈ [0, 1] and 𝛼 > 1) or (𝑤𝑎,𝛼 is
concave for all 𝑎 ∈ [0, 1] and 𝛼 < 1) ) is equivalent to the fact that 𝑢𝛼 is decreasing.
Similarly, the assertion ( (𝑤𝑎,𝛼 is concave for all 𝑎 ∈ [0, 1] and 𝛼 > 1) or (𝑤𝑎,𝛼 is
convex for all 𝑎 ∈ [0, 1] and 𝛼 < 1) ) is equivalent to the fact that 𝑢𝛼 is increasing.
Hence Theorem 2 admits the following simpler reformulation when 𝑋 is uniformly
distributed:

Theorem 3 (MGL for Binary Variables, General Case) Let 𝛼 ≠ 1 and

Λ𝛼 =
𝜙𝛼 (0)

𝜙𝛼 (1) − 𝜙𝛼 (0)
=

𝛿𝛼
1+sgn(𝛼)

2 − 𝛿𝛼
=


−1 if 𝛼 < 0

2
1−𝛼
𝛼

1−2
1−𝛼
𝛼

if 𝛼 > 0
. (91)

If 𝑢𝛼 is decreasing then

|𝛼 |
𝛼−1 log

(
1+Λ𝑑𝛼

∏𝑑
𝑖=0

(
𝑒

𝛼−1
|𝛼| 𝐼𝛼 (𝑋𝑖 ;𝑌𝑖 ) − 1

))
≤ 𝐼𝛼 (𝑋;𝑌 ) ≤ 𝜑𝛼 (

∏𝑑
𝑖=0 𝜑

−1
𝛼 (𝐼𝛼 (𝑋𝑖;𝑌𝑖))).

(92)
where 𝜑𝛼 (𝑥) = ℎ̃𝛼 ( 1

2 ) − 𝜃𝛼 (𝑥). Let 𝜓𝛼 (𝑥) = |𝛼 |
𝛼−1 log(1 + Λ−1

𝛼 𝑥) this rewrites as
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𝜓𝛼 (
∏𝑑
𝑖=0 𝜓

−1
𝛼 (𝐼𝛼 (𝑋𝑖;𝑌𝑖))) ≤ 𝐼𝛼 (𝑋;𝑌 ) ≤ 𝜑𝛼 (

∏𝑑
𝑖=0 𝜑

−1
𝛼 (𝐼𝛼 (𝑋𝑖;𝑌𝑖))). (93)

If 𝑢𝛼 is increasing then the inequalities holds in the reverse order.
Remark 5 We expect both lower and upper bounds to coincide for 𝛼 = −1. We check
that 𝜓−1 (𝑥) = − 1

2 log(1 − 𝑥) while 𝜑−1 (𝑥) = 𝜓−1 (𝑥2). While 𝜑−1 and 𝜓−1 does not
coincide we do obtain matching bounds since 𝑥 ↦→ 𝑥2 is monomial.
Example 1 We can simplify further the expression for some values of 𝛼, for instance:

• 𝑢3 (𝑥) = 1+3𝑥2

1−𝑥2 is increasing,
• 𝑢2 (𝑥) = (1 + 𝑥2) is increasing,
• 𝑢 7

4
(𝑥) = − 1

3𝑥 (2𝑥(1 − 𝑥2) 3
4 − (𝑥 + 1) 9

4 + (1 − 𝑥) 9
4 ) (1 − 𝑥2) 1

4 is not monotonic;
• 𝑢 3

2
(𝑥) =

√
1 − 𝑥2 (2 −

√
1 − 𝑥2) is decreasing,

• 𝑢0 (𝑥) = 𝑢 1
2
(𝑥) = (1 − 𝑥2) is decreasing,

• 𝑢− 1
2
(𝑥) = 1

3𝑥

√
1 − 𝑥2 (

√
1 − 𝑥2 + 2)𝑥 is decreasing,

• 𝑢−1 (𝑥) = 1 is constant,
• 𝑢−2 (𝑥) = 1

3
3+4𝑥2+𝑥4

1−𝑥2 is increasing.
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Fig. 3: Sign of 𝑢′𝛼 verified numerically with SageMath.

Proposition 1 It is easily checked numerically (see Figure 3) that:
• If 𝛼 ≤ −1 or 𝛼 ≥ 2 then 𝑢𝛼 is increasing;
• if 𝛼 ∈ [−1, 1.5] then 𝑢𝛼 is decreasing;
• if 𝛼 ∈ (1, 5, 2) then 𝑢𝛼 is not monotonic.
Remark 6 This Proposition answers the open question left as a conjecture by Hirche
[20, Conjecture IV.6.], where we established that 𝛼̂ = 3

2 in his conjecture. This also
strengthens [20, Lemma IV] to the larger interval (1.5, 2).
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4.4 Extension to Hayashi’s 𝜶-Entropy

