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Abstract—This paper presents some preliminary considera-
tions on the general problems of missing/complementary infor-
mation and perfect reconstruction, with the hope to attract the
attention of the signal processing researchers that the rigorous
derivation of a general theory of reconstruction should be
desirable and possible.

I. PROBLEM STATEMENT

There are numerous examples in signal processing where
one argues in terms of an informal notion of information, such
as: “This signal contains enough information to provide this
or that”; or on the contrary, “information about this or that
is missing in the data to achieve something”, or: “This signal
has the required information to go from some low resolution
to a higher resolution”, etc. The aim of this paper is to try to
formalize mathematically such intuitive notions.

A. Examples

Such arguments are generally related to some notion of
“perfect reconstruction” of some data. Let us illustrate with
some specific examples when considering a discrete-time
sequence of real or complex-valued samples X .

• If we take the modulus |X|, then we say that the phase
information is missing. In other words, the phase signal
ϕ is needed to perfectly reconstruct the original signal by
multiplication X = |X|eiϕ.

• If we filter X with some half-band low-pass filter:
Y = h ∗ X , then one loses information about the
high frequencies in the signal, but adding the half-band
high-pass filtered signal g ∗ X may yield to perfect
reconstruction (just as in a perfect reconstruction filter
bank). Here reconstruction occurs by addition instead of
multiplication as in the preceding example.

• The wavelet coefficients corresponding to a given scale
contain the necessary information to go from one coarse
resolution to the next finer level of resolution. This
example is similar to the preceding one.

• If we downsample a discrete-time signal X by, say,
discarding every other sample, then some information is
lost. In general, interpolating the resulting signal is not
enough to achieve perfect reconstruction of X .

• If we hide some information X by shuffling, masking, or
applying any type of one-way function, then, in principle,
no information is lost because this transformation is

revertible—even though such a reconstruction can be hard
to carry out.

B. Formalization

Formally, one can define such problems using deterministic
functional relationships: Let X1 = f1(X) and X2 = f2(X) be
some deterministic functions of X . We say that X2 contains
the missing information to go from X1 to X if there exists
some deterministic function f such that X = f(X1, X2).
We then say that X is perfectly reconstructed from X1 and
X2. This statement can of course be generalized to n signal
components X1, X2, . . . , Xn.

In this statement, there are two different subproblems:
(i) determine whether such a reconstruction function f exists;
(ii) find the simplest possible f to achieve reconstruction
efficiently. In this paper, we mainly focus on the first aspect (i).
As a result, the problem is invariant by any bijective transfor-
mation on any signal X . For example, any encoded (reversible)
version of X is a signal of a different form, but is completely
equivalent to X as far as information is concerned:

Definition 1: We say that X and Y are equivalent (represent
the same information) if there exists a bijective function ϕ such
that Y = ϕ(X).
It is easily seen that this is an equivalence relation (in a certain
considered set of signals). We may write formally X ≡ Y in
this case.

Definition 2: We say that Y has less information than X if
there exists a (not necessarily bijective) function f such that
Y = f(X). We write Y ≦ X .
Clearly, Y ≦ X and X ≦ Y is equivalent to X ≡ Y .

C. Link With Information Theory

When speaking about information, one generally refers to
Shannon’s theory of information [9]. In this theory, signal
samples X are modeled as random variables or vectors.
Shannon’s theory is based on the definition of informational
quantities such as (absolute) entropy H(X) or mutual in-
formation I(X;Y ). Such quantities are nonnegative num-
bers that measure information. A nice property is that they
are compatible with the above notion of equivalence. Thus
X ≡ Y =⇒ H(X) = H(Y ) since H(ϕ(X)) = H(X) for
any bijective function ϕ. Similarly, X ≡ X ′ and Y ≡ Y ′ imply
I(X;Y ) = I(X ′;Y ′). Also, X ≦ Y =⇒ H(X) ≤ H(Y ).



