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Abstract. Masking is one of the most popular countermeasures to side-
channel attacks, because it can offer provable security. However, depend-
ing on the adversary’s model, useful security guarantees can be hard
to provide. At first, masking has been shown secure against t-threshold
probing adversaries by Ishai et al. at Crypto’03. It has then been shown
secure in the more generic random probing model by Duc et al. at Euro-
crypt’14. Prouff and Rivain have introduced the noisy leakage model to
capture more realistic leakage at Eurocrypt’13. Reduction from noisy
leakage to random probing has been introduced by Duc et al. at Eu-
rocrypt’14, and security guarantees were improved for both models by
Prest et al. at Crypto’19, Duc et al. in Eurocrypt’15/J. Cryptol’19,
and Masure and Standaert at Crypto’23. Unfortunately, as it turns out,
we found that previous proofs in either random probing or noisy leakage
models are flawed, and such flaws do not appear easy to fix.
In this work, we show that the Doeblin coefficient allows one to over-
come these flaws. In fact, it yields optimal reductions from noisy leakage
to random probing, thereby providing a correct and usable metric to
properly ground security proofs. This shows the inherent inevitable cost
of a reduction from the noisy leakages to the random probing model. We
show that it can also be used to derive direct formal security proofs using
the subsequence decomposition of Prouff and Rivain.

1 Introduction

1.1 Context

All cryptographic implementations leak some side information about the sensi-
tive variables they manipulate through the so-called side-channels. These leak-
ages can be of different natures: Timing [DKL+98], power consumption [KJJ99,
KGG+18], electromagnetic [GMO01, AARR02]. The corresponding side-channel
attacks can be very harmful if there is no countermeasure or if the countermea-
sure is not carefully implemented. One may classify countermeasures into three
categories, that can be jointly implemented:

– Key refreshing regularly replaces the secret key by a new one, e.g., each
time a given number of operations has been performed [AB00, UHIM24].



– Hiding equalizes the leakage, either by removing the variations caused by
computation, or by creating artificial noise in the circuit. It can be achieved
by physical means such as shielding [AARR02], noise makers [LBB19], dual
rail technology [MSS09], balancing or adding dummy operations [LH20].

– Noise amplification leverages existing noise from the given side-channels
to make their measurements harder. It can be achieved using wire shuf-
fling [ISW03, CS21], operation shuffling [VCMKS12] or masking [ISW03].

Masking is one of the most effective countermeasures known so far. It is es-
pecially relevant because of its provable security [ISW03, RP10a, PR13, DDF14,
DFS15, BBD+16, DFS19, BCG+23, MS23b]. Previously published security proofs
for masking fall into two classes:

– Simulation paradigm (indirect approach): A black-box adversary is
modeled by an algorithm that only accesses the public information, which
corresponds to the usual cryptanalysis. By contrast, the side-channel ad-
versary is given both public and side-channel information. If there always
exists a black-box adversary whose output is indistinguishable from the side-
channel adversary’s output, then the implementation is considered secure.

– Information Theoretic Paradigm (direct approach): The implemen-
tation is considered secure if the mutual information (or some other in-
formational metric) between the side-channel leakage and the corresponding
sensitive variable is negligible, given the available public information. Equiv-
alently, the required number of side-channel queries required to achieve a
given success rate is prohibitively large for any attack.

Those two approaches have been respectively termed indirect and direct by Prest
et al. [PGMP19]. Both approaches have their pros and cons. On the one hand, the
security proof based on information theory is conceptually simpler and provides
more realistic security parameters. On the other hand, the simulation-based
approach is very generic and can be applied to a whole cipher at once. Indeed, as
remarked in [DDF14, Footnote 4] a few pairs of plaintext/ciphertext completely
reveal the key of an AES in the information theoretic sense. Hence block ciphers
such as AES are not secure in this sense, a fortiori in the presence of side-channel
information. The security of AES relies on a one-way computational assumption
which cannot be taken into account in the information theoretic paradigm3.

To prove the security of a cryptographic implementation in any of the two
paradigms above, it is necessary to define the side-channel adversary’s model.
Some restrictions should be imposed on the adversary, since if she/he is allowed
to observe all variables manipulated in the circuit, then the implementation
would be trivially broken. Micali and Reyzin introduced physically observable
cryptography [MR04], in which only computation can leak information. Leakage
resilient cryptography [DP08, KR19] also considers memory leakage models. In

3 Unless, for a given round in a divide-and-conquer attack, the round’s output is
assumed not disclosed to the attacker because it is hidden by the one-way compu-
tational assumption in the subsequent rounds.
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this context, the simplest model is the t-threshold probing model [ISW03] in
which the adversary is only allowed to probe the values of t wires within the
circuit. In the more elaborated region probing model [GPRV22], the circuit is
divided into small regions and the adversary can probe t values in each region.
A more realistic model is the random probing model [DDF14] where the side-
channels correspond to erasure channels. The most generic type of model is the
noisy leakage model from Prouff and Rivain [PR13] where the D-noisy adversary
has minimal distortion D between the channel input and output. In this list of
models, the security proof is all the more hard to establish as the model is more
complex and realistic.

1.2 Contributions

In this paper, we aim at grounding security proofs of side-channel analysis coun-
termeasures on solid mathematical foundations. This work has the following
contributions.

1. We carry out a systematic mathematical study of the complementary Doe-
blin coefficient (CDC). This coefficient was originally used to study Markov
chains [Doe37] and appeared in the side-channel literature as the value of ϵ
in [DDF19, Eqn. 9, Proof of Lemma 4]. We show that the CDC provides the
optimal reduction from a noisy leakage model to the random probing model.
Since the reduction is optimal it exhibits the unavoidable loss to pay to use
a security proof based on the random probing model.