We can proceed similarly to the previous section to recover the results from [20,
Thm. 4.9] in terms of Hayashi’s 𝛼-entropy and extend them to negative values of 𝛼.
In this setting it is natural to introduce

𝐾𝐻𝛼 (𝑋 |𝑌 ) = exp( 1 − 𝛼
sgn(𝛼)𝐻

𝐻
𝛼 (𝑋 |𝑌 )). (94)

Let

𝑘𝐻𝛼 :

{
𝑥 ↦→ 𝑥𝛼 + (1 − 𝑥)𝛼

[0, 1] → [21−𝛼, 𝑡𝛼]
(95)

and

𝜙𝐻𝛼 :

{
𝑥 ↦→ 𝑘𝐻𝛼 ( 1−𝑥

2 ) = ( 1+𝑥
2 )𝛼 + ( 1−𝑥

2 )𝛼

[0, 1] → [21−𝛼, 𝑡𝛼]
(96)

where 𝑡𝛼 = 1 if 𝛼 > 0, 𝑡0 = 2 and 𝑡𝛼 = +∞ if 𝛼 < 0.

•
𝜙𝐻

′
𝛼 (𝑥) = 𝛼

2

(
( 𝑥 + 1

2
)𝛼−1 − ( 1 − 𝑥

2
)𝛼−1

)
(97)

In particular,

– If 0 < 𝛼 < 1 then 𝜙𝐻𝛼 is decreasing.
– If 𝛼 = 0 then 𝜙𝐻𝛼 is constant.
– If 𝛼 > 1 or 𝛼 < 0 then 𝜙𝐻𝛼 is increasing.

•
𝜙𝐻

′′
𝛼 (𝑥) = 𝛼(𝛼 − 1)

4

(
( 1 + 𝑥

2
)𝛼−2 + ( 1 − 𝑥

2
)𝛼−2

)
(98)

– If 0 ≤ 𝛼 < 1 then 𝜙𝐻𝛼 is concave.
– If 𝛼 > 1 or 𝛼 ≤ 0 then 𝜙𝐻𝛼 is convex.

As in the previous section, the MGL for Hayashi’s entropy hinges on the concav-
ity/convextity of the mapping

𝑤𝐻𝑎,𝛼 : 𝑥 ∈ [21−𝛼, 𝑡𝛼] ↦→ 𝜙𝐻𝛼 (𝑎𝜙𝐻−1
𝛼 (𝑥)) ∈ [21−𝛼, 𝑡𝛼]

for all 𝑎. By the pivotal lemma (Lemma 8), this characterized by the monotonicity
of

𝑢𝐻𝛼 : 𝑥 ∈ [0, 1] ↦→ 𝜙𝐻
′

𝛼 (𝑥)
𝑥𝜙𝐻

′′
𝛼 (𝑥)

=
1

𝛼 − 1
1
𝑥

(1 + 𝑥)𝛼−1 − (1 − 𝑥)𝛼−1

(1 + 𝑥)𝛼−2 + (1 − 𝑥)𝛼−2 ∈ [0, +∞] .

Proposition 2 It can be checked numerically (see Figure 4) that:

• If 𝛼 ∈ (2, 3) then 𝑢𝐻𝛼 is decreasing;
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• If 𝛼 ∈ (−∞, 2) ∪ (3, +∞) then 𝑢𝐻𝛼 is increasing;
• If 𝛼 ∈ {2, 3} then 𝑢𝐻𝛼 is constant equal to 1.

This confirms [20, Lemma IV.10 and IV.11] derived for positive values of 𝛼 and
extends it to negative values of 𝛼.
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Fig. 4: Sign of 𝑢′𝛼 verified numerically with SageMath.

In particular, we can generalize [20, Thm. IV.9] to negative values of 𝛼 and
reformulate it as

Theorem 4 Let 𝛼 ≠ 1. If 𝛼 ∈ (2, 3) then

sgn(𝛼)
1 − 𝛼 log

(
𝜙𝐻𝛼 (0) + (𝜙𝐻𝛼 (1) − 𝜙𝐻𝛼 (0))

∏𝑑
𝑖=0

exp( 1−𝛼
sgn(𝛼) 𝐻

𝐻
𝛼 (𝑋𝑖 |𝑌𝑖 ) )−𝜙𝐻

𝛼 (0)
𝜙𝐻
𝛼 (1)−𝜙𝐻

𝛼 (0)

)
(99)

≤ 𝐻𝐻𝛼 (𝑋;𝑌 ) ≤ 𝜃𝛼 (
∏𝑑
𝑖=0 𝜃

−1
𝛼 (𝐻𝛼 (𝑋𝑖;𝑌𝑖))). (100)

If 𝛼 ∈ (0, 2) ∪ (3, +∞) the inequalities holds in the reverse order. If 𝛼 ∈ (−∞, 0) the
upper bounds becomes a lower bound but we have no upper bound. If 𝛼 ∈ {2, 3} the
upper and lower bounds matches so that we have equality.