Evidently, X and Y can have the same quantity of
information as measured by entropy, yet they may not
represent the same information (they may even be com-
pletely independent). In other words, the reverse implication
H(X) = H(Y ) =⇒ X ≡ Y does not hold. For this reason,
Shannon himself [10], [11] defined the “true” information con-
tained in X as X itself, modulo any reversible transformation:

Definition 3: The “true” information contained in X is the
equivalence class of X for the equivalence relation ≡.
We may, therefore, identify X with its equivalence class and
write X = Y instead of X ≡ Y . Also, the relation Y ≦ X is
compatible with the equivalence relation and we simply write
Y ≤ X . It is easily seen that it constitutes a partial order
(reflexive, transitive, and antisymmetric) on the considered set
of signals.

D. Missing (Complementary) Information and Perfect Recon-
struction

With the above notations, the problems studied in this paper
can be formally written as follows:

1) The missing information problem: Given X1 ≤ X , how
can a missing information X2 ≤ X be determined such
that X ≤ (X1, X2) (hence X = (X1, X2))?

2) The perfect reconstruction problem: Under which con-
dition on X1 ≤ X and X2 ≤ X can we reconstruct
X ≤ (X1, X2) (hence X = (X1, X2))?

Notice that the pair (X1, X2) can be seen as the supremum of
X1 and X2, denoted by X1 ∨ X2, for the considered partial
order ≤. Indeed,

(X1 ≤ X and X2 ≤ X) ⇐⇒ X1 ∨X2 ≤ X. (1)

We may interpret X1∨X2 as their total information. Similarly,
the infimum of X1 and X2, denoted by X1 ∧ X2, for the
considered partial order ≤, is defined by

(X1 ≥ X and X2 ≥ X) ⇐⇒ X1 ∧X2 ≥ X. (2)

Shannon used the term common information [11] for X1∧X2:
it is the greatest information contained in both X1 and X2.

It is clear that the missing information problem, as it is
stated, is trivial since one can obviously choose X2 = X to
achieve perfect reconstruction. To avoid such a trivial solution,
it is important to impose that X2 is not redundant with
respect to X1 (does not share any information with X2) in
the following sense:

Definition 4: We say that X1 and X2 are not redundant if
X1 ∧X2 = 0, where 0 is any constant (deterministic random
variable). We also write X1 ⊥ X2.
In other words, X1 and X2 share no common information:
any function of both X1 and X2 is constant.

Remark 1: If X1, X2 are statistically independent (noted
X1 ⊥⊥ X2) then they are not redundant: X1 ⊥⊥ X2 =⇒ X1 ⊥
X2 since as is easily seen, any quantity that is determined by
both X1 and X2 is necessarily constant.

The missing information problem becomes the
1′) Complementary information problem: Given X1 ≤ X ,

how can the complementary information X2 ≤ X be
determined such that X1 ∧X2 = 0 and X1 ∨X2 = X?

It would also be possible to allow for some (small) common
information between X1 and X2 in another variant 1′′) of
missing information problem. The issue is then how to quantity
the common information. We shall not address this version of
the missing information problem here.

E. Continuous vs. Discrete Variables

Suppose X takes values in a continuum set of reals. Then
equivalence X = Y requires an infinite precision of the values
of the signal. This is a problem because the corresponding
information measure (absolute entropy) H(X) is necessarily
infinite, since the number of bits needed to represent X is
infinite.

On the other hand, the differential entropy h(X) of a
continuous random variable is not invariant by a reversible
function: h(ϕ(X)) ̸= h(X) in general for bijective ϕ, and
h(X) can even take negative values. Therefore it is not an
adequate measure of information. In fact, one can establish
the link between the differential entropy h(X) and the (ab-
solute or genuine) entropy H(X) as follows. Let X∆ be a
quantized version of X with regularly spaced discrete values
{0,±∆,±2∆, . . .}. Then under some mild conditions [1], [8],

H(X∆) + log∆ → h(X) (3)

as ∆ → 0. Thus in the limiting case ∆ = 0, H(X) = +∞
while h(X) can be finite. For discrete X = X∆, however, it
can be checked that h(X∆) = −∞.

