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Abstract
This paper presents a tutorial overviewof so-calledPinsker inequalitieswhich establish
a precise relationship between information and statistics, and whose use have become
ubiquitous in many applications. According to Stigler’s law of eponymy, no scientific
discovery is named after its original discoverer. Pinsker’s inequality is no exception:
Years before the publication of Pinsker’s book in 1960, the French medical doctor,
geneticist, epidemiologist, and mathematician Marcel-Paul (Marco) Schützenberger,
in his 1953 doctoral thesis, not only proved what is now called Pinsker’s inequality
(with the optimal constant that Pinsker himself did not establish) but also the optimal
second-order improvement, more than a decade before Kullback’s derivation of the
same inequality. We review Schützenberger and Pinsker contributions as well as those
of Volkonskii and Rozanov, Sakaguchi, McKean, Csiszár, Kullback, Kemperman,
Vajda, Bretagnolle and Huber, Krafft and Schmitz, Toussaint, Reid and Williamson,
Gilardoni, as well as the optimal derivation of Fedotov, Harremoës, and Topsøe. We
also present some historical elements on the life and work of Schützenberger, and
discuss an interesting problem of an erroneous constant in the Schützenberger-Pinsker
inequality.
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1 Introduction

How far is one probability distribution from another? This question finds many dif-
ferent answers in information geometry, statistics, coding and information theory,
cryptography, game theory, learning theory, and even biology or social sciences. Dis-
tances and divergences are often used to quantify how close two distributions may
be, and it is particularly interesting to establish tight bounds between distances and
divergences.

1.1 Preliminaries and notations

We assume that all considered probability distributions over a given measurable
space (�,A) admit a σ -finite dominating measure μ, with respect to which they
are absolutely continuous. This can always be assumed when considering finitely
many distributions. For example, p and q admit μ = p+q

2 as a dominating measure
since p � μ and q � μ. By the Radon-Nikodym theorem, they admit densities
(Radon-Nikodym derivatives) with respect to μ, which we again denote by p and q,
respectively. This ambiguity in notation should be easily resolved from the context.

For any event A ∈ A, p(A) = ∫
A p dμ = ∫

A p(x) dμ(x), and similarly for q.
This is an overload in notations and one should not confuse p({x}) with p(x). Two
distributions p, q are equal if p(A) = q(A) for all A ∈ A, that is, p = q μ-a.e. in
terms of densities.

If μ is a counting measure, then p is a discrete probability distribution with∫
A p dμ = ∑

x∈A p(x), where the density p(x) is a p.m.f. (probability mass func-
tion); if μ is a Lebesgue measure, then p is a continuous probability distribution
with

∫
A p dμ = ∫

A p(x) dx , where the density p(x) is a p.d.f. (probability density
function). For short we simply write

∫
p = ∫

p dμ. When p, q are one-dimensional
distributions defined over R, the corresponding c.d.f.’s (cumulative distribution func-
tions) are denoted by uppercase letters P, Q.

We also consider the important case where p and q are binary (Bernoulli) distri-
butions with parameters again denoted p and q, respectively. Thus for p ∼ B(p) we
have p(x) = p or 1 − p. Again this ambiguity in notation should be easily resolved
from the context.

The logarithm (log) is considered throughout this paper in any base. Similarly, the
exponential (exp = log−1) is relative to the base considered, e.g., natural exponential
exp x = ex and natural logarithm log x = ln x in base e.

We use the following notations for sets {p < q} = {x ; p(x) < q(x)}, etc.,
minimum p ∧ q, maximum p ∨ q, positive and negative parts a+ = a ∨ 0, a− =
(−a) ∨ 0 = −(a ∧ 0), with decompositions p + q = p ∧ q + p ∨ q, a = a+ − a−,
and |a| = a+ + a−.

1.2 Distances between distributions

In order to quantify how close two distributions are, a common viewpoint is to define
a “distance” �(p, q) between probability distributions p and q, which should at least
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Table 1 Some distances and the corresponding types of convergence they metrize

Distance �(p, q) Convergence

Lévy [2]-Prokhorov [3] inf{ε > 0 | ∀A, p(A) ≤ q(Aε) + ε}
where Aε = Borel set of points at distance ≤ ε from A Weak (in distribution)

Fortet-Mourier [4] sup‖ f ‖≤1 | ∫ f (p − q)| (bounded Lipschitz f )

a.k.a. “Wasserstein” [5] or Kantorovich [6]-Rubinstein [7] Weak (in distribution)

Kolmogorov [8]-Smirnov [9] ‖P − Q‖∞ Uniform (in distribution)

Radon Strong

Total variation 1
2

∫ |p − q| = 1
2 ‖p − q‖1 L1

Hellingera (Jeffreys [10])
√

1
2

∫
(
√

p − √
q)2 = ‖√p − √

q‖2/
√
2 L1

“Jensen-Shannon” [11]
√∫

p log 2p
p+q + q log 2q

p+q L1

Vincze [12]-Le Cam [13]

√
1
2

∫ (p−q)2

p+q = ‖ p−q
p+q ‖2 norm w.r.t. μ = p+q

2 L1

Ky Fan [14] In probability

a What is generally known as the “Hellinger distance” was in fact introduced by Jeffreys in 1946 [10]. The
Hellinger integral (1909) [15] is just a general method of integration that can be used to define the Jeffreys
distance. The Jeffreys (“Hellinger”) distance should not be confused with the “Jeffreys divergence”, which
was studied by Kullback as a symmetrized Kullback–Leibler divergence (see below)

satisfy the basic property that it is nonnegative and vanishes only when the two prob-
ability distributions coincide: p = q in the given statistical manifold [1]. Strictly
speaking, distances �(p, q) should also satisfy the two usual requirements of symme-
try �(p, q) = �(q, p) and triangle inequality �(p, q) + �(q, r) ≥ �(p, r). In this
case the probability distribution space becomes a metric space.

Examples of (metric) distances, along with the corresponding convergences that
they metrize are given in Table 1. Some other types of convergence can also be
metrized, but by distances between random variables rather than between distribu-
tions. For example, the Ky Fan distance metrizes convergence in probability, which is
stronger than convergence in distribution.

Some distances between distributions are “strongly” equivalent, in the sense that
they satisfy inequalities in both directions such as 2

3�
2
L P (p, q) ≤ �F M (p, q) ≤

2�L P (p, q) for Lévy-Prokhorov and Fortet-Mourier distances, which both metrize
weak convergence (convergence in distribution). Also, 1

2�
2
H (p, q) ≤ �T V (p, q) ≤

�H (p, q) for Hellinger and total variation distances, �H (p, q) ≤ �V C (p, q) ≤√
2�H (p, q) for Hellinger and Vincze-Le Cam distances [13, § 4.2], �2

V C (p, q) ≤
�T V (p, q) ≤ �V C (p, q) for Vincze-Le Cam and total variation distances and
�V C (p, q)

√
log e ≤ �J S(p, q) ≤ �V L(p, q)

√
2 log 2 for Vincze-Le Cam and

Jensen-Shannon distances [16]. Thus total variation, Hellinger, Jensen-Shannon and
Vincze-Le Cam distances are all strongly equivalent and all define the same topology.

It iswell known that L1 convergence of densities implies convergence in distribution
(see, e.g., [17]). For example in the one-dimensional case of real random variables,
taking A = (−∞, x] in Corollary 2 below gives supx |P(x) − Q(x)| ≤ �T V (p, q)

where P , Q denote c.d.f.s corresponding to p, q, respectively. Thus �T V (p, q) → 0
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implies ‖P − Q‖∞ → 0 (Kolmogorov-Smirnov distance). This uniform convergence
of c.d.f.s in turn implies pointwise convergence hence convergence in distribution.

In this paper, we focus on the total variation distance, implying the strongest type
of convergence among the preceding examples. Arguably, it is also the simplest—as
an L1-norm distance—and the most frequently used in applications, particularly those
related to Bayesian inference and statistical tests (see § 2 below).

1.3 Divergences from one distribution to another

In many information theoretic applications, other types of “distances”, that do not
necessarily satisfy the triangle inequality, are often preferred. Such “distances” are
called divergences D(p‖q). A formal definition [1, Def. 1.1] of a divergence D(p‖q),
defined for any p, q in a differentiable statistical manifold, is that it should not only
be nonnegative and vanish only when p = q, but also that locally, D(p‖p + dp) is
a positive definite quadratic form for infinitesimal displacements dp from p. In other
words, at q = p, the gradient ∂q D(p‖q) vanishes and the Hessian ∂2q,q D(p‖q) > 0
is positive definite.

Divergences, however, may not satisfy the symmetry property: In general, D(p‖q)

is the divergence of q from p, and not “between p and q”. Evidently, such divergences
can always be symmetrized by considering either D(p‖q)+ D(q‖p) or D(p‖ p+q

2 )+
D(q‖ p+q

2 ) = D(p‖μ)+ D(q‖μ) instead of D(p‖q); but even so, divergences do not
satisfy the triangle inequality in general.

Divergences were first introduced in statistics and information theory, in relation
to the notion of entropy, and have found numerous applications. From their definition,
they also provide the statistical manifold with a dually flat structure equipped with a
Riemannian metric [1], making them fundamentally useful in information geometry.

Examples of divergences are given in Table 2. Two fairly general classes of diver-
gences are the f -divergences and the Bregman divergences. The only f -divergence
that is also a distance is the total variation distance [28]. However, some square
roots of (symmetrized) f -divergences also yield genuine distances. For example, the
Jeffreys (“Hellinger”) distance is the square root of the Bhattacharyya divergence:

�H (p, q) =
√
1 − ∫ √

pq , the “Jensen-Shannon” distance is the square root of a sym-

metrized Kullback–Leibler divergence: �J S(p, q) =
√

D(p‖ p+q
2 ) + D(q‖ p+q

2 ),

and the Vincze-Le Cam distance is the square root of a symmetrized χ2 divergence:

�V C (p, q) =
√

1
2 (χ

2(p‖ p+q
2 ) + χ2(q‖ p+q

2 )). See [29] for a review of many exam-
ples.