If further 𝑋 is uniformly distributed we may rewrite𝐻𝐻𝛼 (𝑋 |𝑌 ) as ℎ̃𝛼 ( 1
2 )−𝐼

𝑅
𝛼 (𝑋;𝑌 )

where 𝐼𝑅𝛼 is termed Rényi 𝛼-mutual information [26].

Theorem 5 Let 𝛼 ≠ 1, 𝜓𝐻𝛼 (𝑥) = 1
𝛼−1 log(1 + (2𝛼−1 − 1)𝑥) if 𝛼 > 0 and 𝜓𝐻𝛼 (𝑥) = 0

otherwise. Then if 𝛼 ∈ (−∞, 2) ∪ (3, +∞),

𝜓𝐻𝛼 (
∏𝑑
𝑖=0 𝜓

𝐻−1
𝛼 (𝐼𝑅𝛼 (𝑋𝑖;𝑌𝑖))) ≤ 𝐼𝑅𝛼 (𝑋;𝑌 ) ≤ 𝜑𝛼 (

∏𝑑
𝑖=0 𝜑

−1
𝛼 (𝐼𝑅𝛼 (𝑋𝑖;𝑌𝑖))). (101)

If 𝛼 ∈ (2, 3) the inequalities holds in the reverse order. If 𝛼 ∈ {2, 3} both upper and
lower bounds matches and we have equality.
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4.5 Extension Beyond Binary Random Variables

Jog and Anantharam [24, 25] extended Mrs. Gerber’s lemma to any Abelian group
of order 2𝑛. Their MGL can be formulated as follows:

Theorem 6 Let 𝑋0, . . . , 𝑋𝑑 be 𝑑+1 shares of 𝑋 uniformly distributed in a an Abelian
group of order 𝑀 = 2𝑛. Let 𝑌𝑖 be the side information associated to the share 𝑋𝑖 .
Without loss of generality we can assume that 𝐻 (𝑋0 |𝑌0) ≥ 𝐻 (𝑋1 |𝑌1) ≥ . . . ≥
𝐻 (𝑋𝑑 |𝑌𝑑). Let 𝑘 ≜

⌊
𝐻 (𝑋0 |𝑌0 )

log 2
⌋

and 𝑡 = max{𝑖 ∈ {0, . . . , 𝑑}|𝐻 (𝑋𝑖 |𝑌𝑖) ≥ 𝑘 log 2}.
Then

𝐻 (𝑋 |𝑌 ) ≥ 𝑘 log 2+ ℎ(ℎ−1 ((𝐻 (𝑋0 |𝑌0) − 𝑘 log 2) ∗ . . .∗ (𝐻 (𝑋𝑡 |𝑌𝑡 ) − 𝑘 log 2)) (102)

where ℎ(ℎ−1 ((𝐻 (𝑋0 |𝑌0)−𝑘 log 2)∗ . . .∗(𝐻 (𝑋𝑡 |𝑌𝑡 )−𝑘 log 2))+𝑘 log ≤ (𝑘+1) log 2.

In this lemma 𝑡 can be seen as the effective masking order. If share does not
contain enough entropy (or it is revealed) then it does not contribute to the security
of the masked encoding.

Béguinot et al. [3] leveraged this result to improve the side channel security
bounds of masked encodings. Masure and Standaert [31] then extended this result
to the more general setting of masked computations. We propose to reformulate the
MGL as a product using the discrete Fourier transform as follows:

Lemma 10 (Mrs. Gerber’s Lemma (Revisited)) If the group is Abelian of order
2𝑛 then

𝐼 (𝑋; Y) ≤ 𝑘 log 2 + 𝜑
( 𝑡∏
𝑖=0

𝜑−1 (𝐼 (𝑋𝑖;𝑌𝑖) − 𝑘 log 2)
)

(103)

where 𝜑(𝑥) = log 2 − ℎ( 1−𝑥
2 ) and 𝐼 (𝑋𝑖;𝑌𝑖) < (𝑘 + 1) log 2 for 𝑖 = 0, . . . , 𝑡.

A weakened version of Mrs.Gerber’s Lemma can also be obtained without re-
striction on the 𝑀 using Pinkser and reverse Pinsker inequality together with the
XOR Lemma as shown by Masure et al. [30, Theorem 3]:

Lemma 11 ((Weak) Mrs. Gerber’s Lemma) For any additive group G,

𝐼 (𝑋; Y) ≤ log
(
1 + 𝑀

2

𝑑∏
0

2
log 𝑒

𝐼 (𝑋𝑖;𝑌𝑖)
)
≤ 𝑀

( 2
log 𝑒

)𝑑 𝑑∏
𝑖=0

𝐼 (𝑋𝑖;𝑌𝑖) (104)

Proof. This is an easy corollary of Lemma 14 below. ⊓⊔

Béguinot et al. [5, Lemma 10] derived a MGL for the complementary Doeblin
coefficient in any finite Abelian group by leveraging its relation to the stochastic
degradation into an erasure channel. It turns out that this is equivalent to a MGL in
terms of maximal cost leakage:

Lemma 12 (MGL for Maximal Cost Leakage (Reformulated)) Let 𝑋 be uniformly
distributed 𝑀-ary random variable shared into 𝑋0, . . . , 𝑋𝑑 with corresponding leak-
ages 𝑌0, . . . , 𝑌𝑑 . Then
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𝐼−∞ (𝑋;𝑌 ) ≤ − log
(
1 −

𝑑∏
𝑖=0

(1 − 𝑒−𝐼−∞ (𝑋𝑖 ;𝑌𝑖 ) )
)
. (105)

Proof. This is a reformulation of the MGL derived for the complementary Doeblin
coefficient [5, Lemma 10] observing that E(𝑋 → 𝑌 ) = 1 − exp(−𝐼−∞ (𝑋;𝑌 )). ⊓⊔

Under some restrictive assumption, Béguinot and Rioul also derived a MGL for
maximal leakage in any finite Abelian group [6] using majorization theory:

Lemma 13 (MGL for Min-Entropy) For any additive group G, if for all 𝑖 ∈
{0, . . . , 𝑑} we have 𝐼∞ (𝑋𝑖;𝑌𝑖) ≤ log( 𝑀

𝑀−1 ) then

𝐼∞ (𝑋; Y) ≤ log
(
1 + (𝑀 − 1)𝑑

𝑑∏
𝑖=0

(
𝑒𝐼∞ (𝑋𝑖 ;𝑌𝑖 ) − 1

))
. (106)

Under some conditions given in [6] the results can be strengthened by removing
the (𝑀 − 1)𝑑 constant but these conditions are hard to verify in practice. Let
𝜓∞,𝑀 (𝑥) = log(1 + (𝑀 − 1)−1𝑥) then this rewrites as

𝐼∞ (𝑋; Y) ≤ 𝜓∞,𝑀 (
𝑑∏
𝑖=0

𝜓−1
∞,𝑀 (𝐼∞ (𝑋𝑖;𝑌𝑖))). (107)

In this general case, we do not have an identity to express maximal leakage in
terms of maximal cost leakage. Hence, both MGLs are not equivalent anymore
contrary to the binary setting.

5 Other Information Leakage Measures

A number of alternative leakage measures have also been introduced in the side
channel analysis literature to evaluate the security of masked random variables:
Rényi 𝛼-information based on 𝛼-divergence, total variation information (TVI) based
on total variation distance, (squared) Euclidean normal bias, relative error (RE) and
average relative error (ARE). Fano inequalities and MGLs are established for all
these, while tensorization can be seen only in some cases, albeit making use of
Pinsker/reverse Pinsker inequalities.

To simplify the presentation in this section, we consider any side channel 𝑋 → 𝑌

where 𝑋 is generally uniformly distributed over the Abelian group G (e.g., the secret
key 𝐾) with corresponding leakage 𝑌 observed by the attacker.
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5.1 Information Leakage Metrics

• Rényi’s 𝛼-Mutual-Information [26] is another generalization of mutual informa-
tion. For any 𝛼 ≠ 1, it is defined by

𝐼𝑅𝛼 (𝑋;𝑌 ) = 𝐷𝛼 (𝑃𝑋𝑌 ∥𝑃𝑋 ⊗ 𝑃𝑌 ). (108)

Contrarily to Sibson’s 𝛼-information, it is symmetric in 𝑋 and 𝑌 which is why it
can be said to be mutual. Explicitly

𝐼𝑅𝛼 (𝑋;𝑌 ) = sgn(𝛼)
𝛼 − 1

log
∫

𝑝𝑌 (𝑦)
∫

𝑝𝑋 |𝑌 (𝑥 |𝑦)𝛼𝑝𝑋 (𝑥)1−𝛼𝑑𝜇𝑋 (𝑥)𝑑𝜇𝑌 (𝑦).
(109)

• Total Variation Information [12] is pivotal in cryptography and is commonly used
with the so-called simulation arguments:

Δ1 (𝑋;𝑌 ) = 1
2

∫
𝑥,𝑦

|𝑝𝑋𝑌 (𝑥𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) |𝑑𝜇𝑋𝑌 (𝑥, 𝑦). (110)

This can be seen as Δ1 (𝑋;𝑌 ) = Δ1 (𝑝𝑋𝑌 ; 𝑝𝑋𝑝𝑌 ) = E𝑌Δ1 (𝑝𝑋 |𝑌 ; 𝑝𝑋) where
Δ1 (𝑝; 𝑞) = 1

2 ∥𝑝 − 𝑞∥1 is half the 𝐿1-norm.
• Squared-Euclidean Norm Bias [26]:

Δ2 (𝑋;𝑌 ) =
∫
𝑥,𝑦

𝑝𝑌 (𝑦) (𝑝𝑋 |𝑌 (𝑥 |𝑦) − 𝑝𝑋 (𝑥))2𝑑𝜇𝑋𝑌 (𝑥, 𝑦) (111)