2. Bounds on the success rate (SR) and guessing entropy (GE) of a side-channel
attack are derived using the CDC. Such bounds holds with equality for
erasure side-channels, scale well with the number of channel queries, can
be applied to adaptive adversaries and are amenable to practical evaluation,
e.g., in Gaussian additive noise (Hamming weight or least significant bit
model, etc.).

3. A new direct security proof is presented based on the CDC and on the Prouff-
Rivain subsequence decomposition. As a supplementary material, some flaws
in previous direct security proofs for masking in the noisy leakage model are
identified (this does not necessarily mean that the corresponding results can-
not hold) and some patches or bypasses are presented. Namely, this concerns
Lemma 4 (hence Theorem 3) in [PR13], Lemma 8 (hence Theorem 6, Corol-
lary 4) in [PGMP19], and Theorem 5 in [MS23b]. Details are in Appendix E.

4. A new methodology providing indirect security proofs is presented, based
on the optimal CDC reduction from the noisy leakage model to the random
probing model. As a supplementary material, minor errors are also corrected
from the original proof on a reduction to the t-threshold probing model of
Lemma 4 in [DDF14]. As a result, the bounds derived in [DDF14, DFS15,
DFS19, PGMP19] that leveraged this Lemma can be improved significantly.
Again details can be found in Appendix E.
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1.3 Outline

The remainder of this paper is structured as follows. Preliminaries and math-
ematical results on channels, leakage measures (including CDC) and figures of
merit are presented in Section 2. The key property of the CDC and the resulting
bounds on figures of merit are presented in Section 3, along with some theoret-
ical expressions for concrete evaluation. Direct security proofs leveraging CDC
based on Prouff-Rivain subsequence decompositions are provided in Section 4.
A new methodology for the derivation of indirect proofs is shown in Section 5.
Section 6 concludes.

This paper also contains supplementary material in the Appendix, which are
not necessary in order to follow the main arguments of the article. Appendix A
provides a formal channel definition, relating it to the notion of random func-
tion. Appendices B, C and D contain technical proofs and results. Appendix E
provides a comprehensive list of flaws that we identified in the state-of-the-art
papers, along with patches we devised. It should be noted that we have obtained
confirmation from the various authors of the papers in which we have detected
flaws in the security proof in the noisy leakage model.
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Fig. 1: Overview of formal security proofs, organized in four levels. Novelty is in
blue, revisions of the state of the art is in red, and the state of the art is in black.

Figure 1 updates Fig. 1 from [PGMP19] where the black arrows indicate
the state of the art, the red arrows are flaws that we identified and revised
and the blue arrows correspond to our new derivations using the CDC. The
figure is organized in four levels: The top level corresponds to the Hamming
weight leakage model. The second level contains the main leakage measures,
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corresponding to different noisy leakage adversaries. Each arrow label from the
first to the second level indicates how the leakage measure scales with respect
to the number n of bits, while each arrow label between two leakage models
indicates the appropriate reference of the reduction from one model to another.
The third layer contains the various adversarial models based on probing, and the
bottom level contains the secure compilers that generate secure circuits against a
given adversarial model. Each arrow label from the second or third to the fourth
level indicates the appropriate reference of the corresponding security proof. The
comparison with the other informational leakage measure is elaborated in Tab. 1
below.

1.4 Detailed Technical Overview

Theorem 1 provides the optimal factorization of a given channel into an era-
sure channel followed by another channel. As a consequence, any channel can
be seen as a stochastically degraded erasure channel with the largest possible
erasure probability. In particular, this implies that the optimal reduction of a
side-channel adversary from the noisy leakage model (arbitrary channel) to the
random probing model (erasure channel) is measured by the CDC.

The CDC equally applies to multivariate leakages. Lemma 6 shows that the
CDC with multiple traces is bounded in terms of the CDC with one trace, even
for an adaptive “chosen channel” adversary.

The main figures of merit (Definition 13) satisfy the data processing in-
equality (DPI) recalled in Lemma 8. In other words, the stochastically degraded
adversary can only perform worse than the non-degraded one. As a consequence,
the performance of any side-channel attacker can be bounded in terms of CDC
as shown in Proposition 1. Intuitively, these bounds result from averaging two
extreme cases: Either the leakage value is an erasure symbol and the figure of
merit is that of a blind guess, or it is probed and the figure of merit is that of
a disclosed value. This applies even for computationally bounded adversaries,
allowing one to avoid complex simulation arguments [DDF14].

Lemma 7 shows that the CDC satisfies a strengthened data processing in-
equality which is useful in the derivation of the security proof.

Theorem 2 gives a direct security bound for ISW masked computations of an
AES following the subsequence decomposition of Prouff and Rivain [PR13]. To
achieve this, we derive a security lemma for each type of subsequence. For type 1
and 2 subsequences, we prove an analog of Mrs Gerber’s Lemma (MGL) [WZ73]
in Lemma 10 which shows that the CDC between the leakage and a masked value
is upper bounded by the product of the CDCs share by share. This is expected
since a sensitive value is probed if and only if all shares are probed. For type
3 subsequences, Lemma 11 provides a security bound for the cross-wise terms,
in terms of the domination polynomial of the rook graph of Definition 17. The
idea is that a value is probed if and only if all shares are probed at least once
through cross-wise terms of one of the two shared inputs.