In this paper, we focus on the Kullback–Leibler divergence, historically the most
popular type of divergence which has become ubiquitous in information theory. It
is the only divergence that is both a f -divergence and a Bregman divergence [30,
Appendix D]. Two of the reasons of its popularity are its relation to Shannon’s
entropy—the Kullback–Leibler divergence is also known as the relative entropy (see
Sect. 3); and the fact that it tensorizes nicely for products of probability distributions,
expressed in terms of the sum of the individual divergences (see Prop. 6 below).
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Table 2 Most divergences studied in the literature fall into three general classes: α-divergences (α > 0),
f -divergences ( f convex), Bregman divergences (φ convex)

Rényi α-divergences [18] Dα(p‖q) = 1
α−1 log

∫
pαq1−α

Kullback–Leibler [19] DKL(p‖q) = limα→1 Dα(p‖q)

Sundaresan [20] D′
α(p‖q) = D 1

α
(

pα
∫

pα ‖ qα
∫

qα )

“Cauchy-Schwarz” [21, Eq. (31)] D′
2(p‖q) = log

∫
p2

∫
q2

(
∫

pq)2

Csiszár f -divergences [22] D f (p‖q) = ∫
q f (

p
q )

Kullback–Leibler [19] DKL(p‖q) = ∫
p log p

q

Total variation 1
2

∫ |p − q|
Pearson [23] χ2(p‖q) = ∫ (p−q)2

q

Bhattacharyya [24] 1 − ∫ √
pq

Bregman divergences [25] Dφ(p‖q) = φ(p) − φ(q) − ∇φ(q) · (p − q)

Squared Euclidean
∫
(p − q)2, squared Mahalanobis distance [26]

Itakura-Saito [27]
∫ p

q − log p
q − 1

Kullback–Leibler [19] DKL(p‖q)

Kullback–Leibler divergence [19] is a member of all three

1.4 Pinsker inequalities

Definition 1 (Pinsker Inequality) A Pinsker-type inequality is any general inequality
of the form

D ≥ ϕ(�) (1)

relating divergence D = D(p‖q) to distance � = �(p, q) and holding for any
probability distributions p and q. Here ϕ(x) should assume positive values for x > 0
with ϕ(0) = 0 in accordance with the property that both D(p‖q) and �(p, q) vanish
only when p = q.

Typically ϕ is also increasing, differentiable, and often convex.
The existence of any such Pinsker inequality implies the following statement: Con-

vergence in the sense of divergence D implies convergence in the sense of distance�.
Intuitively, this means that the “topology” induced by D is finer than that induced
by �. In fact, because D(p‖q) is generally not symmetric in (p, q), it induces two
separate topologies based on neighborhoods with respect to either the first or second
argument (see, e.g., [31])—but not on both arguments as noticed in [32]. Convergence
in either topology implies metric convergence in �:

D(pn‖p) → 0 or D(p‖pn) → 0 implies �(pn, p) = �(p, pn) → 0 (2)
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as n → ∞. The first type of convergence D(pn‖p) → 0 is often used to provide
strong limit theorems, e.g., the entropic central limit theorem of Barron [17] for the
Kullback-Leibler divergence, which is stronger than the usual central limit theorem in
distribution.

If, in addition, a reverse Pinsker inequality � ≥ ψ(D) holds, then the associated
topologies are equivalent. Many Pinsker-type inequalities (direct or reverse) have been
established, notably between f -divergences. See e.g., [33] and [34, § 7.5,7.6] for some
examples.

In this paper, we present historical considerations of the classicalPinsker inequality
where D is the Kullback–Leibler divergence and� is the total variation distance. This
inequality is by far the most renowned inequality of its kind, and finds many applica-
tions, e.g., in statistics, information theory, and computer science.Many considerations
in this paper, however, equally apply to other types of distances and divergences.

1.5 Outline

The remainder of this paper is organized as follows. Section2 and 3 present basic
properties of total variation distance and Kullback–Leibler divergence, respectively.
Section4 gives amotivating example illustrating the usefulness of Pinsker’s inequality.
Section5 discusses the related notions of statistical distance and mutual information,
which were originally considered by Pinsker. Some useful ingredients for proving
Pinsker inequalities are presented in Sect. 6. The contributions from Pinsker and other
authors in the 1960s are reviewed in Sect. 7. Section8 is devoted to Schützenberger’s
key contribution as well as some elements of his life and work. Other recent improve-
ments of Pinsker’s inequality are reviewed in Sects. 8 and 9. Finally, Sect. 10 discusses
the optimal Schützenberger-Pinsker inequality and concludes.

This tutorial article is both historical and educational. For completeness, in all its
sections, proofs are provided to illustrate the ideas. Most of these proofs and some of
the statements are simplified versions of the original ones, particularly Prop. 26 and
Theorem 27.

2 Total variation distance: basic properties

In this section, we review some basic definitions and properties of the total variation
distance.

The total variation distance �(p, q) can be defined in two different ways. The
simplest is the following

Definition 2 (Total Variation Distance—First Definition)

�(p, q) � 1

2

∫
|p − q| dμ, (3)
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that is, half the L1(μ)-norm of the difference of densities. In particular, the total
variation distance between binary distributions B(p) and B(q) is simply

δ(p, q) = |p − q| + |(1 − p) − (1 − q)|
2

= |p − q|. (4)

It is important to note that the above definition of �(p, q) is coherent in the sense that
it does not depend on the choice of the dominating measure μ. Indeed, if μ � μ′,
with density dμ

dμ′ = f , then the densities w.r.t. μ′ become p′ = p f and q ′ = q f so

that
∫ |p′ − q ′| dμ′ = ∫ |p − q| dμ.

That � is a distance (metric) is obvious from this definition (apart from the 1/2
factor, it is the L1-norm distance).

Remark 1 (Random variable notation) Some authors (e.g., [35, Chap. 8]) define the
“statistical distance” of two random variables X ∼ pX and Y ∼ pY as

�(X , Y ) � �(pX , qX ).

Here �(X; Y ) depends only on the (marginal) distributions of X and Y , not on their
joint distribution. This is not to be confused with Definition 6 below.

Strictly speaking, � is not a distance between random variables X and Y since
the fact that they share the same distribution does not necessarily imply X = Y (or
even X = Y almost everywhere). However it becomes a distance on random variables
if we agree to identify two equivalent random variables, that is, variables having
the same distribution. In other words, � is then a distance on the quotient space
of random variables modulo this equivalence relation. One always has symmetry
�(X; Y ) = �(Y ; X) and the triangle inequality �(X; Z) ≤ �(X; Y ) + �(Y ; Z).

Since
∫ |p − q| dμ = ∫

(p − q)+ dμ+ ∫
(p − q)− dμ and

∫
(p − q)+ dμ− ∫

(p −
q)− dμ = ∫

(p − q) dμ = 0, taking half sum we may also write

�(p, q) =
∫

(p − q)+ dμ =
∫

(p − q)− dμ (5)

in term of positive and negative parts. Also, since (p − q)+ = p − p ∧ q = p ∨ q − q
and (p − q)− = q − p ∧ q = p ∨ q − p we have

�(p, q) =
∫

p ∨ q dμ − 1 = 1 −
∫

p ∧ q dμ (6)

in terms of the maximum and minimum.
Thus, the normalization factor 1/2 in the definition ensures that 0 ≤ �(p, q) ≤ 1,

with

• minimum value �(p, q) = 0 if and only if p = q;
• maximum value �(p, q) = 1 − ∫

p ∧ q dμ = 1 if and only if p ∧ q = 0 μ-a.e.,
also noted p ⊥ q, that is, p and q have “non-overlapping” supports.
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The alternate definition of the total variation distance is to proceed from the discrete
case to the general case as follows.

Definition 3 (Total variation distance—second definition)

�(p, q) � 1

2
sup

∑

i

|p(Ai ) − q(Ai )|, (7)

where the supremum is taken over all partitions of � into a countable number of
(pairwise disjoint) Ai ∈ A.

When � ⊂ R, this supremum can simply be taken over partitions of intervals Ai ,
and (apart from the factor 1/2) this exactly corresponds to the usual notion of total
variation of the corresponding cumulative distribution f of the signed measure p −q.
This is awell-knownmeasure of the one-dimensional arclength of the curve y = f (x),
introduced as the oscillation totale (total oscillation) by the French mathematician
Camille Jordan [36] in the 19th century, and justifies the name “total variation” given
to �.

Proposition 1 The above two definitions of total variation coincide.

Proof First, by the triangle inequality, the sum
∑

i |p(Ai ) − q(Ai )| in (7) can only
increase by subpartitioning (refining the partition), hence (7) can be seen as a limit
for finer and finer partitions. Second, consider the subpartition A+

i = Ai ∩ A+,
A−

i = Ai ∩ A−, where, say, A+ = {p > q} and A− = {p ≤ q}, or more generally,
any two complementary sets satisfying

{
{p > q} ⊆ A+ ⊆ {p ≥ q}
{p < q} ⊆ A− ⊆ {p ≤ q}.

Then the corresponding sum in (7) already equals

∑

i

(p − q)(A+
i ) + (q − p)(A−

i ) = (p − q)

(
∑

i

A+
i

)

+ (q − p)

(
∑

i

A−
i

)

= (p − q)(A+) + (q − p)(A−)

=
∫

(p − q)+ + (p − q)− dμ

=
∫

|p − q| dμ

(8)

which is (3). ��
A key property in the sequel is that the maximum in (7) is attained for binary

partitions.
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Corollary 2 (Total variation distance—third definition)

�(p, q) = sup
A

|p(A) − q(A)| (9)

(without the 1/2 factor).

Proof From the above proof, the supremum in (7) is attained for binary partitions
{A+, A−} of the form {A, A�}, so that �(p, q) = 1

2 sup
(|p(A) − q(A)| + |p(A�) −

q(A�)|), which is (9). ��
An important consequence is the following result on binary hypothesis testing with

two hypotheses on the distributions of some data X :

{
H0 : X ∼ p

H1 : X ∼ q
(10)

with any possible deterministic test T such that the null hypothesis H0 is rejected if
X ∈ T , accepted otherwise. The two types of error are

{
Type I : (false positive) p(X ∈ T )

Type II : (false negative) q(X /∈ T ).
(11)

Proposition 3 For any test T , the sum of type-1 and type-2 errors is lower bounded
by

p(X ∈ T ) + q(X /∈ T ) ≥ 1 − �(p, q). (12)

Proof Obvious from the inequality �(p, q) = supA |p(A) − q(A)| ≥ q(T ) − p(T ).
��

Remark 2 (Statistical equivalence) This important property ensures that a sufficiently
small value of �(p, q) implies that no statistical test can effectively distinguish
between the two distributions p and q, since type-I or type-II errors have total prob-
ability 1 − � arbitrarily close to one. Thus in this sense the two hypotheses p and q
are �-undistinguishable.

For the case of independent observationswe are facedwith the evaluation of the total
variation distance for products of distributions. In this situation, Pinsker’s inequality is
particularly useful since it relates it to the Kullback–Leibler divergence which nicely
tensorizes, thus allowing a simple evaluation (see § 4 below).

3 Kullback–Leibler divergence: basic properties

The Kullback–Leibler divergence [19], also known as statistical divergence, or simply
divergence, can similarly be defined in two different ways. One can first define:
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Definition 4 (Kullback–Leibler divergence—first definition)

D(p‖q) �
∫

p log
p

q
dμ. (13)

Since x log x ≥ − log e
e , the negative part of the integral is finite. Therefore, this integral

is always meaningful and can be finite, or infinite = +∞.
In particular, the divergence between binary distributions B(p) and B(q) is simply

d(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
. (14)

Again note that the above definition of D(p‖q) does not depend on the choice of the
dominating measure μ. Indeed, if μ � μ′, with density dμ

dμ′ = f , then the densities
w.r.t. μ′ become p′ = p f and q ′ = q f so that

∫
p′ log p′

q ′ dμ′ = ∫
p log p

q dμ.