This can be seen as Δ2 (𝑋;𝑌 ) = E𝑌Δ2 (𝑝𝑋 |𝑌 , 𝑝𝑋) where Δ2 (𝑝, 𝑞) = ∥𝑝 − 𝑞∥2
2 is

the squared 𝐿2-norm.
• Euclidean Norm Bias [37] is more marginal and has been introduced in the first

security for side channel analysis considering computations:

𝛽(𝑋;𝑌 ) =
⨋
𝑦

𝑝𝑌 (𝑦)
√︄∑︁

𝑥

(𝑝𝑋 |𝑌 (𝑥 |𝑦) − 𝑝𝑋 (𝑥))2 (112)

This can be seen as 𝛽(𝑋;𝑌 ) = E𝑌 𝛽(𝑝𝑋 |𝑌 , 𝑝𝑋) where 𝛽(𝑝, 𝑞) = ∥𝑝 − 𝑞∥2 is the
𝐿2-norm.

• Relative Error [36]:

RE(𝑋;𝑌 ) = sup
𝑥,𝑦

���1 − 𝑝𝑋𝑌 (𝑥𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

��� (113)

• Average Relative Error [36], which is again symmetric in 𝑋 and 𝑌 :

ARE(𝑋;𝑌 ) =
∫

𝑝𝑌 (𝑦) sup
𝑥

���1 − 𝑝𝑋𝑌 (𝑥𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

���𝑑𝜇𝑌 (𝑦) (114)
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It turns out that for all these metrics, the analysis falls down to an hybrid argument
as explained above in Remark 1.

5.2 Fano-Type Inequalities

5.2.1 Fano’s Inequality for Rényi 𝜶-Mutual Information

Since

𝐼𝑅𝛼 (𝑋;𝑌 ) = 𝐷𝛼 (𝑝𝑋𝑌 ∥𝑝𝑋 ⊗ 𝑝𝑌 ) ≥ min
𝑞𝑌

𝐷𝛼 (𝑝𝑋𝑌 ∥𝑝𝑋 ⊗ 𝑝𝑌 ) = 𝐼𝛼 (𝑋;𝑌 ), (115)

we can plug this inequality into Lemma 6 to obtain the following Fano inequality for
Rényi’s 𝛼-information:

𝑑𝛼 (P𝑠 (𝑋 |𝑌 )∥P𝑠 (𝑋)) ≤ 𝐼𝛼 (𝑋;𝑌 ) ≤ 𝐼𝑅𝛼 (𝑋;𝑌 ) (116)

which holds for any positive or negative 𝛼.

5.2.2 Fano’s Inequality for (Squared) Euclidean Norm Bias

For uniformly distributed 𝑋 ,

𝐼𝑅2 (𝑋;𝑌 ) = log(1 + 𝑀Δ2 (𝑋;𝑌 )) ≤ log(1 + 𝑀𝛽(𝑋;𝑌 )). (117)

where the first equality was by observed by Liu et al. [26, Lemma 3] and the inequality
Δ2 (𝑋;𝑌 ) ≤ 𝛽(𝑋;𝑌 ) is due to the fact that

√
𝑥 ≥ 𝑥 when 𝑥 ∈ [0, 1]. Plugging this into

Fano’s inequality for Rényi’s 2-mutual information above yields Fano’s inequality
for (squared) Euclidean norm Bias:

𝑑2 (P𝑠 (𝑋 |𝑌 )∥P𝑠 (𝑋)) ≤ log(1 + 𝑀Δ2 (𝑋;𝑌 )) ≤ log(1 + 𝑀𝛽(𝑋;𝑌 )). (118)

5.2.3 Fano’s Inequality for (Average) Relative Error

As observed in [5], one has

1 − exp(−𝐼−∞ (𝑋;𝑌 )) = E(𝑋 → 𝑌 ) ≤ ARE(𝑋;𝑌 ) ≤ RE(𝑋;𝑌 ) (119)

which also writes

𝐼−∞ (𝑋;𝑌 ) ≤ − log(1 − ARE(𝑋;𝑌 )) ≤ − log(1 − RE(𝑋;𝑌 )). (120)

Plugging these inequalities into Lemma 6 with 𝛼 = −∞ we obtain the following
Fano inequality for both ARE and RE:
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𝑑−∞ (P𝑠 (𝑋 |𝑌 )∥P𝑠 (𝑋)) ≤ − log(1 − ARE(𝑋;𝑌 )) ≤ − log(1 − RE(𝑋;𝑌 )). (121)

5.3 Fano’s Inequality for Total Variation Information

For total variation information one can obtain the following inequality from [40,
Example 21, Eqn. 106] for a uniformly distributed 𝑋 ,

P𝑠 (𝑋 |𝑌 ) ≤
1
𝑀

+ Δ1 (𝑋;𝑌 ). (122)

Remark 7 The intermediate reduction 1 − exp(−𝐼−∞ (𝑋;𝑌 )) = E(𝑋 → 𝑌 ) ≤
𝑀Δ1 (𝑋;𝑌 ) yields a looser bound P𝑠 (𝑋 |𝑌 ) ≤ 1

𝑀
+ (𝑀 − 1)Δ1 (𝑋;𝑌 ).