5



Theorem 4 explains how any formal security proof in the random probing
model can be lifted to the noisy leakage model using the CDC. This is illustrated
for the security proof of Duc et al. [DDF14].

The descriptions of the flaws appearing in previous derivations is deferred to
Appendix E. To summarize, the derivations of [PGMP19] and [PR13] are inval-
idated because of an incorrect chain rule on probabilities. The flaw in [MS23b]
is due to the fact that the bound appearing in the MGL for mutual information
is separately but not jointly convex in the variables. The CDC overcomes these
difficulties by allowing a direct bound which is then degraded in terms of the
corresponding leakage measure through Lemma 9.

2 Mathematical Framework

In this Section, we present the mathematical framework of side-channel analy-
sis that we use in our analysis. The notations are given in Subsection 2.1. The
formal definition of a side-channel is given in Subsection 2.2. The main informa-
tional leakages measures are recalled in Subsection 2.3. Some useful properties of
the complementary Doeblin coefficient (CDC) such as an adaptive single letter-
ization and strengthened data processing inequality (DPI) are provided in Sub-
section 2.4. The model for a side-channel attack is described in Subsection 2.5.
Finally, the figures of merit to evaluate the advantage of a side-channel adversary
are introduced in Subsection 2.6.

2.1 Notations

Random variables are denoted by uppercase letters like X,Y . The corresponding
set of values taken by the random variables are denoted by the corresponding
calligraphic letters like X ,Y. Lowercase letters denote values taken by random
variables, e.g., x ∈ X , y ∈ Y. Bold letters denote random vectors X taking vector
values x. The probability distribution of X is denoted PX ; we write X ∼ PX .
– When X is discrete, taking values in a discrete set X of cardinality |X |, its

probability mass function (pmf) is noted pX(x) = P(X = x);
– When X is continuous, its probability density function (pdf) is also noted
pX(x) where dPX(x) = pX(x) dx.

We use the unified notation Σ
∫
which is a sum in the discrete case and an integral

in the continuous case. Therefore, we write P(X ∈ E) = Σ
∫
x∈E

pX(x). Expectation
is denoted by EX [·]. The p-norm is noted ∥ · ∥p.
– The uniform distribution on a set X is denoted by U(X );
– B(p) denotes the Bernoulli distribution with parameter p and B(n, p) denotes

the Binomial distribution with parameters n, p. The survival function of
B ∼ B(n, p) is noted QB(x, n, p) ≜ P(B > x) = P(B ⩾ x+ 1).

– N (µ, σ2) denotes the Gaussian distribution of mean µ and variance σ2. The
survival function of the standard Gaussian N (0, 1) is denoted by Q.

The joint probability distribution of (X,Y ) is noted PX,Y with pmf or pdf
pX,Y . When X and Y are independent, PX,Y = PXPY , that is, pX,Y (x, y) =
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pX(x)pY (y). The conditional probability distribution of Y given X is denoted

PY |X where pY |X(y|x) = pX,Y (x,y)
pX(x) .

Finally, the positive (resp. negative) part of x is x+ ≜ max(0, x) (resp. x− ≜
max(−x, 0)), and the complementary of x ∈ [0, 1] is x ≜ 1− x.

2.2 Side-Channels

A random transformation with input X and output Y is defined by a transi-
tional probability distribution PY |X , also known as a Markov kernel [PW23]. For
example, when X is discrete, one has pY (y) =

∑
x pX(x)pY |X(y|x). When X is

continuous, one has pY (y) =
∫
pX(x)pY |X(y|x) dx. This random transformation

is noted X → PY |X → Y or X → Y for short.

In the sequel, a side-channel is defined as a random transformation X →
Y , and we shall refer to any transformation X → Y as a “channel”. In the
side-channel literature, it is also commonly defined as a random function Y =
F (X) where F = f is picked at random among a set of deterministic functions
f according to some probability distribution PF . It is true, but not obvious,
that the two descriptions coincide: See Appendix A for details. We say that the

channel X → PY |X → Y is opaque if Y is independent of its input X, that is,

pY |X(y|x) = pY (y) for all x and y.
Notice that any deterministic function Y = f(X) can be seen as a “random”

transformation where pY |X(y|x) = δ(y = f(x)) (Dirac distribution). This func-

tional channel will be denoted by X → f → Y . A functional channel with

constant f is opaque. If f is the identity, the corresponding functional channel
is named identity channel. When we write X → Y → Z we always assume that
it forms a Markov chain.

Additive masking of order d ⩾ 0 can be seen as a channelX → Maskd → X,

where X = (X0, . . . , Xd) ≜ (R0, . . . , Rd−1, X −
∑d−1

i=0 Ri) where the Ri are
independent and uniformly distributed Ri ∼ U(X ). The d + 1 components of
X are called shares of X. By the well-known secret sharing property, any subset
of at most d shares of X is independent of X.

An important class of channels is as follows:

Definition 1 (Erasure Channel). The channel

X → EC⊥
E → Y (1)

is said to be an erasure channel with erasure probability E ∈ [0, 1] and special
erasure symbol ⊥ if on input x, EC⊥

E outputs x with probability

E = 1− E (2)

and the special erasure symbol ⊥ otherwise (with probability E). That is
{
pY |X(⊥|x) = E
pY |X(x|x) = E (∀x ̸= ⊥) (3)
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When convenient, we also consider ⊥ as input value, and let pY |X(⊥|⊥) = 1.
Notice that an erasure channel with erasure probability E = 1 is opaque.

Remark 1. The notation E for the erasure probability is classical in information
theory. A few articles such as [DDF14, PGMP19] use the complementary 1− E
instead. Here we follow the standard information theoretic convention.