Remark 3 (Relative entropy) The Kullback–Leibler divergence is also known in infor-
mation theory as the relative entropy because it can be written as

D(p‖q) =
∫

p log
1

q
dμ −

∫
p log

1

p
dμ (15)

where the first term is the cross entropy of q relative to p and the second term H(p) =∫
p log 1

p dμ is the Shannon entropy of p. Note that H(p), contrary to D(p‖q), does
depend on the choice of the dominating measure. This explains in particular why
differential entropy (when μ is the Lebesgue measure) is very different in nature from
the discrete entropy (when μ is a counting measure). In particular, the differential
entropy can be negative, and not invariant under invertible changes of variables [34,
37, 38].

Remark 4 (Absolute continuity of p w.r.t. q) The (Kullback–Leibler) divergence is
traditionally defined by the above expressionwhen p dμ is absolutely continuousw.r.t.
q dμ (p � q), otherwise it is defined as +∞ (see, e.g., [34, Defn. 2.1]). However,
whenever p �� q, then the function log(p/q) equals +∞ on a set of positive p-
measure, hence the above definition already gives D(p‖q) = +∞. It is still possible,
however, that D(p‖q) = +∞ even when p � q. This is the case, for example, when
q is Gaussian and p is a pdf with infinite variance such as the Cauchy distribution.

Remark 5 (Double bar notation) The (Kullback–Leibler) divergence is not symmetric
in (p, q), which seems to be the reason for which the double bar notation ‘‖’ (instead
of a comma) is used. The origin of this exotic notation is not well-known. Kullback
and Leibler themselves did not originate this notation in their seminal paper [19].
They rather used I (1 : 2) for alternatives p1, p2 with a colon “:” to indicate non
commutativity. Later the notation I (P | Q)was used but this collided with the notation
‘|’ for conditional distributions. The first occurence of the double bar notation I could
find was by Rényi in the form I (P‖Q) in the same paper that introduced Rényi
entropies and divergences [18]. This notation was soon adopted by researchers of the
Hungarian school of information theory, notably Csiszár (see, e.g., [32, 39, 40]).
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Divergence is not symmetric, nor does it satisfy the triangle inequality. However,
D(p‖q) is nonnegative and vanishes if only if the two distributions p and q coincide:

Proposition 4 (Nonnegativity of divergence)

D(p‖q) ≥ 0 with equality D(p‖q) = 0 ⇐⇒ p = q. (16)

Proof By Jensen’s inequality applied to the convex function f (x) = x log x ,
D(p‖q) = ∫

q f (
p
q ) dμ ≥ f (

∫
q · p

q dμ) = f (1) = 0 with equality iff p
q is constant,

i.e., p and q coincide.
An alternate proof is to use the well-known inequality log q

p ≤ (
q
p −1) log e, hence

p log p
q ≥ (p − q) log e, which gives D(p‖q) ≥ ∫

(p − q) log e dμ = 0 with the
same equality condition. ��
Remark 6 (Random variable notation) Some authors (e.g., [38]) define the divergence
of two random variables X ∼ pX and Y ∼ pY as

D(X‖Y ) � D(pX‖qX ).

Here D(X‖Y ) depends only on the (marginal) distributions of X and Y , not on their
joint distribution. This is not to be confused with Definition 7 below.

Strictly speaking, D is not a divergence between random variables X , Y in the sense
that D(X‖Y ) ≥ 0 yet D(X‖Y ) = 0 does not imply X = Y , but only that they are
equivalent: X ≡ Y in the sense that they share the same distribution.

The range of values taken by total variation distance and divergence can be sum-
marized as follows.

• minimum value D(p‖q) = 0 ⇐⇒ �(p, q) = 0 if and only if p = q;
• maximum value �(p, q) = 1 �⇒ D(p‖q) = +∞ since p ⊥ q �⇒ p �� q.

The alternate definition of divergence is again to proceed from the discrete case to
the general case as follows.

Definition 5 (Kullback–Leibler divergence—second definition)

D(p‖q) � sup
∑

i

p(Ai ) log
p(Ai )

q(Ai )
(17)

where the supremum is again taken over all partitions of � into a countable number
of (pairwise disjoint) Ai ∈ A.

Similarly as for total variation, the sum
∑

i p(Ai ) log
p(Ai )
q(Ai )

≥ 0 in (17) can only
increase by subpartitioning (refining the partition) by thewell-known log-sum inequal-
ity (see e.g., [41]); hence (17) can be seen as a limit for finer and finer partitions. Also,
when� ⊂ R or Rd , this supremum can simply be taken over partitions of intervals Ai ,
by Dobrushin’s theorem [42, § 2].

Proposition 5 The above two definitions of Kullback–Leibler divergence coincide.
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Proof A 1959 theorem by Gel’fand & Yaglom [43] and Perez [44] proves that the two
definitions (13) and (17) coincide—in particular when (17) is finite, which implies
p � q. For a modern proof see [34, § 4.2]. ��

In contrast to total variation, Kullback–Leibler divergence “tensorizes” nicely for
products of probability distributions:

Proposition 6 (Tensorization property) For products of n distributions p = ⊗n
i=1 pi ,

q = ⊗n
i=1 qi , one has

D(p‖q) = D
( n⊗

i=1

pi

∥
∥
∥

n⊗

i=1

qi

)
=

∑

i

D(pi‖qi ) (18)

Proof Obvious from the definition. ��
Incidentally, this tensorization property implies that the corresponding divergence

is unbounded, while, by contrast, most of the above examples of distances (like the
total variation distance) are bounded and can always be normalized to assume values
between 0 and 1.

4 Amotivating example

To understandwhy Pinsker’s inequality D ≥ ϕ(�) can be useful, consider the problem
of distinguishing a fair coin (Bernoulli distribution B(p) with p = 1/2) from a unfair
coin (Bernoulli distribution B(q) with q �= 1/2) using only the result of a certain
number n of i.i.d. tosses—we are not allowed to examine the coin which could be
slightly bent to make it unfair.

By Proposition 3, to be sure to identify whether the coin is fake or not with proba-
bility ε requires errors of both types less than ε, hence 2ε ≥ 1 − �, that is,

�
( n⊗

i=1

pi ,

n⊗

i=1

qi

)
≥ 1 − 2ε (19)

for independent tosses i = 1 ton. Theproblem is that total variation�
(⊗n

i=1 pi ,
⊗n

i=1

qi

)
does not nicely tensorize (is not scalable). However, Kullback-Leibler divergence

is scalable by (18):

D
( n⊗

i=1

pi

∥
∥
∥

n⊗

i=1

qi

)
= n · d(p‖q) (20)

where

d(p‖q) = d(
1

2
‖q) = log

1

2
√

q(1 − q)
= log

1√
1 − 4δ2

(21)
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using the notation δ = δ(p, q) = |p − q| for binary total variation.
By Pinsker’s inequality D ≥ ϕ(�), this gives the following estimate:

n ≥ ϕ(1 − 2ε)

log 1√
1−4δ2

tosses (22)

are required to distinguish a fair coin from an unfair one. This estimate is easily
computable given ϕ for some particular Pinsker inequality, and as expected is all the
more large as δ = |p − q| is small.

As this example shows, Pinsker’s inequality is particularly useful to carry tensoriza-
tion properties for independent distributions to statistical (total variation) distance. In
summary, it is useful to make nonscalable quantities scalable.

5 Statistical distance andmutual information

Pinsker, in his seminal work [42], did not actually consider probability distributions
in general but rather random variables: How does some observation Y affect the prob-
ability distribution of some given random variable X? This can be measured as the
distance or divergence of X from X given Y , averaged over the observation Y .

Using the total variation distance, one obtains the notion of statistical distance
between the two random variables X and Y , which is often used in computer science
(see, e.g., [45] and [35, Chap. 8]).

Definition 6 (Statistical distance, a.k.a. total variation information)

�(X; Y ) � Ey �(pX |y, pX ) = �(pXY , pX ⊗ pY ). (23)

Using the Kullback–Leibler divergence, one obtains the celebrated mutual infor-
mation introduced by Fano [46], based on Shannon’s seminal work [47]:

Definition 7 (Mutual information)

I (X; Y ) � Ey D(pX |y‖pX ) = D(pXY ‖pX ⊗ pY ). (24)

Here the semicolon “;” is often used to separate the variables. The comma “,” rather
denotes joint variables and has higher precedence than “;” as in I (X; Y , Z) which
denotes the mutual information between X and (Y , Z). Basic properties of I (X; Y )

can be found in [34, 37, 38].

Remark 7 (Markov Kernel) In this information theoretic setting, a rigorous definition
of pX |Y is based on the notion of Markov kernel, which can be obtained by disintegra-
tion of a joint distribution pX ,Y under some technical conditions (see.g., [34, § 2.4] ).
Such considerations are not needed if one assumes that joint pXY and product pX ⊗ pY

distributions are dominated by a product measure dμ(x)dν(y) with corresponding
Radon-Nikodym derivatives p(x, y) = pXY (x, y) and q(x, y) = pX ⊗ pY (x, y) =
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pX (x)pY (y). In this case one can simply define pX |y(x) = pXY (x,y)
pY (y)

for pY -a.e. y so
that the above relations hold.

From these definitions, it follows that any Pinsker inequality (1) can also be inter-
preted as an inequality relating statistical distance� = �(X; Y ) tomutual information
I = I (X; Y ):

Proposition 7 (Informational Pinsker inequality)

I (X; Y ) ≥ ϕ(�(X; Y )) (25)

for any two random variables X and Y , with the same ϕ as in (1).

Proof Obvious from (1) by setting p = pXY and q = pX ⊗ pY . ��

6 Some Ingredients for Proving Pinsker Inequalities

6.1 Binary reduction of Pinsker’s inequality

Astraightforward observation, that greatly simplifies the derivation of Pinsker inequal-
ities, follows from the alternative definitions (7) and (17).

Theorem 8 (Binary reduction) Any Pinsker inequality (1) is equivalent to the inequal-
ity expressed in term of binary distributions (4), (14):

d ≥ ϕ(δ) (26)

relating binary divergence d = d(p‖q) to binary distance δ = |p − q| and holding
for any parameters p, q ∈ [0, 1]. Thus, the binary case, which writes

p log
p

q
+ (1 − p) log

1 − p

1 − q
≥ ϕ(|p − q|) (27)

is equivalent to the general case, but is naturally easier to prove.

Proof By Corollary 2, the supremum in (7) is attained for binary partitions of the
form {A, A�}. On the other hand, the supremum in (17) is obviously greater than that
supremum for such binary partitions. Therefore, if Pinsker’s inequality holds in the
binary case, then

D(p‖q) ≥ d(p(A)‖q(A)) ≥ ϕ(δ(p(A), q(A))) = ϕ(�(p, q)) (28)

which is Pinsker’s inequality in the general case. ��
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Remark 8 (Symmetries) In any Pinsker inequality, since �(p, q) is symmetric in
(p, q), both D(p‖q) and D(q‖p) admit the same lower bound ϕ(�(p, q)). Further-
more, in the binary case, one has d(p‖q) = d(1 − p‖1 − q). Therefore, it is enough
to prove only (27) under the condition p > q, that is

p log
p

q
+ (1 − p) log

1 − p

1 − q
≥ ϕ(p − q) (29)

for any 1 ≥ p > q ≥ 0.