5.4 Tensorizations

5.4.1 Tensorization for Total Variation Information

While Fano’s inequality is easily obtained for Δ1, tensorization is harder to establish.
However, by Pinsker’s and reverse Pinsker’s inequality [41, Thm .28], one has

2(log 𝑒)Δ2
1 (𝑋

𝑚;𝑌𝑚) ≤ 𝐼 (𝑋𝑚;𝑌𝑚) = 𝑚𝐼 (𝑋;𝑌 ) ≤ 𝑚 log(1 + 2𝑀Δ2
1 (𝑋;𝑌 )). (123)

Hence, we convert total variation distance into mutual information which tensorizes
for an i.i.d sequence (𝑋𝑚, 𝑌𝑚). However, this back and forth reduction necessar-
ily implies a degraded bound with respect to a direct bound in terms of mutual
information.

We can also observe that maximal cost leakage can be tensorized and then bounded
in terms of total variation information by an analog of the reverse Pinsker inequality
(stated in terms of complementary Doeblin coefficient [5, Lemma 9] and implicitly
in [12]):

𝐼−∞ (𝑋𝑚;𝑌𝑚) = 𝑚𝐼−∞ (𝑋;𝑌 ) ≤ −𝑚 log(1 − 𝑀Δ1 (𝑋;𝑌 )). (124)

Again a direct bound in terms of maximal cost leakage is tighter.

5.4.2 Tensorization for (Average) Relative Error

It is not clear how to tensorize (A)RE. (A)RE can be used with only one trace (𝑚 = 1)
to upper bound 𝐼−∞ which itself tensorizes.
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5.5 Mrs. Gerber’s Lemmas

5.5.1 MGL for Total Variation Information

Dziembowski et al. [14] leveraged the following XOR Lemma (analog of the MGL)
in terms of total variation information:

Lemma 14 (XOR Lemma for Δ1) For any additive group G with uniformly dis-
tributed 𝑋 ∼ U(G),

Δ1 (𝑝𝑋 |Y, 𝑝𝑋) ≤ 2𝑑
𝑑∏
𝑖=0

Δ1 (𝑝𝑋𝑖 |𝑌𝑖 , 𝑝𝑋𝑖
) Δ1 (𝑋; Y) ≤ 2𝑑

𝑑∏
𝑖=0

Δ1 (𝑋𝑖;𝑌𝑖)

We provide a simple proof.

Proof. Let 𝑝𝑋 = 𝑢 be the uniform distribution. By Young’s convolution inequality
for two distributions, ∥𝑝 ∗ 𝑞 − 𝑢∥1 = ∥(𝑝 − 𝑢) ∗ (𝑞 − 𝑢)∥1 ≤ ∥𝑝 − 𝑢∥1 · ∥𝑞 − 𝑢∥1,
i.e., Δ1 (𝑝 ∗𝑞, 𝑢) ≤ 2Δ1 (𝑝, 𝑢)Δ1 (𝑞, 𝑢). The first inequality then follows by induction.
The inequality for Δ1 (𝑋; Y) follows by taking the expectation over Y. ⊓⊔

As a corollary, one obtains the weak MGL of Lemma 11 above, following the
proof of Masure et al [30]:

Proof of Lemma 11. We combine the XOR Lemma (Lemma 14) with Pinsker/reverse
Pinsker inequalities: 2(log 𝑒)Δ2

1 ≤ 𝐷 ≤ log(1 + 2𝑀Δ2
1). This gives 𝐷 (𝑝𝑋 |Y∥𝑝𝑋) ≤

log(1+2𝑀 (2𝑑 ∏𝑑
𝑖=0 Δ1 (𝑝𝑋𝑖 |𝑌𝑖 , 𝑝𝑋𝑖

))2) ≤ log(1+ 𝑀2
∏𝑑
𝑖=0

2
log 𝑒𝐷 (𝑝𝑋𝑖 |𝑌𝑖 ∥𝑝𝑋𝑖

)). Tak-
ing the expectation over 𝑌 and applying Jensen’s inequality (concavity of the loga-
rithm) gives 𝐼 (𝑋; Y) ≤ log(1 + 𝑀

2
∏𝑑
𝑖=0

2
log 𝑒 𝐼 (𝑋𝑖;𝑌𝑖)). ⊓⊔

5.5.2 MGL for (Average) Relative Error

Prest et al. [36, Theorem 3] proved a MGL for RE:

Lemma 15 (MGL for Relative Error) For any additive group G with uniformly
distributed 𝑋 ∼ U(G),

𝑅𝐸 (𝑋,Y) ≤
𝑑∏
𝑖=0

RE(𝑋𝑖 , 𝑌𝑖) (125)