Erasure channels satisfy useful properties that are easy to check:

Lemma 1 (Commutative Property). Let PY |X be any channel from X to

Y and P⊥
Y |X its extension to the input ⊥ by setting P⊥

Y |X(⊥|⊥) = 1. Then

(
X → EC⊥

E → P⊥
Y |X → Y ′

)
=

(
X → PY |X → EC⊥

E → Y ′
)
. (4)

Note that on the left-hand side the erasure channel is defined on X while on the
right-hand side it is defined on Y.

Proof. See Appendix B.1. ⊓⊔

Lemma 2 (Composition of Erasure Channels). Let E0, E1 ∈ [0, 1] and set
E = E0E1. Then

(
X → EC⊥

E1
→ EC⊥

E0
→ Y

)
=

(
X → EC⊥

E → Y

)
(5)

Proof. The output is not erased if and only if it is not erased in both channels,
hence with probability E = E0E1. ⊓⊔

2.3 Informational Leakage Measures

There exist many noisiness metrics in the literature that quantify how noisy a
channel X → Y can be. In this Subsection we list different leakage measures
used in this paper.

The correlation coefficient is widely adopted in side-channel analysis for its
simplicity in e.g., the associated correlation power analysis (CPA) [BCO04].

Definition 2 (Pearson’s Correlation Coefficient).

ρ(X;Y ) ≜
EXY [(X − E[X])(Y − E[Y ])]√

EX [(X − E[X])2]EY [(Y − E[Y ])2]
. (6)

The correlation coefficient is symmetric ρ(X;Y ) = ρ(Y ;X). Note, however,
that ρ(X;Y ) = 0 does not imply that X and Y are statistically independent.

Definition 3 (Kullback-Leibler Divergence and Total Variation Dis-
tance). Let P,Q be two probability distributions with respective pdf or pmf p, q
defined over X . The Kullback–Leibler (KL) divergence between P and Q is

DKL(P∥Q) ≜
∑∫

X
p log

p

q
(7)
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and the total variation distance (TV) between P and Q is

DTV(P∥Q) =
1

2

∑∫

X
|p− q| = 1

2
∥p− q∥1. (8)

KL divergence is not symmetric in general DKL(P∥Q) ̸= DKL(Q∥P ) but the
total variation is symmetric DTV(P∥Q) = DTV(Q∥P ).

Remark 2. Total variation is known to characterize indistinguishability in the
sense that no statistical test can distinguish P and Q if DTV(P∥Q) is negligi-
ble [PW23, § 7.3]. Both DTV and DKL are particular instances of f -divergences,
that satisfy a data processing inequality (see [PW23, Def. 7.1]).

Definition 4 (Mutual Information). The mutual information (MI) is the
KL divergence between the joint distribution of (X,Y ) and the product of its
marginals:

I(X;Y ) ≜ DKL(pXY ∥pXpY ) =
∑∫

X×Y
pXY (x, y) log

pX,Y (x, y)

pX(x)pY (y)
. (9)

MI is symmetric I(X;Y ) = I(Y ;X). It is a measure of statistical dependence: if
X and Y are statistically independent then pXY = pXpY so that I(X;Y ) = 0.

Definition 5 (Total Variation Information). The total variation informa-
tion (TVI) is the TV distance between the joint distribution of (X,Y ) and the
product of its marginals:

∆(X;Y ) ≜ DTV(pXY ∥pXpY ) =
1

2
∥pXY − pXpY ∥1 (10)

=
1

2

∑∫

X×Y
|pXY (x, y)− pX(x)pY (y)|. (11)

Note that TVI is symmetric, ∆(X;Y ) = ∆(Y ;X). A negligible TVI implies that
no test can distinguish pXY from pXpY , that is no test can exhibit a statistical
dependence between X and Y . TVI can be seen as a particular f -information
[PW23, Eqn. 7.46]. In [PGMP19] TV is referred to as Statistical Distance (SD).

Definition 6 (Maximal Leakage [IWK20]). The maximal leakage quantifies
the maximal advantage in estimating X from the side-channel information Y :

L(X → Y ) = log
∑∫

Y
sup
x∈X

pY |X(y|x). (12)

We use an arrow instead of a semicolon in the definition of L(X → Y ) because it
depends only on the channel X → Y and not on the input probability distribu-
tion ofX. Note that maximal leakage is not symmetric L(X → Y ) ̸= L(Y → X).
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Definition 7 (Euclidean Bias [PR13]). The Euclidean norm bias (EN) is the
expected Euclidean distance between the posterior distribution pX|Y and its prior
pX :

β(X;Y ) ≜ EY ∥pX|Y (·|Y )− pX∥2. (13)

Remark 3. β(X;Y ) is similar to ∆(X;Y ) where ∥ · ∥1 is replaced by ∥ · ∥2 inside
the expectation. However, β(X;Y ) is not equal to ∥pXY −pXpY ∥2 because of the
square root appearing in the Euclidean norm. In particular it is not symmetric
β(X;Y ) ̸= β(Y ;X). A similar quantity ∆2(X;Y ) with squared norm, related to
the Rényi 2-information, is used for side-channel leakage evaluation in [LBC+23].

Definition 8 ((Average) Relative Error [PGMP19]).