Remark 9 (Data processing inequality) The above binary reduction principle was first
used by Csiszár [32] but as a consequence of amore general data processing inequality
for any Markov kernel pY |X , which states that if the Markov kernel sends pX to pY

and qX to qY , then

D(pY ‖qY ) ≤ D(pX‖qX ). (30)

In fact this holds for any f -divergence, including total variation distance. This was
first proved by Csiszár [22, 32]. Taking the “deterministic channel” Y = 1X∈A one
recovers the binary reduction d(pX (A)‖qX (A)) ≤ D(pX‖qX ).

The full generality of the data processing inequality, however, is not needed in
Theorem 8.

6.2 Comparison of two Pinsker inequalities

The following is sometimes useful to compare two different Pinsker inequalities (1)
(provided that ϕ is differentiable and always satisfies the condition ϕ(0) = 0):

Theorem 9 (Pinsker comparison) A Pinsker inequality D ≥ ϕ1(�) is (uniformly)
stronger then another Pinsker inequality D ≥ ϕ2(�), that is, ϕ1(�) ≥ ϕ2(�) for all
0 ≤ � ≤ 1, if the derivatives satisfy the inequality ϕ′

1 ≥ ϕ′
2.

This comparison principle can be stated as follows: lower derivative ϕ′ implies weaker
Pinsker inequality.

Proof Consider two Pinsker inequalities of the form D ≥ ϕ1(�) and D ≥ ϕ2(�)

where both ϕ1 and ϕ2 are nonnegative differentiable functions such that ϕ1(0) =
ϕ2(0) = 0. By comparison of derivatives, ϕ′

1 ≥ ϕ′
2 and ϕ1(0) = ϕ2(0) = 0 imply

D ≥ ϕ1(�) ≥ ϕ2(�). ��

6.3 Note on the choice of the base of the logarithm

The inequalities shown in this paper are more easily expressed with natural logarithms
(ln = loge to base e) because it simplifies the mathematical derivations. Accordingly,
many papers do assume, sometimes implicitly, natural logarithms. It has become,
however, common practice in information theory that the logarithm (log) is considered
in any base, so that one can express inequalities with logarithms to base 2 or 10 instead
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of natural logarithms. In this general case, any logarithmic measure such as D has to
be divided by log e. Thus, if the inequality D ≥ ϕ(�) holds for natural logarithms,
then the general case writes D ≥ ϕ(�) · log e. As a result, some constants in the
inequalities have to be multiplied by log e. We follow this approach here. The “natural
case” can always be recovered by removing the constants log e.

7 Pinsker and other authors in the 1960 s

7.1 Pinsker’s original derivation

It is generally said that Pinsker, in his 1960 book [42], proved the classical Pinsker
inequality in the form

D ≥ c · �2 (31)

with a suboptimal constant c, and that the optimal (maximal) constant c = 2 log e was
later found independently by Kullback [48], Csiszár [32] and Kemperman [49], hence
the alternative name Kullback-Csiszár-Kemperman inequality.

In fact, Pinsker did not explicitly state Pinsker’s inequality in this form, not even
in the general form (1) for some other function ϕ. First of all, he only investigated
mutual information I (X; Y ) vs. statistical distance �(X; Y ) with p = pX ,Y and
q = pX ⊗ pY (see § 5)—yet his results do easily carry over to the general case
of arbitrary distributions p and q. More important, he actually showed two separate
inequalities:

Proposition 10 (Pinsker’s 1960 contribution)

� · log e ≤
∫

p
∣
∣
∣log

p

q

∣
∣
∣ dμ ≤ D + 10

√
D · log e. (32)

Proof By (5) and the same inequality (p−q) log e ≤ p log p
q as in the proof of Prop. 4,

one has

� · log e =
∫

(p − q)+ log e dμ ≤
∫

p
(
log

p

q

)+ dμ ≤
∫

p
∣
∣log

p

q

∣
∣ dμ.

Pinsker’s proof of the second inequality amounts to upper bounding the negative part∫
p
(
log p

q

)− dμ ≤ 5
√

D · log e, and ismuchmore involved [42, pp. 14–15], see Fig. 1.
��

Remark 10 (Barron’s 1986 derivation [17]) Decades later in 1986, Barron [17,
Cor. p. 339] proved this second inequality in (32) (with the better constant

√
2 instead

of 10) as an easy consequence of Pinsker’s inequality itself with the optimal constant
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Fig. 1 Pinsker’s second inequality in (32): Original statement (in Russian) in [42] where � ≤ 10 for natural
logarithms, and the proof, pages 14–15 of [42], translated into English

c = 2 log e. Indeed, one has
∫

p
∣
∣log p

q

∣
∣ = D + 2

∫
p
(
log p

q

)−, where

∫
p
(
log

p

q

)− =
∫

p<q
p log

q

p
≤

∫

p<q
(q − p) log e

=
∫

(q − p)+ log e = � log e ≤
√

D log e

2
,

hence
∫

p
∣
∣log p

q

∣
∣ ≤ D + √

2D log e.

Corollary 11 (Verdú’s 2014 observation [50]) Pinsker’s original inequalities (32)
imply the following “Pinsker’s inequality” (31) with suboptimal constant c = log e

102 :

D ≥ log e

102
�2. (33)

However, this was nowhere mentioned in Pinsker’s book [42].

Proof Since 0 ≤ � ≤ 1 always, one can always assume

� log e ≤ D + 10
√

D log e ≤ log e,
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otherwise the inequality is vacuous. Then by (32),

�2(log e)2 ≤ (D + 10
√

D log e)2

= (D + 20
√

D log e)D + 100D log e

≤ 2D log e + 100D log e = 102D log e,

which gives (33). ��
Remark 11 (Continuity properties) By Pinsker’s inequality (31), if divergence is arbi-
trarily small, then so is total variation. Thus for distributions, the strongest type of
convergence is in divergence, followed by total variation, followed by convergence in
distribution.

What motivated Pinsker in his 1960 book [42, § 2.3] was to prove a “continu-
ity property” with respect to mutual information in terms of sequences of random
variables:

I (Xn; Yn) → 0 �⇒ �(Xn; Yn) → 0 (34)

This is obvious from the Pinsker inequality I (Xn; Yn) ≥ c ·�2(Xn; Yn) which is (31)
with p = pX ,Y and q = pX ⊗ pY .

7.2 First occurrences of Pinsker inequalities in the 1960 s

7.2.1 Volkonskii and aozanov (1959)

The first explicit occurrence of a Pinsker inequality of the general form D ≥ ϕ(�) (1)
occurs even before the publication of Pinsker’s book, by Volkonskii and Rozanov [51,
Eq. (V)] in 1959.

Proposition 12 (Volkonskii and Rozanov 1959 contribution)

D ≥ 2 log e · � − log(1 + 2�). (35)

They referred to M. S. Pinsker (probably an earlier manuscript version of his book
[42]) for his continuity property (34) and gave a simple proof of their inequality as
follows.

Proof Since f (x) = x log e − log(1 + x) ≥ f (|x |) ≥ 0 is convex, one has

D(p‖q) =
∫

p

((
q

p
− 1

)

log e − log
q

p

)

=
∫

p f

(
q

p
− 1

)

≥
∫

p f

(∣
∣ q

p
− 1

∣
∣
)

≥ f

(∫
p
∣
∣ q

p
− 1

∣
∣
)

= f (2�).
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��
Since for x > 0, one has 0 < f (x) = x log e − log(1+ x) < x2

2 log e in the above
proof, the lower bound is nonnegative but strictly weaker than the classical Pinsker
inequality (31) with optimal constant c = 2 log e. As we shall see, however, both are
asymptotically optimal near D = � = 0 because f (x) = x2

2 log e + o(x2).

7.2.2 Sakaguchi (1964)

The first explicit occurrence of a Pinsker inequality of the classical form (31) appeared
as an exercise in Minoru Sakaguchi’s 1964 book [52, pp. 32–33]. Unfortunately,
Sakaguchi’s book remained unpublished.

Proposition 13 (Sakaguchi’s 1964 Contribution)

D ≥ log e · �2 (36)

which is (31) with the suboptimal constant c = log e < 2 log e.

Proof Sakaguchi actually proved D ≥ 2�2
H log e ≥ �2 log e where �H is the

Hellinger distance: Considering the distribution q ′ =
√

pq∫ √
pq
, one has

D(p‖q) = 2
∫

p log
p√
pq

= 2D(p‖q ′) − 2 log
∫ √

pq

≥ −2 log
∫ √

pq

≥ 2(1 −
∫ √

pq) log e = 2�2
H log e

since log x ≤ (x − 1) log e. Now, since �2
H ≥ 0,

∫ √
pq ≤ 1, so

2�2
H ≥

(

1 +
∫ √

pq

) (

1 −
∫ √

pq

)

= 1

4

∫
(
√

p + √
q)2

∫
(
√

p − √
q)2

≥ 1

4

(
∫

(
√

p + √
q)(

√
p − √

q)
)2 = �2

by Cauchy-Schwarz inequality. ��

7.2.3 McKean (1966)

The first published occurence of a Pinsker inequality of the classical form (31) was
by McKean [53, §9a)] in 1966, who was motivated by a problem in physics related to
Boltzmann’s H-theorem.
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Proposition 14 (McKean’s 1966 contribution)

D ≥ log e

e
· �2 (37)

which is (31) with the suboptimal constant c = log e
e (worse than Sakaguchi’s).

McKean was aware that his constant c is “not the best possible constant”. His proof is
originally under the (unnecessary) assumption that q is Gaussian, and can be rephrased
as follows.

Proof The convex function x log x − (x − 1) log e is lower bounded by (x−1)2

2e log e
when x ≥ e and by x−1

2e log e for 0 < x < e. Splitting the integral it follows that

D =
∫

q
( p

q
log

p

q
− ( p

q
− 1

)
log e

)

≥ 1

2e

(∫

p
q <e

q
∣
∣ p

q
− 1

∣
∣2 +

∫

p
q ≥e

q
∣
∣ p

q
− 1

∣
∣
)
log e

≥ 1

2e

[(∫

p
q <e

q
∣
∣ p

q
− 1

∣
∣
)2 +

(∫

p
q ≥e

q
∣
∣ p

q
− 1

∣
∣
)2]

log e

by the convexity of x2 and the fact that
∫

p
q ≥e q| p

q − 1| = ∫
p
q ≥e p − q ≤ ∫

p = 1.

Thus since a2 + b2 ≥ (a+b)2

2 ,

D ≥ 1

2e

[(∫

p
q <e

|p − q|
)2 +

(∫

p
q ≥e

|p − q|
)2]

log e

≥ log e

4e

(∫
|p − q|

)2 = log e

e
�2.

��

7.2.4 Csiszár (1966)

The first mention of the classical Pinsker inequality (31)with the optimal constant c =
2 log e was by Csiszár [39], in a manuscript received just one month after McKean’s.
In this 1966 paper, however, Csiszár only proved (31) with the suboptimal constant
c = log e

4 [39, Eq. (13)], which is worse than McKean’s. But he also acknowledged
the preceding result of Sakaguchi (with the better constant c = 1) and stated (without
proof) that the best constant is c = 2. He also mentioned the possible generalization
to f -divergences. On this occasion he credited Pinsker for having found an inequality
of the type (31) (which as we have seen was only implicit).