For all these reasons, one is naturally led to restrict the
complementary information and perfect reconstruction prob-
lems to the case of discrete variables. When given continuous
variables X , one can either

• solve the problem only for discrete variables X∆ within
a given tolerance ∆ on the values taken by the signal
samples;

• or solve the problem for discrete variables X∆ for ar-
bitrarily small ∆ > 0, for which the limit of solutions
for ∆ → 0 would constitute a solution for the original
continuous case.

In the remainder of this paper, we only consider discrete
random variables. Based of the information theoretic study
of the lattice of information in [3], Section II solves the
complementary information problem as stated by Shannon
in [11], following the concept of communication class due
to Gács and Körner [5]. Section III reviews the developments
in [3] to give a necessary condition for perfect reconstruction
and provides some solutions to the perfect reconstruction
problem. Section IV concludes.

II. FINDING THE COMPLEMENTARY INFORMATION

A. Common Information

First, we need to show the existence of common information
X ∧ Y . Such a common information is both a function of X



and of Y , of the form f(X) = g(Y ). As a consequence, any
pair (x, y) with nonzero probability P(X = x, Y = y) > 0
will be such that the two values f(x) and g(y) coincide. More
generally, we adopt the following definition:

Definition 5: Two values x and y communicate: x ∼ y or
y ∼ x, if there exists a “path” xy1x1y2 · · · ynxny in which all
transitions are of non zero probability: P(X = x, Y = y1) >
0, P(Y = y1, X = x1) > 0, . . . , P(X = xn, Y = y) > 0.
Strictly speaking, the relation x ∼ y is not an equivalence
relation because x and y do not belong to the same set
of possible values of X and Y , respectively. However, by
concatenating paths non zero transition probabilities, it is
easily seen to be transitive in the sense that x1 ∼ y1, y1 ∼ x2

and x2 ∼ y2 imply x1 ∼ y2.
Definition 6 (Communication Class [5]): The communica-

tion class C(x, y) as the set of all (x′, y′) such that x′ ∼ y
and x ∼ y′.
By transitivity, two classes are either equal or distinct. There-
fore, the distinct communication classes partition the set of all
values (x, y) for which P(X = x) > 0 and P(Y = y) > 0.

We may identify any communication class C to its charac-
teristic function 1(x,y)∈C so that C(X,Y ) is seen as a binary
random variable. In fact, this is the common information of X
and Y :

Theorem 1 (Common Information): X ∧ Y = C(X,Y ).
Proof: If Z = f(X) = g(Y ) a.s. then Z is constant for

each pair (x, y) such that x ∼ y. Thus Z is a function of
C(X,Y ).

Remark 2: An intuitive illustration of the concept of com-
mon information is as follows. Consider the stochastic matrix
P(X = x, Y = y) which, after adequate permutations of
rows/columns, has the ”block diagonal” form

PX,Y =



C1

C2 0
. . .

0 Ck

0
. . .

0


(4)

where the number k of blocks is maximal. The k rectangular
matrices then represent the k different equivalence classes,
and the probability P(C(X,Y ) = i) is the sum of all entries
in block Ci. Thus the effective computation of the common
information is equivalent to the non-trivial identification of
a ”block diagonal” structure in a stochastic matrix. The
algorithm proposed in [3] has quadratic complexity in the total
number of possible values of X and Y .

Remark 3: From the above considerations, every pair X ,Y
has a infimum X ∧ Y and a supremum X ∨ Y . Therefore,
the considered set of signals forms a lattice, which Shannon
called “the lattice of information” (LoI) [11]. See [3] for a
detailed study of the mathematical properties of the LoI.

B. Complementary Information

The existence of the complementary information was stated
by Shannon [11] without proof. We present a simple, explicit
construction.

Theorem 2 (Complementary Information): If X1 ≤ X , there
exists a complementary information X2 such that X1 ∨X2 =
X and X1 ∧X2 = 0.