RE(X;Y ) ≜ sup
x,y

∣∣∣∣
pX|Y (x|y)
pX(x)

− 1

∣∣∣∣ = sup
x,y

∣∣∣∣
pXY (x, y)

pX(x)pY (y)
− 1

∣∣∣∣ . (14)

ARE(X;Y ) ≜ EY

[
sup
x

∣∣∣∣
pX|Y (x|Y )

pX(x)
− 1

∣∣∣∣
]
. (15)

Remark 4. While relative error is symmetric RE(X;Y ) = RE(Y ;X) the average
relative error is not symmetric ARE(X;Y ) ̸= ARE(Y ;X).

This paper focuses on another important quantity:

Definition 9 (Complementary Doeblin Coefficient [Doe37, Dob56, MS23a]).

E(X → Y ) = 1−∑
∫

y

inf
x
pY |X(y|x) =∑

∫

y

sup
x

(
pY (y)− pY |X(y|x)

)
(16)

= EY

[
sup
x

(
1− pY |X(Y |x)

pY (Y )

)]
= EY

[
sup
x

(
1− pX|Y (x|Y )

pX(x)

)]
. (17)

Remark 5. Doeblin’s coefficient appeared implicitly in [Doe37, p. 1], later explic-
itly in [Sen73, Eqn. 2.6] and has been recently known as the “Doeblin ergodicity
coefficient”, see e.g., [CL10, Eqn. 10].

Remark 6. While the expression of CDC resembles both that of maximal leakage
and ARE, it is fundamentally different. CDC is non-symmetric E(X → Y ) ̸=
E(Y → X). Like for maximal leakage, we use an arrow instead of a semicolon
in Ē(X → Y ) because it depends only on X → Y and not on PX . The original
Doeblin coefficient is E(X → Y ) = 1− E(X → Y ).

Remark 7. Maximal leakage is a particular Sibson’s α-information [Ver15, EVG22]
of order α = +∞: L(X → Y ) = I∞(X;Y ), while Mutual information can be
seen as Sibson’s α-information of order α = 1: I(X;Y ) = I1(X;Y ). The Doeblin
coefficient is the exponential of minus Sibson’s α-information of order α = −∞
also known as maximal cost leakage: E(X → Y ) = exp(−I−∞(X;Y )) [EVG22].
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2.4 Properties of the Complementary Doeblin Coefficient

In Lemma 2 we have seen the composition property of erasure channels sharing
the same erasure symbol. What happens now if we compose two erasure channels
with different erasure symbols? The following Lemma shows that even though
the resulting channel is not an erasure channel, its CDC is identical:

Lemma 3 (Erasures Composition). For the channel X → EC⊥1

E1
→ Y →

EC⊥0

E0
→ Z,

E(X → Z) = E(X → Y )E(Y → Z). (18)

Proof. Straightforward from the definitions (see Appendix B.4). ⊓⊔

Consider a channel X → Y and suppose one has a post processing Y → Z (such
that X → Y → Z is a Markov chain [PW23]). Intuitively, Z does not contain
more information than Y about X, and we have the following:

Lemma 4 (CDC Consistency). For any X → Y → Z, one has

E(X → (Y,Z)) = E(X → Y ). (19)

Proof. Straightforward from the definitions (see Appendix B.5). ⊓⊔

A sensitive variable X may leak several times in a side-channel attack. For
instance, the adversary may access two side-channels X → Y1 and X → Y2.
What can be said about the CDC of the combined leakages? The following
Lemma provides an answer.

Lemma 5 (Single Letterization). For the multi-channel X
↗PY1|X→Y1

↘PY2|X→Y2

de-

noted by X → Y1, Y2, we have

E(X → Y1, Y2) ⩾ E(X → Y1)E(X → Y2). (20)

Generally with q channels in parallel i.e. PY1,...,Yq|X =
∏q

i=1 PYi|X we have

E(X → Y1, · · · , Yq) ⩾
q∏

i=1

E(X → Yi). (21)

In terms of CDC, equation (21) reformulates as

E(X → Y1, . . . , Yq) ⩽ 1−
q∏

i=1

(
1− E(X → Yi)

)
⩽

q∑

i=1

E(X → Yi). (22)

Proof. See Appendix B.6.
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In the adaptive setting, the adversary may observe Y1 through the side-
channel X → Y1 and then chose the channel X → Y2 based on his observation
of Y1. The following adaptive single letterization lemma extends Lemma 5 by
showing how the CDC of the combined leakages can be derived even when the
channels are chosen adaptively:

Lemma 6 (Adaptive Single Letterization). In the adaptive setting where
all channels satisfy E(X → Yi) ⩽ E, we still have

E(X → Y1, Y2) ⩾ E2. (23)

More generally we have E(X → Y1, . . . , Yq) ⩾ Eq.

Proof. See the Appendix B.7

2.5 Side-Channel Attack Models

We use the following terminology from [PR13, PGMP19, MS23b].

Definition 10 (δ-Noisy Channel). A channel X → PY |X → Y is said to be

δ-noisy for input X with respect to some metric D if D(X;Y ) ⩽ δ. For short,
it is said to be δ-noisy with respect to D (without reference to X) when X is
taken uniformly distributed X ∼ U(X ). D should be understood as a distortion
measure of the channel. For instance D can be ρ, I,∆,L, β,RE,ARE or E. The
lower δ, the noisier the channel.

