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Why Neural Decoding?

Error Rate Speed

Classical Decoders [1] Optimal ✔ Computationally Hard ✖

Neural Decoders ? Constant once trained ✔

Goal: Reach near-optimal error rate with neural decoders

Current Neural Decoders
✖ Naive application of general-purpose networks does not work [3]
✖ Mainstream approaches [5][6][7] relying on Tanner Graph have

restrictive inductive bias, hurting generalizability [2]
✖ Other approaches design special codes/NN [2][4], limiting

applicability
Goal:
▶ Decode with light general-purpose networks
▶ Without assumptions on a known algorithm
▶ Without requiring special encodings

Challenges of Neural Decoding

! Exponential complexity (curse of dimensionality)
At least 2k−2Admin

piecewise affine models are necessary to

decode a single bit!
! Requirement of extremely high accuracy

Decoder with 10−4 BER ⇒ Classifier of 99.99% accuracy!

Single Parity Check Log-Ratio Embedding

Idea: Inject apriori knowledge of the code structure into the channel
likelihood
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obs(cj): normalized P (yj|cj) assuming cj ∼ Bernoulli(1/2)
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Figure: Examples of BCH[15,11] SPC-LRE. (a) With Normal Parity-Check Matrix;
(b) With Cyclic Parity-Check Matrix

Multiple Parity Check Log-Ratio Embedding

For larger codes, we can group parity check equations to generate
likelihoods with stronger knowledge.

Cyclic PCM of BCH[31, 21]
Divided in 8 Groups
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Figure: Iterative Log-Ratio Embedding for BCH[31,21]

Figure: Example of BCH[31, 21] MPC-LRE

Experiments
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Figure: Decoding BCH[15,11] through AWGN channel with/without SPC-LRE and
by the optimal decoder [1].
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Figure: Decoding BCH[31,21] through AWGN channel with/without MPC-LRE and
by the optimal decoder [1].
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