Proof: Since X1 ≤ X , we simply have X1 = X1 ∧
X = C(X1, X). Thus, a given class C(X1, X) = x1 has
only one value X1 = x1 per class, corresponding in general
to several values of X , say, xx1

1 , xx1
2 , . . . , xx1

kx1
. Now let X2 ∈

{1, . . . , kX1
} be the unique index such that X = XX1

X2
. By

construction, X2 ≤ X1 ∨ X = X , and since X1 ≤ X , one
also has X1∨X2 ≤ X . But the formula X = XX1

X2
shows that

X ≤ X1 ∨X2, hence equality X1 ∨X2 = X holds. Finally,
the value X2 = 1 connects each pair (x1, x2), so there is only
one class according to (X1, X2), i.e. X1 ∧X2 = 0.

Note that the complementary information X2 is not uniquely
determined by X1 and X . In the above construction, it depends
on how the values of X are indexed by the class X1 = x1.

Remark 4: This construction can be visualized on the
stochastic tensor of (X,X1, X2) described in Fig. 1. The
algorithm proposed in [3] has again quadratic complexity in
the total number of values of X1 and X .
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Fig. 1: Construction of the complementary information X2 allowing
to pass from X1 to X . The stochastic tensor of (X,X1, X2) repre-
senting PX,X1,X2 has nonzero entries marked in red. The distribution
PX,X2 of (X,X2) is obtained by marginalizing the tensor on the X1

axis.

Remark 5: There is a striking resemblance between the com-
plementary information problem and the “functional represen-
tation lemma” which has been used recently in network coding
(see Appendix B pp. 626–627 of [4]). Indeed, Theorem 2 can
be rewritten as

∀ X1 ≤ X, ∃X2 ⊥ X1 s.t. X = X1 ∨X2 (5)

while the “functional representation lemma” [4] writes

∀ X1, X, ∃X2 ⊥⊥ X1 s.t. X ≤ X1 ∨X2. (6)

One of these two statements cannot be deduced from the other
in general, because as we have seen above, X1 ⊥⊥ X2 =⇒
X1 ⊥ X2 on one hand, and the second statement has a weaker
hypothesis and conclusion on the other hand.

III. CONDITIONS FOR PERFECT RECONSTRUCTION

We base our derivation on the consideration of two entropic
distances compatible with the partial order X ≤ Y .



A. Shannon and Rajski distances

It is well-known [1] that the conditional entropy H(X|Y )
vanishes only when X is a deterministic function of Y :

X ≤ Y ⇐⇒ H(X|Y ) = 0 (7)

Since X = Y ⇐⇒ (X ≤ Y and X ≥ Y ), it suffices
that H(X|Y ) + H(Y |X) = 0 in order for X and Y to be
equivalent: X = Y . Shannon [11] noted that the distance

D(X,Y ) = H(X|Y ) +H(Y |X) (8)

satisfies a triangular inequality, and, therefore, defines a metric
(this is a classical exercise, see e.g., [2]).

Interestingly, Rajski [7] noted that when X and Y are non-
deterministic, by normalizing D(X,Y ) by the joint entropy
H(X,Y ) > 0, we obtain another distance metric taking values
in [0, 1]:

d(X,Y ) =
D(X,Y )

H(X,Y )
(9)

with the convention d(0, 0) = 0. A simple proof of the
triangular inequality is given in [6].

Definition 7: We say that X,Y, Z (in this order) are aligned
for Shannon’s distance D if the triangular inequality is met
with equality D(X,Y ) +D(Y,Z) = D(X,Z), and similarly
for the Rajski distance d.
From the derivation of the triangular inequalities for D and d,
the following characterizations are easily established (see [3]
for a detailed proof):

Lemma 1: X , Y and Z are aligned w.r.t. D if and only if
X − Y − Z is a Markov chain and Y ≤ X ∨ Z.

X , Y and Z are aligned w.r.t. d if and only if they satisfy the
stronger condition that either X = Y , Y = Z, or Y = X ∨Z.