Definition 11 (Side-Channel Exploitability). Consider a set of l sensitive
values (X1, . . . , Xl). A side-channel adversary obtains multiple side information
(Y1, . . . , Yl) through the channels φi = (Xi → Yi), i = 1, . . . , l. The tuple of
channels φ = (φ1, . . . , φl) is restricted so that the adversary’s ability is limited.
Typically, the adversary is said to be:
– t-threshold probing [ISW03]: if φ contains at most t identity channels and

opaque channels on the remaining positions;
– E-random probing [DDF14]: if φ is made of E-erasure channels;
– δ-noisy [PR13, PGMP19]: if φ contains only δ-noisy channels with respect

to some metric D;
– (σ, f)-additive: if φ is made of channels of the form X → Y ≜ f(X) + σN

where f is a fixed deterministic leakage function and N ∼ N (0, 1) is an in-
dependent additive Gaussian noise. Typically, f can be the Hamming weight
function or the least significant bit function. When X is a bit leaking as X →
Y = X + σN it specializes to the leakage model of Chari et al. [CJRR99].

A cryptographic implementation is classically modeled as a circuit Γ . There
are two main paradigms about the channel inputs that are both legitimate.
Either it is assumed that every wire within the circuit leaks like [DDF14]. Or it
is assumed that every gate within the circuit leaks like [PR13]. In this case, the
channel takes as input the operands of the gate. For unary gates both models
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are exactly equivalent. The models differ whenever the gates process multiple
operands. Assuming that the wires leak leads to tighter security bounds, while
assuming that the gates leak seems to be closer to the physical nature of leakages.
[DDF14, § 5.5] discusses more in depth the trade off between both models.

One concern in side-channel analysis is to cover adaptive adversaries A. This
term can be confusing as it is used with different meanings. To avoid any am-
biguity, we make more precise the terminology with the following definitions:

Definition 12 (Adaptive Adversary Flavors). We clarify the different no-
tations of adaptivity in the context of side-channel attacks:
1. When A is allowed to choose sequentially the public information [MS23b]

used by Γ then she/he is a chosen public information adversary. It
corresponds to the usual setting of chosen plaintext or ciphertext adversary
in cryptology.

2. When A is allowed to specify φ sequentially [DDF14] she/he is said to be a
chosen channel adversary. This differs from chosen public information
adversary; in this setting the adversary is allowed to move the position of the
side-channel acquisition instruments (probes) from one query to the other.

3. If A can specify φ1, . . . , φl sequentially within a query [DDF14], she/he is
said to be a strong chosen channel adversary. The adversary is even
allowed to move the position of its probe within a query. This last type of
adaptivity is, however, unrealistic in most of practical settings.

The activity of a side-channel adversary A with q queries can be viewed as
a game. This game unfolds differently depending on the side-channel adaptivity
and depending on the gate/wire leakage model. After side-channel collection, the
adversary exploits them to distinguish the correct key K and outputs outA(K).

The complete acquisition and attack led by A is formalized by Alg. 1. In
practice outA(K) can be a score vector sorting the key hypotheses (or parts of
the key). If A is restricted to opaque channels she/he does not learn anything
through them. In this case, A is said to be a black-box adversary.

2.6 Figures of Merit

When outA(K) is a key ranking the performances of the adversary are measured
via three classical figures of merits: The success rate (SR) Ps, the success rate of
order o (SRo, success rate in o-trials) Ps,o [SMY09] and the guessing entropy GE
[Mas94]. We follow Ito et al. [IUH22, § 2.3] and express these metrics in terms
of the a posteriori rank of the key hypothesis given the side-information.

Definition 13 (Success Rate (SR) and Guessing Entropy (GE)). Let K
be a secret random variable taking values in a finite set K. Let Y be an arbitrary
random variable representing a side-information. The success rate (SR) is given
by the Maximum a Posteriori (MAP) rule

Ps(K|Y ) ≜ P(rank(K|Y ) = 1) (24)
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Algorithm 1: Side-Channel Acquisition and Attack

Data: A number of queries q and a set of allowed side-channels.
Result: The output of the adversary A.

1 Oracle O draws uniformly at random a secret key K.
2 for i = 1, . . . , q do /* Sequential Acquisition of q Traces. */

3 A specifies a public information ti and send it to O. /* Sequential

Choice of Public Information */

4 O draws uniformly at random the randomness Ri and computes the
corresponding wire values Xi.

/* This is the wire leaking model. In the gate leakage model

the loop is over the gates instead. */

5 for j = 1, . . . , l do /* Sequential Choice of the Side-Channels */

6 A specifies φi to O
7 O sends back the corresponding leakage xi from side-channel φi to A

under the constraint that φ is an allowed tuple of channel.

/* Restriction on the type of allowed side-channels */

8 return A outputs outA(K)

The success rate of order o, SRo is

Ps,o(K|Y ) ≜ P(rank(K|Y ) ⩽ o) (25)

The guessing entropy (GE) is the minimum average number of guesses of an
optimal guessing strategy

G(K|Y ) ≜ E{rank(K|Y )} (26)

In general rank is defined as a function such that for each y, k → rank(k|y) is a
permutation of the key space K. In an optimal guessing strategy, for each y ∈ Y,
rank(k|y) ∈ {1, . . . , |K|} is the rank of pK|Y (k|y) in the list {pK|Y (k|y)|k ∈ K}
sorted in decreasing order. In case of collisions, ties are resolved randomly which
does not change the statistical quantities at stake.

Remark 8. Since Ps(K|Y ) = Ps,o=1(K|Y ) holds, results for SR will be derived
from results in terms of SRo.

Definition 14 (Blind Guess). When no side-information is available, the ad-
versary performs a blind guess whose figures of merits are constants depending
only on the a priori key-distribution. Namely

Ps,o(K) ≜ P(rank(K) ⩽ o) and G(K) ≜ E{rank(K)} (27)

where rank(k) ∈ {1, . . . , |K|} is the rank of pK(k) in the list {pK(k)|k ∈ K}
sorted in decreasing order.