We provide a very simple proof of Lemma 15 compared to the original:

Proof. Let 𝑢 be the uniform distribution and 𝑀 = |G|. Letting 𝑅𝐸 (𝑝, 𝑞) =

max | 𝑝
𝑞
−1|, one has by definition 𝑅𝐸 (𝑋,𝑌 ) = 𝑅𝐸 (𝑝𝑋 |𝑌 , 𝑝𝑋) = 𝑅𝐸 (𝑝𝑋 |𝑌 , 𝑢) where

𝑅𝐸 (𝑝, 𝑢) = max |𝑀𝑝−1| = ∥𝑀𝑝−1∥∞. Now ∥𝑀𝑝 ∗ 𝑞−1∥∞ = 𝑀 ∥(𝑝 ∗ 𝑞−𝑢)∥∞ =

𝑀 ∥(𝑝 − 𝑢) ∗ (𝑞−𝑢)∥∞ ≤ 𝑀 ∥(𝑝−𝑢)∥1∥(𝑞−𝑢)∥∞ ≤ 𝑀2∥(𝑝−𝑢)∥∞∥(𝑞−𝑢)∥∞ =



Mrs. Gerber’s Lemma and Information Leakage of Secret Sharing Schemes 29

∥𝑀𝑝 − 1∥∞∥𝑀𝑞 − 1∥∞ where we have used Young’s convolutional inequality. The
inequality follows by induction. ⊓⊔

Although Prest et al. [36] did not derive a MGL for average relative error ARE,
its derivation turns out to be very similar using our simplified proof:

Lemma 16 (MGL for Average Relative Error) For any additive group G with
uniformly distributed 𝑋 ∼ U(G),

𝐴𝑅𝐸 (𝑋,Y) ≤
𝑑∏
𝑖=0

𝐴𝑅𝐸 (𝑋𝑖 , 𝑌𝑖) (126)

Proof. Same as above for RE, replacing the maximum over 𝑌 by the average (ex-
pectation over 𝑌 ) instead. ⊓⊔

5.5.3 MGL for (Squared) Euclidean Norm Bias

Prouff & Rivain implicitly derived a MGL for 𝛽 [37]. Liu et al. [26, Lemma 4]
also proved a MGL for Δ2. Both results can in fact be proved similarly using the
Cauchy-Schwarz inequality.

Lemma 17 (MGL/XOR Lemma for (Squared) Euclidean Norm Bias) For any
additive group G with uniformly distributed 𝑋 ∼ U(G),

Δ2 (𝑝𝑋 |Y, 𝑝𝑋) ≤ 𝑀𝑑

𝑑∏
𝑖=0

Δ2 (𝑝𝑋𝑖 |𝑌𝑖 , 𝑝𝑋𝑖
) Δ2 (𝑋; Y) ≤ 𝑀𝑑

𝑑∏
𝑖=0

Δ2 (𝑋𝑖;𝑌𝑖)

(127)
and

𝛽(𝑝𝑋 |Y, 𝑝𝑋) ≤ 𝑀𝑑/2
𝑑∏
𝑖=0

𝛽(𝑝𝑋𝑖 |𝑌𝑖 , 𝑝𝑋𝑖
) 𝛽(𝑋; Y) ≤ 𝑀𝑑/2

𝑑∏
𝑖=0

𝛽(𝑋𝑖;𝑌𝑖). (128)

Proof. Let 𝑢 be the pmf of the uniform distribution. For two distributions 𝑝, 𝑞, one
has ∥𝑝∗𝑞−𝑢∥2

2 = ∥(𝑝−𝑢)∗(𝑞−𝑢)∥2
2, where by Cauchy-Schwarz, | (𝑝−𝑢)∗(𝑞−𝑢) | ≤

∥𝑝 − 𝑢∥2∥𝑞 − 𝑢∥2, hence ∥𝑝 ∗ 𝑞 − 𝑢∥2
2 ≤ 𝑀 ∥𝑝 − 𝑢∥2

2∥𝑞 − 𝑢∥
2
2, that is, ∥𝑝 ∗ 𝑞 − 𝑢∥2 ≤√

𝑀 ∥𝑝 − 𝑢∥2∥𝑞 − 𝑢∥2. The result then follows as in the above proofs. ⊓⊔

Liu et al. [26, Eqn. 30] derived a MGL for Rényi’s 2-mutual information which
is equivalent to Lemma 17 and matches Theorem 5 for binary random variables:

Lemma 18 (Mrs. Gerber’s Lemma for 𝐼𝑅2 ) For uniformly distributed 𝑋 ,

𝐼𝑅2 (𝑋; Y) ≤ log
(
1 +

𝑑∏
𝑖=0

(exp 𝐼𝑅2 (𝑋𝑖;𝑌𝑖) − 1)
)

(129)
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Let 𝜓2,𝑅 (𝑥) = log(1 + 𝑥) this rewrites as