B. A Geometric Interpretation

Recall that we aim at perfectly reconstructing X from
a finite number of components X1, X2, . . . , Xn, which are
defined as deterministic functions of X . For convenience in
notations, let ⟨X⟩ be the set of all possible deterministic
functions of X . It is easily seen that ⟨X⟩ is itself a sublattice
of the LoI, the lattice generated by X .

Intuitively, the elements in some sequence X1, X1 ∨ X2,
. . . , X1 ∨ X2 ∨ . . . ∨ Xn are getting closer and closer to X
(with respect to D or d). Perfect reconstruction holds precisely
when the final distance to X is zero. The following lemmas
quantify how these distances to X can decrease.

We first need the following analog of Apollonius’s theorem
in geometry:

Lemma 2: For any Y, Z ∈ ⟨X⟩,

D(X,Y ∨ Z) =
D(X,Y ) +D(X,Z)−D(Y, Z)

2
. (10)

This can also be written as

D(X,Y ) +D(X,Z) = D(Y, Z) + 2D(X,Y ∨ Z). (11)

This is illustrated in Fig. 2.
Proof: Since Y,Z ∈ ⟨X⟩, we simply have D(X,Y ) =

H(X) − H(Y ), D(X,Z) = H(X) − H(Z) and D(X,Y ∨

X

Y

Z

Y ∨ Z

•

•

•

•

D(X,Z)

D(Y,Z)

D(X,Y )

D(X,Y ∨ Z)

Fig. 2: Graphical representation of Apollonius’s theorem
(Lemma 2).

Z) = H(X) − H(Y,Z). Hence D(X,Y ) + D(X,Z) −
2D(X,Y ∨ Z) = 2H(Y,Z) − H(Y ) − H(Z) = H(Z|Y ) +
H(Y |Z) = D(Y, Z).

From Lemma 2 we derive the following
Lemma 3: For any Y,Z ∈ ⟨X⟩,

d(X,Y ) + d(X,Z) ≤ d(X,Y ∨ Z) + 1 (12)

with equality if and only if Y and Z are independent.
Proof: Observe that D(Y, Z) + D(X,Y ∨ Z) =

H(Y |Z) + H(Z|Y ) + H(X|Y ∨ Z) ≤ H(Y ) + H(Z|Y ) +
H(X|Y, Z) = H(Y, Z) + H(X|Y,Z) = H(X,Y, Z) =
H(X) since Y,Z ∈ ⟨X⟩, with equality iff Y and Z are
independent. Now by Lemma 2, D(X,Y ) + D(X,Z) =
D(Y, Z) + 2D(X,Y ∨ Z) ≤ D(X,Y ∨ Z)+H(X). Dividing
by H(X) = H(X,Y ) = H(X,Z) = H(X,Y, Z) yields the
announced inequality.

C. A Necessary Condition for Perfect Reconstruction

Theorem 3 (Necessary Condition for Perfect Reconstruc-
tion): Let X be a random variable and let X1, X2, . . . , Xn ∈
⟨X⟩. If perfect reconstruction is possible: X = X1 ∨ X2 ∨
· · · ∨Xn, then

n∑
i=1

d(X,Xi) ≤ n− 1 (13)

with equality iff X1, X2, . . . , Xn are independent.
The first occurence of such a problem (for n = 2) is given in
Exercise 6 of the French textbook [8].

Proof: By repeated use of Lemma 3, each joining op-
eration of two components in the sum—e.g., passing from
d(X,Xi) + d(X,Xj) to d(X,Xi ∨Xj)—decreases this sum
by at most 1. Thus,
n∑

i=1

d(X,Xi) ≤
n−2∑
i=1

d(X,Xi) + d(X,Xn−1∨Xn) + 1

≤
n−3∑
i=1

d(X,Xi) + d(X,Xn−2∨Xn−1∨Xn) + 2

...
≤ d(X,X1 ∨X2 ∨ · · · ∨Xn) + n− 1 = n− 1.