The advantage of the adversary is quantified by Ps,o(K|Y ) − Ps,o(K) ⩾ 0,
G(K) − G(K|Y ) ⩾ 0 and for statistical tests ∆(K;Y ) ⩾ 0. If further K is

uniformly distributed then Ps,o(K) = o
|K| and G(K) = |K|+1

2 .
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If an adversary A is computationally bounded then she/he may not be able to
fully exploit the side-information Y . The corresponding figures of merit are de-
noted by PA

s (K|Y ), PA
s,o(K|Y ) and GA(K|Y ). Obviously PA

s (K|Y ) ⩽ Ps(K|Y ),

PA
s,o(K|Y ) ⩽ Ps,o(K|Y ) and GA(K|Y ) ⩾ G(K|Y ).

3 Mathematical Key Properties of the CDC

In this section we derive the key mathematical properties of the CDC that will
be useful to derive security bounds. In Subsection 3.1 we exhibit the optimal
factorization of a side-channel into a stochastically degraded erasure channel.
This shows that CDC is the optimal parameter in the reduction from noisy
leakages to the random probing model. The word optimal refer to the reduction
from noisy leakage to a random probing adversary, we do not claim however that
the CDC yields an optimal bound on the success rate of a side-channel attack.
In Subsection 3.2 we show how the figures of merit of a side-channel attack
can be bounded using CDC leveraging the Data Processing Inequality (DPI).
We show that CDC is amenable to evaluation in Subsection 3.3. Finally, we
compare the CDC to the informational measure (introduced in Subsection 2.3)
in Subsection 3.4.

3.1 Optimal Channel Degradation

It is known that security in the noisy leakage model can be reduced to secu-
rity in the random probing model. In [DDF14, Lemma 3], security in the noisy
leakage model measured by TVI is reduced to security in the random probing
model. In [PGMP19, Lemma 3], security in the noisy leakage model measured
by ARE is reduced to security in the random probing model. Finally, [DFS19,
Theorem 3] proves security in the noisy leakage model measured by MI by upper
bounding [DDF14, Lemma 3] using Pinsker’s inequality [PW23, Thm 7.10].

The key property is that any channel can be seen as a stochastically degraded
erasure channel. This stochastic degradation can be seen as a factorization like
[DDF14, Lemma 4] of Noise(X) into Noise′(φ(X)) where φ is an erasure channel
(termed ϵ-identity function in their presentation). In this section, we derive the
optimal parameter in this reduction and show it corresponds to the complemen-
tary Doeblin coefficient (CDC). This unifies previous results that can seen as a
weakened version of our reduction by upper bounding the CDC.

Definition 15 (Degraded Channel). The channel X → Z is said to be
stochastically degraded with respect to the channel X → Y if there exists a
channel Y → Z such that

(
X → PY |X → Y → PZ|Y → Z

)
=
(
X → PZ|X → Z

)
. (28)

Theorem 1. Any channel X → PY |X → Y is a stochastically degraded erasure

channel:

X → EC⊥
E → X ′ → PY |X′ → Y (29)
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with the maximum erasure probability

E(X → Y ) =
∑∫

y

inf
x∈X

pY |X(y|x). (30)

Proof. We provide a proof for completeness in Appendix B.3. ⊓⊔

Remark 9. E(X → Y ) is known in the literature as the Doeblin coefficient of
ergodicity of the channel [Doe37, Dob56, Mak20, MS23a]. In our context E(X →
Y ) represents the erasure probability while E(X → Y ) represents the probing
probability. Thm 1 was proved for binary input channels in [BB11, Prop. 6.4] in
the context of physical layer security and wiretap channels and in the general
for network coding in [Mak20, Lemma 6] or key agreements in [GGK20, Lemma
5]. The CDC appears for the first time in the side-channel literature as the value
of ϵ in [DDF19, Eqn. 9, Proof of Lemma 4].

Remark 10. Maximum erasure probability in Theorem 1 means that there exists
at least one channel degradation (in the form of Equation (29)) achieving E =
E(X → Y ) and that there does not exist any channel degradation with E >
E(X → Y ). In this sense, the CDC is the optimal parameter in the reduction
from noisy leakage to the random probing model.

Obviously, the erasure channel is optimally degraded into itself, that is,

E(X → EC⊥
E (X) → Y ) = E .

Example 1 (Binary Symetric Channel (BSC)). If X is a binary random variable
and X → Y a BSC with crossover probability 0 ⩽ p ⩽ 1

2 then E(X → Y ) = 2p.
The factorization given by Theorem 1 is shown in Figure 2a.

Example 2 (Z-Channel). If X is binary and X → Y is a Z-channel with param-
eter 0 ⩽ e ⩽ 1 then E(X → Y ) = e. The factorization given by Theorem 1 is
shown in Figure 2b.
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(b) Z-Channel

Fig. 2: Illustration of Theorem 1

Theorem 1 implies the following corollary in terms of simulatability similar
to [DDF14, Lemma 3] in terms of CDC:
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Corollary 1. Any E-noisy adversary A with respect to CDC can be perfectly
simulated by a E-random probing adversary S.