Proposition 15 (Csiszár’s 1966 contribution)

D ≥ log e

4
· �2 (38)
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which is (31) with the suboptimal constant c = log e
4 (worse than McKean’s).

Csiszár’s proof, which can be adapted to other types of f -divergences, is as follows.

Proof One can always assume D ≤ log e
4 since � ≤ 1. The convex function x log x −

(x −1) log e has null derivative at x = 1 and has second derivative log e
x ≥ 2 log e

3 when

|x −1| ≤ √
D/ log e ≤ 1

2 . It follows that x log x − (x −1) log e ≥ log e
3 (x −1)2 there.

Therefore,

2� =
∫

q
∣
∣ p

q
− 1

∣
∣

≤ √
D/ log e +

∫

| p
q −1|>√

D/ log e
q
∣
∣ p

q
− 1

∣
∣

≤ √
D/ log e + 1√

D/ log e

∫

| p
q −1|>√

D/ log e
q
( p

q
− 1

)2

≤ √
D/ log e + 3√

D/ log e

∫
p log

p

q
− (p − q) log e

= √
D/ log e + 3D/ log e√

D/ log e
= 4

√
D/ log e.

��
Following his derivation, Csiszár declares: “the best constant can be calculated in a
straightforward way […] I intend to return to this question in another paper”.

7.2.5 Csiszár again (1967)

The first published proof of the classical Pinsker inequality (31) with the optimal
constant c = 2 log e was again by Csiszár one year later [32, Thm. 4.1] using binary
reduction—which he obtained as a particular case of the data processing inequality,
see Remark 9.

Proposition 16 (Csiszár’s 1967 Contribution)

D ≥ 2 log e · �2

where the constant 2 log e is optimal.

His proof can be written as an essentially one-line proof as follows.

Proof Using binary reduction (Theorem 8), it suffices to prove that d = d(p‖q) ≥
2 log e · δ2 where δ = |p − q|. Now by the “fundamental theorem of calculus”,

d(p‖q) = d(p‖p)
︸ ︷︷ ︸

=0

+
∫ q

p

∂d(p‖r)

∂r
dr =

∫ q

p

r − p

r(1 − r)
dr log e

≥ 4
∫ q

p
(r − p) dr log e = 2(p − q)2 log e

123



O. Rioul

where we used the inequality r(1 − r) ≤ 1
4 for r ∈ [0, 1]. That c = 2 log e is not

improvable follows from the expansion d(p‖q) = 2(p − q)2 log e + o((p − q)2). ��
As a side result, this inequality (like theVolkonskii-Rozanov inequality (35)) is asymp-
totically optimal near D = � = 0.

7.2.6 Kullback (1967)

In a note added in proof, however, Csiszár mentions an earlier independent derivation
of Kullback, published in the same year 1967 in [48], with an improved inequality of
the form D ≥ 2 log e·�2+ 4

3 log e·�4. In his correspondance,Kullback acknowledged
the preceding result of Volkonskii and Rozanov. Unfortunately, as Vajda noticed [54]
in 1970, the constant 4

3 is wrong and should be corrected as 4
9 [55] (see explanation

below).

Proposition 17 (Kullback’s 1967–1970 Contribution)

D ≥ 2 log e · �2 + 4

9
log e · �4 (39)

where the initial constant for the second term was 4/3 and has been corrected to 4/9
in 1970.

Kullback’s derivation uses again binary reduction (obtained as in the proof of Theo-
rem 8) and then invokes an inequality of Schützenberger. This is explained in greater
detail in the following sections. As it turns out, both constants 2 log e and 4

9 log e are
optimal.

7.2.7 Kemperman (1968)

Finally, in an 1968 Canadian symposium presentation [56]—later published as a jour-
nal paper [49] in 1969, Kemperman, apparently unaware of the 1967 papers by Csiszár
and Kullback, again derived the classical Pinsker inequality with optimal constant
c = 2 log e.

Proposition 18 (Kemperman’s 1968 Contribution)

D ≥ 2 log e · �2 (40)

where the constant 2 log e is optimal.

Kemperman’s ad-hoc proof (repeated in the renowned textbook [57]) is based on
the inequality 4+2x

3 (x log x − (x − 1) log e) ≥ (x − 1)2 log e for any x ≥ 0, which is
much less satisfying than the one-line proof of Prop. 16:

123



A historical perspective...

Proof By Cauchy-Schwarz,

√
2D =

√∫
q
4 + 2(p/q)

3
·
∫

q
( p

q
log

p

q
− ( p

q
− 1

)
log e

)

≥
∫

q

√
4 + 2(p/q)

3

√
p

q
log

p

q
− ( p

q
− 1

)
log e

≥
∫ ∣

∣ p

q
− 1

∣
∣q

√
log e = 2�

√
log e.

��
To acknowledge all the above contributions, it is perhaps permissible to rename

Pinsker’s inequality as the Pinsker-Volkonskii-Rozanov-Sakaguchi-McKean-Csiszár-
Kullback-Kemperman inequality. However, this would unfairly obliterate the pioneer
contribution of Schützenberger, as we now show.

8 Schützenberger’s contribution (1953)

8.1 Schützenberger’s life and work

First of all, it is worth saying a few words about the life and work of Marcel-Paul
(Marco) Schützenberger. He is such an extraordinary personality, one of the most
original and prolific researchers in many diverse areas such as genetics, statistics,
information theory, variable length codes, combinatorics, automata, formal languages,
etc. At the same time he also had an extraordinary personal life.

Marco Schützenberger is of Alsatian origin. His great-great-grandfather Georges
Schützenberger was mayor of Strasbourg (the author’s birthplace), and the name
“Schützenberger” is still well known today as a beer brand. His great grandfather Paul
Schützenberger moved from Alsace to Paris just before the 1870 Franco-German war,
and was a renowned chemist. He founded the ESPCI (École supérieure de physique et
de chimie industrielles de la Ville de Paris), where many important physicists worked,
and was the subject of a satire in Les Palmes de M. Schutz, a famous play and movie in
which he [Monsieur Schutz] insistently relies on the discoveries of Pierre and Marie
Curie to obtain the palmes académiques (a national order awarded to eminent aca-
demics). Marco’s father Pierre Schützenberger was a psychiatric physician, expert
witness in the famous Papin sisters’ case [58].

DuringWorldWar II, the youngMarco was appointed intern at a psychiatric hospi-
tal. At the same time he was active in resistance activities—he apparently worked for
the Intelligence Service—and published his first mathematical paper on group theory
in 1943. After World War II, Schützenberger participates in surrealist and Dadaist
movements—he appears in a short film with Boris Vian, and becomes the main char-
acter (“Dr. Markus Schutz”) in Vian’s famous novel Et on tuera tous les affreux (“To
Hell with the Ugly”). He is also a member of the cabinet of Communist minister
Charles Tillon, publishes articles in lattice theory and in physiology, while studying
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Fig. 2 A domestic scene staged
by Marcel-Paul (Marco)
Schützenberger and his wife,
world-renowned psychotherapist
Anne Ancelin Schützenberger,
entitled “Psycho-drama of a
1948 marriage” during the Saint
Germain des Prés period in Paris

“ancient Mongolian”. In 1948 he defends his doctoral thesis entitled Contribution à
l’étude du sexe à la naissance (Contribution to the study of sex at birth), awarded by
the French Academy of Medicine. He applies statistical methods to the analysis of
various medical problems, and later contributes to the discovery of trisomy 21.

Also in 1948, following a paper by French psychologist Anne Ancelin based on his
statistics, he was offed a position in London. In order to be better paid, he got married
immediately in London with Anne Ancelin (see photo in Fig. 2)…but eventually
declined the position. The couple had one daughter, Hélène, and soon divorced in
1952. Schützenberger publishes papers on combinatorics in a genetics journal, on
biostatistics with statistician George Darmois, and is consultant epidemiologist for
the World Health Organization (WHO). In 1952 and 1953, the WHO sent him to Asia
to combat infectious diseases of tropical countries. He met his second wife Hariati
Soerosoegondo in Java, Indonesia.

In 1952 he came to information theory from biostatistics and defended his mathe-
matical thesis in 1953 (advisor: GeorgesDarmois, president:Maurice Fréchet) entitled
Contribution aux applications statistiques de la théorie de l’information (Contribu-
tion to statistical applications of information theory) [59]. He also has made several
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other discoveries in statistics in the 1950s, notably on what is now called the Bayesian
Cramér-Rao bound [60, 61].

In the present paper, we focus on a particular result obtained by Schützenberger in
his 1953 thesis, in the context of the interplay between statistics and information theory.
In fact, Schützenberger was apparently the first to discover the profound connections
between informationmeasures such as Shannon’s entropy, “Wald’s information” (now
better known as Kullback–Leibler divergence) and Fisher’s information in estimation
theory. Presumably because of these results, while affiliated to the CNRS (the French
national center of scientific research), he was invited by Claude Shannon to spend the
year 1956–1957 at the MIT Research Laboratory of Electronics in Cambridge, where
his son Mahar (contraction of Marco and Hariati) was born.

According to Dominique Foata [62], his first maths student, and Dominique Perrin
[63], another of his students, both renowed researchers in discrete mathematics and
computer science, there is no evidence of Schützenberger interacting directly with
Shannon. Perhaps they didn’t get along very well at MIT, or already had very different
preoccupations in 1956? As a matter of fact, Schützenberger was rather silent about
this period of his professional life, and was apparently not inclined to ever mention his
thesis and his early work in mathematical statistics and information theory. According
to Foata [62], he wasn’t even convinced he had written a good thesis.

During his stay at MIT and later on, Schützenberger was much more interested in
variable length codes with R. S. Markus and context-free languages with N. Chomsky.
He had already worked on lattices, statistics, block-designs and other combinatorial
problems, and progressively on semigroups, automata, and codes. He is known for his
Schützenberger groups in semigroup theory. In the algebraic theory of variable-length
codes, theKleene-Schützenberger theorem [64] is a fundamental theorem in the theory
of formal languages and automata. He is also a pioneer of formal language theory with
N. Chomsky. The famous Chomsky-Schützenberger theorem [65] is a representation
theorem of context-free languages. With S. Eilenberg, he developed the theory of
pseudo-varieties of semigroups. He is known for his works on the combinatorics of
words. He created the combinatorics of the “plactic monoid”, and its applications in
the study of the symmetric group. Overall Schützenberger was renowned to all as
a specialist in discrete mathematics and computer science, at the interface between
algebra, probability and combinatorics. His early work on information theory remains
little known.

In the 1970s and 1980s, Marco Schützenberger also served as scientific advisor
for the WHO, to detect and prevent accidents due to the careless use of medicines or
chemical and biological weapons. His sonMahar, major (ranked first in the admission
exam) of the école Polytechnique in 1976,was killed in a car accident in 1980 at the age
of 23, which deeply affected Marco Schützenberger. After serving as a corresponding
member, Marco Schützenberger was elected to the French Academy of Sciences in
1988. Since 1991, the Mahar Schützenberger Prize has been awarded to Indonesian
researchers preparing their doctoral thesis in France.