(14)



Equality holds iff all the above n−1 inequalities are equalities.
By the equality condition of Lemma 3, this means by induction
that X1 is independent from X2 ∨ · · · ∨ Xn, where X2 is
independent from X3 ∨ · · · ∨ Xn, and so on until Xn−1 is
independent from Xn. Overall this is equivalent to saying that
all components X1, X2, . . . , Xn are mutually independent.

In practice, Theorem 3 gives an impossibility condition
for perfect reconstruction of the random variable X from
components X1, X2, . . . , Xn. Indeed, if the latter are such that

n∑
i=1

d(X,Xi) > n− 1 (15)

then perfect reconstruction is impossible, however complex the
reconstruction function f might have been. In other words,
X < X1∨X2∨· · ·∨Xn, information was lost by processing.

That perfect reconstruction is impossible does not mean that
it would never be possible to deduce one particular value of X
from some particular values of X1, X2, . . . , Xn. It means that
such a deduction is not possible in general, for every possible
values taken by X1, X2, . . . , Xn. In other words, there is at
least one set of values X1 = x1, X2 = x2, . . . , Xn = xn for
which X cannot be reconstructed unambiguously.

D. A Sufficient Condition for Perfect Reconstruction

For independent components X1, X2, . . . , Xn (with no re-
dundant information between them), the necessary condition
of Theorem 3 becomes also a sufficient condition:

Theorem 4 (Sufficient Condition for Perfect Reconstruction):
Let X be a random variable and let X1, X2, . . . , Xn ∈ ⟨X⟩ be
independent. If inequality (13) holds, then it necessarily holds
with equality:

n∑
i=1

d(X,Xi) = n− 1 (16)

and perfect reconstruction is possible: X = X1∨X2∨· · ·∨Xn.
Proof: A closer look at the proof of Theorem 3 shows

that we have established (without the perfect reconstruction
assumption) the general inequality

n∑
i=1

d(X,Xi) ≤ d(X,X1 ∨X2 ∨ · · · ∨Xn) + n− 1 (17)

which holds with equality iff X1, X2, . . . , Xn are independent.
Therefore, by the independence assumption, (13) writes

n∑
i=1

d(X,Xi) = d(X,X1∨X2∨· · ·∨Xn)+n−1 ≤ n−1. (18)

Since the distance is nonnegative, this necessarily implies that
the inequality holds with equality and that d(X,X1 ∨ X2 ∨
· · · ∨Xn) = 0, that is, X = X1 ∨X2 ∨ · · · ∨Xn.

As a simple example consider the following.
Example 1: Consider a nonzero complex-valued discrete

random variable X and define the modulus and argument

X1 = |X| and X2 = arg(X). (19)

Assume that X is “isotropic” in the sense that X1 is in-
dependent of X2 and X2 is uniformly distributed over M

possible values. One easily computes H(X2) = logM ,
H(X1) = H(X)− logM , hence d(X,X1) + d(X,X2) = 1:
Inequality (13) is satisfied with equality. Of course, in this
trivial example, perfect reconstruction is possible since

X = |X|earg(X) = X1e
X2 . (20)

More elaborate examples of applications of Theorems 3
and 4 have been shown in [3] for specific discrete problems
such as linear transformations over a finite field, integer
prime factorization, Chinese remainder theorem, and optimal
comparison-based sorting algorithm.

IV. CONCLUSION

This paper presented some considerations to provide a
starting point for a “perfect reconstruction theory” that of
course needs to be improved and further investigated along
these lines.

In particular, it would be very valuable to illustrate the con-
struction of the complementary information, and the necessary
or sufficient conditions for perfect reconstruction by concrete
examples in signal processing. This would certainly require the
extension of the above geometric considerations to continuous
random variables.

A closer look at Theorems 3 and 4 shows that they crucially
depend on the standard information theoretic assertion that
H(X) ≤

∑
H(Xi) with equality when Xi are mutually

independent. This, of course, does not require all the geometric
machinery presented here, but would be easily generalizable
to continuous random variables using differential entropy. The
construction of a genuine distance applicable to discrete or
continuous random variables in order to solve the perfect
reconstruction problem is a topic for future investigation.
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