𝐼𝑅2 (𝑋; Y) ≤ 𝜓2,𝑅 (
𝑑∏
𝑖=0

𝜓−1
2,𝑅 (𝐼

𝑅
2 (𝑋𝑖;𝑌𝑖))) (130)

Proof. 𝐼𝑅2 (𝑋; Y) = log(1 + 𝑀Δ2 (𝑋; Y)) and similarly for 𝐼𝑅2 (𝑋𝑖;𝑌𝑖). ⊓⊔

6 Resulting Security Bounds and Numerical Simulations

By combining all steps as explained in the Introduction, for binary secrets we obtain
an inequality of the type

𝑚 ≥
𝑑𝛼 (P𝑠 ∥ 1

𝑀
)

𝑓𝛼 (
∏𝑑
𝑖=0 𝑓

−1
𝛼 (𝐼𝛼 (𝑋𝑖;𝑌𝑖)))

(131)

provided that 𝛼 is not in [ 3
2 , 1] and where 𝑓𝛼 is either 𝜓𝛼 or 𝜑𝛼 depending on the

value of 𝛼. For groups of order 𝑀 = 2𝑛 one obtains the following that unifies all
results from the literature:
Theorem 7 For small enough leakages1, we obtain the following series of lower
bounds on 𝑚 for targeted probability of success P𝑠:

𝑚 ≥
𝑑 (P𝑠 ∥ 1

𝑀
)

𝜑(∏𝑑
𝑖=0 𝜑

−1 (𝐼 (𝑋𝑖;𝑌𝑖)))
(132)

𝑚 ≥
𝑑∞ (P𝑠 ∥ 1

𝑀
)

𝜓∞,𝑀 (∏𝑑
𝑖=0 𝜓

−1
∞,𝑀 (𝐼∞ (𝑋𝑖;𝑌𝑖)))

(133)

𝑚 ≥
𝑑2 (P𝑠 ∥ 1

𝑀
)

𝜓2,𝑅 (
∏𝑑
𝑖=0 𝜓

−1
2,𝑅 (𝐼

𝑅
2 (𝑋𝑖;𝑌𝑖)))

(134)

𝑚 ≥
𝑑−∞ (P𝑠 ∥ 1

𝑀
)

𝜓−∞ (∏𝑑
𝑖=0 𝜓

−1
−∞ (𝐼−∞ (𝑋𝑖;𝑌𝑖)))

(135)

𝑚 ≥
𝑑−∞ (P𝑠 ∥ 1

𝑀
)

− log(1 − 𝑀𝑑+1 ∏𝑑
𝑖=0 Δ1 (𝑋𝑖;𝑌𝑖))

(136)

𝑚 ≥
𝑑−∞ (P𝑠 ∥ 1

𝑀
)

− log(1 − ( 𝑀√
2 log 𝑒

)𝑑+1 ∏𝑑
𝑖=0

√︁
𝐼 (𝑋𝑖;𝑌𝑖))

(137)

𝑚 ≥
𝑑−∞ (P𝑠 ∥ 1

𝑀
)

− log(1 − ∏𝑑
𝑖=0 RE(𝑋𝑖;𝑌𝑖))

(138)

1 So that the expression makes sense e.g. the terms in the logarithm should be positive, 𝐼∞ should
be less than log 𝑀

𝑀−1 and 𝐼 should be less than log 2.
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𝑚 ≥
𝑑−∞ (P𝑠 ∥ 1

𝑀
)

− log(1 − ∏𝑑
𝑖=0 ARE(𝑋𝑖;𝑌𝑖))

(139)

𝑚 ≥
𝑑−∞ (P𝑠 ∥ 1

𝑀
)

− log(1 − 𝑀𝑑+1 ∏𝑑
𝑖=0 𝛽(𝑋𝑖;𝑌𝑖))

(140)

Theorem 7 can be used by an evaluator to evaluate the level of (in)security of a
device protected by masking against side channel attack. The lower bound on 𝑚 may
be used to assess the required time to mount an attack which useful for certification
such as the common criteria. It can also be combined with re-keying techniques
that changes the secret key regularly based on the value of 𝑚 to avoid the attack.
An interesting extension for Theorem 7 is to also consider multiplications of two
protected sensitive values as in [31, 5].

To conclude, we compare the results of Theorem 7 in Figure 5 assuming 𝑀 = 28

(one-byte texts and key) and using the commonly adopted Hamming weight model:
the Hamming weight of each share leaks under additive white Gaussian noise of
variance 𝜎2:

𝑋𝑖 → 𝑌𝑖 = 𝑤𝐻 (𝑋𝑖) + 𝜎N(0, 1) (141)

It appears that for 𝑚 = 1 the best bound is for 𝛼 = ∞. Then on most of the range of
values of 𝑚, cases 𝛼 = 1, 2 outperform the other bounds.
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Fig. 5: Upper bounds on the success rate advantage P𝑠 − 1
𝑀

vs. number of measure-
ments for several noise levels 𝜎 = 1, 5 and 50.
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