According to his students and friends, Schützenberger’s personality was complex
and unorthodox. He always held strong—sometimes contradictory—opinions on very
diverse subjects such as theDarwinian theory of evolution,which he considered incom-
patiblewith any serious statistical analysis. Capable of glowing praises aswell as ironic
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sarcasm, hewas passionate for discussion, paradox and controversy. The bookTriangle
de pensées (Triangle of thought) reports the discussions between Alain Connes, André
Lichnerowicz, and Marco Schützenberger on general relativity, quantum mechanics
or Gödel’s theorem, and more generally the relations among mathematics, physics,
philosophy, and other sciences. Schützenberger was saddened by the death of his wife
Hariati in 1993. Inveterate smoker [66], he died a few years after her, in 1996.

8.2 Schützenberger’s expansion

Sevenyears before the publicationofPinsker’s book, 14years beforeCsiszár derivation
of the first order term, and 17 years before Kullback’s correction of the second-order
term, Marco Schützenberger, in his 1953 doctoral thesis [59], proved the following

Theorem 19 (Schützenberger’s Inequality [59, p. 58])

D ≥ 2 log e · �2 + 4

9
log e · �4 (41)

with optimal constants 2 log e and 4
9 log e.

Optimality here means that the constants 2, 4
9 are (in turn) not improvable: If D ≥

c1�2 + c2�4 with c1, c2 ≥ 0 then not only c1 ≤ 2 log e but also c1 = 2 log e implies
c2 ≤ 4

9 log e, i.e., the constants’ pair (2, 4
9 ) is maximal in lexicographic order.

Schützenberger’s derivation is based on the following remarkable identity.

Lemma 20 (Schützenberger’s expansion) For any x, y ∈ [−1, 1],

d(x, y) � 1 − x

2
log

1 − x

1 − y
+ 1 + x

2
log

1 + x

1 + y

=
∑

k≥1

x2k − 2kxy2k−1 + (2k − 1)y2k

2k(2k − 1)
log e

= (x − y)2
∑

k≥1

x2k−2 + 2x2k−3y + 3x2k−4y2 + · · · + (2k − 1)y2k−2

2k(2k − 1)
log e

(42)

where all terms are nonnegative.

Proof Write d(x, y) = e(x, y) + e(−x,−y) where e(x, y) expands as

e(x, y) = 1−x
2 log 1−x

1−y = 1−x
2

∑
n≥1

yn−xn

n log e = 1
2

∑
n≥1

(yn−xn)+(xn+1−xyn)
n log e.

Adding e(−x,−y) amounts to restricting the sum to even values n = 2k for (yn − xn)

and to odd values n = 2k − 1 for (xn+1 − xyn) and multiplying by 2. This gives

d(x, y) = ∑
k≥1

y2k−x2k

2k log e + x2k−xy2k−1

2k−1 log e = ∑
k≥1

x2k−2kxy2k−1+(2k−1)y2k

2k(2k−1) log e
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as announced.
Now the polynomial x2k − 2kxy2k−1 + (2k − 1)y2k vanishes for x = y and has

derivative in x for fixed y equal to 2kx2k−1 − 2ky2k−1, which vanishes only when
x = y. Therefore, this polynomial is always nonnegative and divisible by (x − y)2.
More precisely, the following calculation gives the announced factorization:

x2k − 2kxy2k−1 + (2k − 1)y2k = x2k − y2k − 2k(x − y)y2k−1

= (x − y)
(
x2k−1 + x2k−2y + · · · + xy2k−2 + y2k−1 − 2ky2k−1)

= (x − y)
(
x2k−1 + 2x2k−2y + 3x2k−3y2 + · · · + (2k − 1)xy2k−2

− x2k−2y − 2x2k−3y2 − · · · − (2k − 2)xy2k−2 − (2k − 1)y2k−1)

= (x − y)2
(
x2k−2 + 2x2k−3y + 3x2k−4y2 + · · · + (2k − 1)y2k−2)

(43)

where both factors are nonnegative. ��

Proof of Schützenberger’s Theorem 19 Consider the binary case with d = d(p‖q) and
define x = 1−2p ∈ [−1, 1] and y = 1−2q ∈ [−1, 1]. Then δ = (p−q) = y−x

2 and

Schützenberger’s expansion d = 4δ2
∑

k≥1
x2k−2+2x2k−3y+···+(2k−1)y2k−2

2k(2k−1) log e gives

d = 2 log e · δ2 + δ2

3
log e · (x2 + 2xy + 3y2) + · · · (44)

In particular d ≥ 2 log e·δ2 where the constant 2 log e is optimal because d ∼ 2 log eδ2

when x, y → 0.

In the second-order term, one has x2+2xy +3y2 = (x−y)2

3 +2 (x+2y)2

3 ≥ 4δ2
3 . This

gives d ≥ 2 log e · δ2 + δ2

3 log e · 4δ2
3 = 2 log e · δ2 + 4

9 log e · δ4. Again the constant
4
9 log e is optimal because d ∼ 2 log e · δ2 + 4

9 log e · δ4 as x = −2y → 0. ��

Schützenberger’s original derivation (in French) is reproduced in Fig 3. The framed
formula “qui semble nouvelle” (that seems to be new) is Schützenberger’s inequal-
ity (41) where W (“information de Wald”) is the Kullback–Leibler divergence and D
is the total variation distance. It is the only framed equation in the whole thesis, which
should indicate that Schützenberger was aware of its importance.

Admittedly, Schützenberger only considered the binary case, yet due to the binary
reduction principle (Theorem 8), we know that this does not entail any loss of gen-
erality. There is also a typo at the end of the derivation that says that minimizing
x2 + 2xy + 3y2 for fixed 2δ = y − x gives δ2

3 instead of the correct 4δ2
3 .

The fact remains that quite remarkably, not only does Schützenberger’s thesis con-
tain the classical Pinsker inequality (31) with the optimal constant c = 2 log e, but
also the second-order improvement, with the (correct) optimal constant 4

9 log e for the
second-order term, 17 years before Kullback!
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Fig. 3 Pinsker before Pinsker: In Schützenberger’s notation [59, p. 58], W is for Wald’s information, which
is Kullback–Leibler divergence, and D = p − q. There is a typo at the end: Minimizing x2 + 2xy + 3y2

for fixed 2D = y − x is said to give D2/3 instead of the correct 4D2/3

8.3 The 4/3 vs. 4/9Mystery

In fact, leaving aside the use of binary reduction, Kullback’s 1967 derivation [48] is
just a mention of Schützenberger’s inequality with the wrong constant 4

3 instead of 4
9 .

Onemaywonder why such a wrong constant appeared instead of the correct one found
in Schützenberger’s thesis published in 1954 (Fig 3).

Somewhat mysteriously, just before the apprearence of Kullback’s 1967 paper,
Kambo and Kotz presented a verbatim copy of Schützenberger’s derivation in their
1966 paper [67], in a different context (the derivation of a variant of a Chernoff
bound), without citing the original reference of Schützenberger, and also with the
wrong constant 4

3 ! A bit later in 1969, the constant 4
3 was corrected to 4

9 by Krafft
[68], referring only to the Kambo-Kotz 1966 paper.

One year later, in the context of Pinsker inequalities, Vajda [54] pointed the wrong
constant in Kullback’s paper and claimed that “Kraft corrected an inequality of
Schützenberger on which Kullback’s result was based”. Almost immediately, the cor-
rectionwas acknowledged byKullback in the IEEE transactions on information theory
[55].

From these facts, it appeared plausible to us that, even though the correct constant
4
9 does appear in the publicly available 1954 published thesis of Schützenberger, a
previous version of the manuscript, available to Kullback and other researchers, had
the erroneous 4

3 which was later corrected by Marco Schützenberger from a “3” to
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Fig. 4 Review of Schützenberger’s thesis by Kullback in 1956 [70]. The erroneous 4
3 appears in the first

formula at the top of the second column. The first equal sign = in this formula must in fact be a “lesser or
equal” sign ≤

a “9”. As it turns out, however, this is not the case. Thanks to his daughter Hélène
Schützenberger [69] who showed us the original 1953 manuscript, it clearly appeared
that the 4

9 constant was correct from the start and has never been in error.
Dominique Foata, his first mathematical student [62], pointed out to us that the

review of Schützenberger’s thesis was in fact made in the Mathematical Reviews
journal by Kullback himself in 1956 [70]. At the end of his review, Kullback declares:
“The reader is cautioned to read out for misprints”. This, however, did not prevent
him from making several misprints in his review, notably on the main Schützenberger
inequality as shown in Fig. 4, where the constant 4

3 is incorrect. Therefore, as it turns
out, Kullback was wrong about this constant as early as 1956, and reproduced the
error in his 1967 paper. It is plausible that the unconventional typography of the tiny 9
in the fraction 4/9 on page 58 of Schützenberger’s thesis (Fig. 3) is more reminiscent
of a 3 than a 9, at least for Americans (see Fig. 5). This could also be an explanation
as to why Kambo and Kotz (independently?) made the same mistake.
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Fig. 5 A tiny “9” that can be read as a “3” in the boxed equation in the original manuscript (Fig. 3): It is
likely that in the USA, it rather follows the shape of a “3”

8.4 Subsequent works based on Schützenberger’s expansion

In 1969, Krafft and Schmitz [71] extended Schützenberger’s derivation by one addi-
tional term in 2

9 log e · �6, which was converted into a Pinsker inequality in 1975 by
Toussaint [72]. But, in fact, the constant 2

9 log e is not optimal; the optimal constant
32
135 log e was found in 2001 by Topsøe [73]. Topsøe also derived the optimal constant
for the additional term 7072

42525 log e·�8. It is quite remarkable that all of such derivations
are crucially based on the original Schützenberger’s expansion (42), which the authors
of these works wrongly refer to as the Kambo-Kotz expansion (see the discussion in
the above Subsection).

Proposition 21 (Topsøe’s 2001–2003 contribution)

D ≥ 2 log e · �2 + 4

9
log e · �4 + 32

135
log e · �6 + 7072

42525
log e · �8 (45)

where the constants 2 log e, 4
9 log e, 32

135 log e and 7072
42525 log e are optimal.

Again optimality means that these constants are, in turn, not improvable: If
D ≥ c1�2 + c2�4 + c3�6 + c4�8 with ci ≥ 0 then (c1, c2, c3, c4) =
(2 log e, 4

9 log e, 32
135 log e, 7072

42525 log e) is maximal in lexicographic order.

Proof Weextend the proof of Schützenberger’sTheorem19 for the third term 32
135 log e·

�6 with a somewhat simplified presentation compared to [73], to illustrate the use of
Schützenberger’s expansion. The proof for the fourth term 7072

42525 log e · �8 is more
complicated: Its sketch can be found in [74].

Following the proof of Theorem 19, taking the first four terms k = 1, 2, 3, 4 in
Schützenberger’s expansion (recall that all terms in the expansion are nonnegative)
gives

d ≥ 2δ2 + 4

9
δ4 + 2δ2

9
(x + 2y)2 + x6 − 6xy5 + 5y6

30
+ x8 − 8xy7 + 7y8

56

≥ 2δ2 + 4

9
δ4 + 1

30
(x6 − 6xy5 + 5y6) + |δ|

√
1

63
(x + 2y)2(x8 − 8xy7 + 7y8)

where we have used that a + b ≥ ±2
√

ab. In the particular case x = −2y, i.e., δ =
y−x
2 = 3y

2 , the last term vanishes and we already have x6−6xy5+5y6

30 = 64+12+5
30 y6 =
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81
30

( 2
3

)6
δ6 = 32

135δ
6. This will prove that the constant 32

135 is optimal, if we prove that
in the general case,

±δ

√
1

63
(x + 2y)2(x8 − 8xy7 + 7y8) ≥ 32

135
δ6 − 1

30
(x6 − 6xy5 + 5y6).

Taking the square and using Schützenberger’s factorization by (x − y)2 this amounts
to proving the inequality 902 δ2

7 (x − y)2(x + 2y)2(x6 + 2x5y + 3x4y2 + 4x3y3 +
5x2y4 + 6xy5 + 7y6) ≥ (

(x − y)6 − 9(x − y)2(x4 + 2x3y + 3x2y2 + 4xy3 + 5y4)
)2.

Simplifying by the factors (x − y)2 and (x + 2y)2 gives 452(x6 + 2x5y + 3x4y2 +
4x3y3 +5x2y4 +6xy5 +7y6) ≥ 7(8x3 +6x2y +9xy2 +22y3)2, which is equivalent
to 1577x6+3378x5y +4815x4y2+4880x3y3+77102y4+9378xy5+10787y6 ≥ 0.

Since at2 + bt ≥ − b2
4a we obtain successively 1577x6 + 3378x5y + 4815x4y2 ≥

(4815 − 33782
4·1577 )x4y2 = 3006.0456 . . . x4y2, then 3006.0456 . . . x4y2 + 4880x3y3 +

7710x2y4 ≥ 5729.45789 . . . x2y4, and finally 5729.45789 . . . x2y4 + 9378xy5 +
10787y6 ≥ 6949.5128 . . . . . . y6 ≥ 0, which ends the proof. ��

In view of Schützenberger’s essential contribution, which predates all other works
on Pinsker’s inequality, it is perhaps legitimate to rename the Pinsker inequality defini-
tively as the Schützenberger-Pinsker inequality.

9 Other recent improvements (1970–2000s)

So far, all derived Schützenberger-Pinsker inequalities are only useful when D and �

are small, and become uninteresting as D or � increases. For example, the classical
inequality (31) with optimal constant c = 2 log e become vacuous as soon as D >

2 log e (since � ≤ 1). Any improved Schützenberger-Pinsker inequality of the form
D ≥ ϕ(�) (1) should be such thatϕ(1) = +∞ because�(p, q) = 1 (non overlapping
supports) implies D(p‖q) = +∞.

9.1 Vajda (1970)

The first Schützenberger-Pinsker inequality of this kind is due to Vajda in his 1970
paper [54]. He explicitly stated the problem of finding the optimal Schützenberger-
Pinsker inequality (see Sect. 10) and proved the following

Proposition 22 (Vajda’s 1970 contribution)

D ≥ log
1 + �

1 − �
− 2 log e · �

1 + �
. (46)

Notice that the lower bound becomes infinite as � approaches 1, as it should. This
inequality is also asymptotically optimal near D = � = 0 since log 1+�

1−�
− 2 log e ·

�
1+�

= 2 log e · �2 + o(�2). We provide a simple proof along the lines of Vajda’s
proof [54].
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Proof By binary reduction (Theorem 8), it suffices to prove that

d = p log
p

p − δ
+ (1 − p) log

1 − p

1 − p + δ
≥ log

1 + δ

1 − δ
− 2δ

1 + δ
log e

where δ = p − q > 0. For fixed δ ∈ [0, 1], d = d(p) is convex in p = δ + q ∈ [v, 1]
because

d ′(p) =
(
log

p

p − δ
− δ

p − δ

)
−

(
log

1 − p

1 − p + δ
+ δ

1 − p + δ

)

and

d ′′(p) = δ2

p(p − δ)2
+ δ2

(1 − p)(1 − p + δ)2
≥ 0.

It follows that

d(p) ≥ d

(
1 + δ

2

)

+
(

p − 1 + δ

2

)

d ′
(
1 + δ

2

)

where

d ′
(
1 + δ

2

)

= 2 log
1 + δ

1 − δ
− 2δ

1 − δ
− 2δ

1 + δ
= 2

(
log

1 + δ

1 − δ
− 2δ

1 − δ2

)

is nonpositive—indeed, as shown by Toussaint [72],

log 1+δ
1−δ

= log(1 + δ) − log(1 − δ) =
∫ δ

0

1

1 + t
+ 1

1 − t
dt =

∫ δ

0

2

1 − t2
dt

≤ 2

1 − δ2

∫ δ

0
dt = 2δ

1 − δ2
.

Now since p ≤ 1,

d(p) ≥ d
(1 + δ

2

)
+

(
1 − 1 + δ

2

)
d ′(1 + δ

2

)

= δ log
1 + δ

1 − δ
+ 2

1 − δ

2

(
log

1 + δ

1 − δ
− 2δ

1 − δ2

)
= log

1 + δ

1 − δ
− 2δ

1 + δ
.

��

9.2 Bretagnolle and Huber (1978)

In a 1978 French seminar, Bretagnolle and Huber [75] derived yet another
Schützenberger-Pinsker inequality similar to Vajda’s (where the lower bound becomes
infinite for � = 1) but with a simpler expression:
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Proposition 23 (Bretagnolle–Huber 1978 contribution)

D ≥ log
1

1 − �2 . (47)

A nice property of this inequality is that it can be inverted in closed form. In fact the
authors expressed it as

� ≤ √
1 − exp(−D). (48)

Proof Write

exp(−D) = exp
∫

p log
q

p
=

(
exp

∫
p log

√
q

p

)2

≤
(∫

p exp log
√

q

p

)2 =
(∫ √

pq
)2

by Jensen’s inequality applied to the exponential. Therefore, by the Cauchy-Schwarz
inequality,

exp(−D) ≤
(∫ √

p ∧ q
√

p ∨ q
)2 ≤

∫
p ∧ q

∫
p ∨ q = (1 − �)(1 + �) = 1 − �2.

��
Remark 12 (Comparison to Vajda’s inequality) Even though their work is more recent,
Bretagnolle and Huber were probably unaware of Vadja’s inequality (46), which is
uniformly stronger. In fact, by the comparison principle (Theorem 9), for 0 < � < 1,

d
d�

log 1
1−�2 = 2�

1−�2 < 4�
(1+�)(1−�2)

= d
d�

(
log 1+�

1−�
− 2�

1+�

)
always, since 1+ � <

2. Therefore, the Bretagnolle-Huber inequality (47) is strictly weaker than Vajda’s
inequality (46).

Moreover, it is not asymptotically optimal near D = � = 0 since log 1
1−�2 ∼

log e · �2 is worse than the asymptotically optimal 2 log e · �2.

Remark 13 (Tsybakov’s 2009 version) The Bretagnolle-Huber inequality was popu-
larized in their subsequent 1979 paper [76], taken up by Tsybakov in his 2009 book
on nonparametric estimation [57, Eq. (2.25)], under the form

D ≥ log
1

2(1 − �)
(49)

or

� ≤ 1 − 1

2
exp(−D). (50)

This, however, is strictly weaker than the original, since 1−�2 = (1−�)(1+�) <

2(1− �) for 0 < � < 1. Moreover, it becomes vacuous as soon as � < 1
2 since then
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the lower bound in (49) is negative. Therefore, such an inequality is not a genuine
Pinsker-type inequality in the sense of Definition 1, and cannot be used for small
values of � and D, e.g., to prove continuity properties (see Remark 11).

Recently, an improvement of (49) was proposed in [77, § 8.3]:

Proposition 24 (Gerchinovitz–Menard–Stoltz 2020 contribution)

D ≥ log
γ

1 − �
(51)

or

� ≤ 1 − γ exp(−D). (52)

where γ = e−1/e ≈ 0.6922 > 1
2 .

Proof Using binary reduction (Theorem 8), we may assume that δ = p − q > 0.
Since x log x ≥ − log e

e = log γ (see Definition 4) and 1 − q < 1, one has

d ≥ p log
p

q
+ p log

1

1 − q
+ log γ ≥ p log

p

q
+log γ = −p log

q

pγ
−(1 − p) log

1

γ
,

hence by Jensen’s inequality for the exponential,

exp(−d) ≤ p
q

pγ
+ 1 − p

γ
= 1 − δ

γ
,

which gives the announced inequality. ��
Remark 14 (Comparison to Vajda’s inequality) Such an inequality suffers from the
same disadvantage as in Remark 13 because it cannot be used for small values of �

or D. Furthermore, just like the original Bretagnolle-Huber inequality (Remark 12),
it is uniformly weaker than Vajda’s inequality as can be easily checked.

Even more recently, Canonne [78] has shown that an inequality similar to (but uni-
formly worse than) the Bretagnolle-Huber inequality can be derived form the classical
Schützenberger-Pinsker inequality:

Proposition 25 (Canonne’s 2023 contribution)

D ≥ log
1

1 − β�2 (53)

or

� ≤
√
1 − exp(−D)

β
; (54)

where β = 1 − e−2 ≈ 0.86466 < 1.
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Proof Since exp((log e)x) = ex , the classical Schützenberger-Pinsker inequality D ≥
2 log e · �2 rewrites

1 − e−2�2 ≤ 1 − exp(−D) (55)

Now for x ∈ [0, 1], f (x) = 1 − e−2x is concave so that it lies above its chord
f (x) ≥ f (0) + ( f (1) − f (0))(x − 0), that is, 1 − e−2x ≥ (1 − e−2)x = βx .
Substituting x = �2 yields the announced inequality. ��
Remark 15 (Comparison to other inequalities) Even though it is uniformly weaker
than the Bretagnolle-Huber inequality, Canonne’s inequality can still be used for small
values of � and D, contrary to the Tsybakov inequality (49) and its improved ver-
sion (51).However, because it is derived from (anduniformlyweaker than) the classical
Schützenberger-Pinsker inequality, it becomes vacuous as soon as D > 2 log e.

Remark 16 (Testing fair vs. unfair coin)Going back to the testing example fromSect. 4,
Canonne [78] has studied the estimate (22) for some of the inequalities D ≥ ϕ(�)

of this subsection. Since the ε and δ parameters should be small, only those Pinsker-
type inequalities which do not become vacuous for large D can be used. The original
Bretagnolle-Huber inequality (47) yields a particularly simple estimate, which can be
written as

(1 − 4δ2)n/2 ≤ 4(ε − ε2). (56)

The Tsybakov version (49) yields a slightly weaker (and simpler) inequality, where
(ε − ε2) is replaced by ε.

9.3 Gilardoni (2008)

Today and to the knowledge of the author, the best known explicit Schützenberger-
Pinsker inequality of this kind was derived by Gilardoni in 2008 [79] (see also [80]):

Proposition 26 (Gilardoni’s 2008 contribution)

D ≥ log
1

1 − �
− (1 − �) log(1 + �). (57)

Gilardoni’s proof is based on considerations on symmetrized f -divergences. A
simple proof is as follows:

Proof Onecan always assume that δ = p−q > 0,where δ ≤ p ≤ 1and0 ≤ q ≤ 1−δ.
Then

d(p‖q) = (q + δ) log
q + δ

q
+ (1−q−δ) log

1 − q − δ

1 − q

= [−q log
q + δ

q
− (1−q−δ) log

1 − q

1 − q − δ

] + (2q + δ) log
q + δ

q
.
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Since q + (1−q −δ) = 1−δ and − log is convex, the first term inside brackets is
≥ −(1−δ) log( q+δ

1−δ
+ 1−q

1−δ
) = (1−δ) log 1−δ

1+δ
. The second term writes δ

(2+x) log(1+x)
x

where x = δ
q . Now (2 + x) log(1 + x) is convex for x ≥ 0 and vanishes for x = 0,

hence the slope (2+x) log(1+x)
x is minimal for minimal x , that is, for maximal q = 1−δ.

Therefore, the second term is ≥ (2−2δ+δ) log 1
1−δ

= (2−δ) log 1
1−δ

. Summing the
two lower bounds gives the inequality. ��

Remark 17 (Comparison to other inequalities) Note that Gilardoni’s inequality adds
the term � log(1 + �) to the Bretagnolle-Huber lower bound, hence uniformly
improves it. In fact, it also uniformly improves the stronger Vajda’s inequality since by
the comparison principle (Theorem9) for� > 0, d

d�

(
log 1

1−�
−(1−�) log(1+�)

) =
� 3−�

1−�2 + log(1+�) > � 3−�
1−�2 +�− �2

2 = 4�
(1+�)(1−�2)

−� 1−�
(1+�)2

+�(1− �
2 ) >

4�
(1+�)(1−�2)

= d
d�

(
log 1+�

1−�
− 2�

1+�

)
. In particular, it is also asymptotically optimal

near D = � = 0,which can easily be checkeddirectly: log 1
1−�

−(1−�) log(1+�) =
2 log e · �2 + o(�2).

However, Gilardoni’s inequality is still weaker than the classical Schützenberger-
Pinsker inequality for small� or D. In fact, by the comparison principle (Theorem 9),
for natural logarithms and � > 0, d

d�

(
log 1

1−�
− (1 − �) log(1 + �)

) = � 3−�
1−�2 +

log(1+�) < 3�+� = 4� = d
d�

(2�2) as soon as� ≥ 3�2, i.e.,� ≤ 1
3 . Therefore,

Gilardoni’s inequality (57) is strictly weaker than the classical Schützenberger-Pinsker
inequality at least for 0 < � < 1/3 (in fact for 0 < � < 0.569 . . .). For � close to
1, however, Gilardoni’s inequality is obviously better.

10 The optimal Schützenberger-Pinsker inequality

The problem of finding the optimal Schützenberger-Pinsker inequality, that is, the best
possible lower bound in (1):

ϕ∗(�) = inf
�(p,q)=�

D(p‖q) (58)

was opened by Vajda [54] in 1970.

10.1 Fedotov, Harremoës, and Topsøe (2003)

Vajda’s problem was solved in 2003 in implicit form, using the Legendre-Fenchel
transformation, by Fedotov, Harremoës, and Topsøe in [74], as a curve parametrized
by hyperbolic trigonometric functions. We give the following equivalent but simpler
parametrization.
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Theorem 27 (OptimalSchützenberger-Pinsker inequality)The optimal Schützenberger-
Pinsker inequality D ≥ ϕ∗(�) is given in parametric form as

{
� = λ(1 − q)q

D = log(1 − λq) + λq(1 + λ(1 − q)) log e
(59)

where λ ≥ 0 is the parameter and

q = q(λ) � 1

λ
− 1

eλ − 1
∈ [0, 1

2 ]. (60)

The following proof that is arguably simpler as the one in [74] since it only relies
of the well-known Lagrange multiplier method.

Proof Using binary reduction (Theorem 8), d(p‖q) = p log p
q + (1 − p) log 1−p

1−q is
to be minimized under the linear constraint p − q = δ ∈ [−1, 1]. It is well known
that divergence d(p‖q) is strictly convex in (p, q). Given that the objective function is
convex and the constraint is linear, the solution can be given by the Lagrangemultiplier
method. The Lagrangian is L(p, q) = d(p‖q)−λ(p −q) and the solution is obtained
as global minimum of L , which by convexity is obtained by setting the gradient w.r.t.
p and q to zero. Assuming natural logarithms for simplification, this gives

{
∂L
∂ p = log p

q − log 1−p
1−q − λ = 0

∂L
∂q = − p

q + 1−p
1−q + λ = 0

or

{
eλ = p

q

/
1−p
1−q

λ = p
q − 1−p

1−q

. (61)

Therefore, p
q = λ + 1−p

1−q = eλ 1−p
1−q , and we have 1−p

1−q = λ
eλ−1

and p
q = λeλ

eλ−1
.

Solving for q, then for p, one obtains 1 = 1 − p + p = (1 − q) λ
eλ−1

+ q λeλ

eλ−1
,

which gives q = q(λ) = 1
λ

− 1
eλ−1

as announced above and p = qλ(1 + 1
eλ−1

) =
qλ(1 + 1

λ
− q) = q(1 + λ(1 − q)). Therefore, we obtain the desired parametrization

δ = p−q = λ(1−q)q and d(p‖q) = log 1−p
1−q + pλ = log(1−λq)+λq(1+λ(1−q))

with natural logarithm (which is multiplied by log e for logarithm to any base).
Finally, observe that the transformation (p, q) �→ (1− p, 1−q) leaves d = d(p‖q)

unchanged but changes δ �→ −δ. In the parametrization, this changes λ �→ −λ and
q(λ) �→ q(−λ) = 1 − q(λ). Accordingly, this change of parametrization changes
(δ, d) �→ (−δ, d) as can be easily checked. Therefore, the resulting optimal ϕ∗ is
even. Restricting to δ = |p − q| = p − q ≥ 0 amounts to p ≥ q ⇐⇒ λ ≥ 0 ⇐⇒
q ∈ [0, 1/2]. ��
Remark 18 In 2009, Reid and Williamson [81, 82], using a particularly lengthy
proof mixing learning theory, 0-1 Bayesian risks, and integral representations of
f -divergences, claimed the following “explicit form” of the optimal Schützenberger-
Pinsker inequality:

D ≥ min|β|≤1−�

1 + � − β

2
log

1 + � − β

1 − � − β
+ 1 − � + β

2
log

1 − � + β

1 + � − β
. (62)
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Fig. 6 Schützenberger-Pinsker lower bounds of divergence D (with logarithm to base 2) vs. total variation
�. Red, dashdotted: Optimal (Opt, Theorem 27). Blue, dashed: Pinsker (P, Eq. 31 with c = 2 log e) with
optimal constant and Schützenberger (S, Eq. 41). Black, solid: Bretagnolle-Huber (BH, Eq. 47), Vajda (V,
Eq. 46) and Gilardoni (G, Eq. 57)

This formula, however, is just a trivial reformulation of the optimal lower bound:
Indeed, by binary reduction (Theorem 8), d(p‖q) = p log p

q + (1 − p) log 1−p
1−q is to

be minimized under the constraint δ = p−q, hence δ ≤ p ≤ 1 and q ≤ 1−δ. Letting
β = 1 − p − q, this amounts to minimizing over β in the interval [δ − 1, 1 − δ] for
fixed δ = p − q. Since p = 1+δ−β

2 and q = p − v = 1−δ−β
2 , this boils down to the

above expression (62) for the lower bound, where the minimization problem over β

is not solved in [81, 82].

10.2 Concluding remarks

Figure 6 illustrates the main Schützenberger-Pinsker inequalities seen in this paper.
From the implicit form using the exact parametrization of Theorem 27, we conjecture
that the optimal Schützenberger-Pinsker inequality cannot be written as a closed-form
expression with standard operations and functions. Also, the problem of finding an
explicit and reasonably simple Schützenberger-Pinsker inequality which uniformly
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improves all the preceding ones (in particular, the classical inequality with optimal
constant and Gilardoni’s inequality) is still open.

Referring to Fig. 6, asymptotic optimality near the two extremes (V = D = 0
as λ → 0 or V = 1, D = +∞ as λ → ∞) can easily be obtained from the
parametrization of Theorem 27:

• As λ → 0, by Taylor expansion one obtains q = 1
2 − λ

12 +o(λ),� = λ
4 +o(λ), and

D = λ2

8 log e + o(λ2). Thus, one recovers that D ∼ 2�2 log e near D = � = 0.
In particular, the classical inequality (with optimal constant) and its improvements
with higher-order terms, as well as Vajda’s and Gilardoni’s inequality, are asymp-
totically optimal near D = � = 0.

• As λ → +∞, q = 1
λ

+ o( 1
λ
), exp d = λ

eλ−1
eλ+o(1) ∼ λ ∼ 1

1−�
. Thus it follows

that exp D ∼ 1
1−�

near � = 1 and D = +∞. Vajda’s and the Bretagnolle-
Huber inequalities are such that exp D ∼ c

1−�
there, with suboptimal constants

c = 2
e = 0.7357 . . . < 1 and c = 1

2 < 1, respectively. Only Gilardoni’s inequality
is optimal in this region with c = 1.

As a mathematical perspective, one may envision that the exact parametriza-
tion of Theorem 27 can be exploited to find new explicit bounds. Indeed, since
λ = ϕ∗′(�) in the parametrization of Theorem 27, from the comparison princi-
ple (Theorem 9), any inequality of the form ϕ′(�) ≤ λ = ϕ∗′(�) is equivalent to
a corresponding Schützenberger-Pinsker inequality (1) associated to ϕ. For exam-
ple, since 4� = 4λ(1 − q)q ≤ λ always in the parametrization, one recovers
the classical inequality (31) with optimal constant c = 2 log e. Thus, the search of
new Schützenberger-Pinsker inequality amounts to solving the inequality in λ > 0:
ϕ′(λ

(
1 − q(λ)

)
q(λ)

) ≤ λ for ϕ.
On the historical side, the influence of Schützenberger on the derivation of the

classical “Pinsker’s inequality” still has some mysteries, particularly considering the
erroneous constant 4

3 and the fact that this error was made apparently independently
by different authors. It is important to note, however, that Marco Schützenberger did
derive the correct constants in 1953, the first-order constant 7 years before Pinsker
and the second-order constant 17 years before it was re-established by Kullback and
Vajda.

As another historical perspective [83], it turns out that Schützenberger had derived
in 1957 another important inequality in statistics, the Bayesian version of the Fréchet-
Darmois-Cramér-Rao inequality [60, 61], more commonly known as the van Trees
inequality, which van Trees discovered independently in 1968. Thus, Schützenberger
did prove the famous “van Trees inequality” 11 years before van Trees, and this
inequality should be called as the Schützenberger-van Trees inequality—just as the
famous Pinsker inequality should be called the Schützenberger-Pinsker inequality.
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