Proof. Let us assume that A receives the side information Y about K through
the channel K → Y . By assumption E(K → Y ) = E so that Theorem 1 implies
that (K → Y ) = (K → K ′ → Y ) where K → K ′ is an erasure channel with
erasure probability E . An adversary S that receives side information K ′ about
K through K → K ′ is E-random probing. Now S can sample Ỹ by passing
its observation K ′ through the channel K ′ → Y . By construction S obtains Ỹ
equals in law with Y . ⊓⊔

Strengthened Data Processing Inequality By Lemma 2, the composition
of several erasure channels is an erasure channel with a larger erasure probability.
In general, the composition of several channels should leak less information. This
is formalized by a strengthened data processing inequality (DPI):

Lemma 7 (Strengthened Data Processing Inequality (DPI)). For any
X → Y → Z, CDC satisfies the following strengthened-DPI

E(X → Z) ⩽ E(X → Y )E(Y → Z) (31)

which implies a preprocessing-DPI (preprocessing X → Y can only reduce leak-
age): E(X → Z) ⩽ E(Y → Z), and a post-processing-DPI (post-processing
Y → Z can only reduce leakage) E(X → Z) ⩽ E(X → Y ). In a nutshell,
stochastic degradation reduces the value of the CDC.

Proof. By Theorem 1 we can degrade the channels X → Y and Y → Z so that
the channel X → Z rewrites as

X → EC⊥x

E(X→Y ) → X ′ → PY |X′ → Y → EC
⊥y

E(Y→Z) → Y ′ → PZ|Y ′ → Z.

(32)
Since by Lemma 1 an erasure channel commutes with any other channel, the
channel is equivalent to

X → EC⊥x

E(X→Y ) → X ′ → EC
⊥y

E(Y→Z) → X ′′ → P
⊥y

Y ′|X′′ → Y → PZ|Y ′ → Z.

(33)
We have two different erasures symbols but by Lemma 3, the concatenated
channel is stochastically degraded with respect to an erasure channel with E =
E(X → Y )E(Y → Z). So we have

X → EC⊥
E → X̃ → PX̃|X′′ → X ′′ → P

⊥y

Y ′|X′′ → Y → PZ|Y ′ → Z. (34)

Now let pZ|X̃ = pZ|Y ′ → p
⊥y

Y ′|X′′ → pX̃|X′′ so that

X → EC⊥
E → X̃ → PZ|X̃ → Z. (35)
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Since E(X → Z) is the infimum such that this factorization holds, we have
E(X → Z) ⩽ E = E(X → Y )E(Y → Z) which concludes the proof. ⊓⊔

Remark 11. Makur and Singh [MS23a], with a very different proof, established
a similar property of CDC in the discrete setting and interpreted it as the sub-
multiplicativity of CDC.

3.2 Bounds on the Figures of Merit

An adversary tries to recover the sensitive variable X with the help of the side-
information Z through the side-channel X → Z which is stochastically degraded
with respect to the channel X → Y . Intuitively she/he can only perform worse
than an adversary that accesses Y . This intuition is formalized by a DPI data
processing inequality (DPI).

Lemma 8 (Data Processing Inequality (DPI)). Consider the channel U →
V →W → X. Then

I(V ;W ) ⩾ I(U ;X) and ∆(V ;W ) ⩾ ∆(U ;X). (36)

Consider the channel X → Y → Z, where X is valued in the finite set X ,
the SRo and GE verify a post-processing DPI,

Ps,o(X|Y ) ⩾ Ps,o(X|Z) and G(X|Y ) ⩽ G(X|Z). (37)

Proof. It is well known that the SRo and GE verify a post-processing DPI (see
for instance [BCGR22, Rio23]). As shown in [PW23, Theorem 7.16], the f -
information also verifies a DPI which includes MI and TVI.

Proposition 1. Let λSRo
= (1 − Ps,o(K)), λGE = (G(K) − 1), λTVI = (1 −

exp(−H2(K))) be three constants that only depend on the a priori secret key
distribution (where H2 is the collision entropy). The adversary’s advantage for
SR,GE and TVI can be bounded as follows:

0 ⩽ Ps,o(K|Y )− Ps,o(K) ⩽ E(K → Y )λSRo ,
0 ⩽ G(K)−G(K|Y ) ⩽ E(K → Y )λGE,
0 ⩽ ∆(K;Y ) ⩽ E(K → Y )λTVI.

(38)

Proof. See Appendix B.2. ⊓⊔

We cannot directly deduce from Lemma 8 that PA
s (K|Y ), PA

s,o(K|Y ) and

GA(K|Y ) verify a DPI. But as shown by Duc et al. [DDF14, Lemma 2] if the
channel K ′ → Y can be efficiently sampled then A can efficiently reproduce Ỹ
equal in distribution with Y from X ′. As a consequence, under this hypothesis
we can assume that PA

s (K|Y ), PA
s,o(K|Y ) and GA(K|Y ) also verify the bounds

from Proposition 1. As shown by Brian et al. [BFO+22], a large class of noisy
channels K ′ → Y can be indeed simulated almost for free. In fact, we do not
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need to have an efficient simulation of the channel noise K ′ → Y . Indeed, since
K → K ′ is an erasure channel we obtain

PA
s (K|Y )

(a)

⩽ Ps(K|Y )
(b)

⩽ Ps(K|K ′)
(c)
= PA

s (K|K ′) (39)

where (a) holds because a computationally bounded adversary can only perform
worse than the optimal unbounded adversary, (b) is the usual DPI and (c) is due
to the fact that for an erasure channel an optimal attack is efficiently computable.
For example, the attack that outputs the key when it is not erased and a random
ranking otherwise is both optimal and efficient. The same derivation holds for
GE (with reversed inequalities).

Discussion on the Optimality of the CDC The trade-off between a CDC-
based bound and a MI based bound depends on the nature of the channelK → Y
which is factorized optimally with the CDC into K → K ′ → Y .

– If K → Y is an erasure channel then the factorization is K → K ′ = Y so
that using the DPI to consider K ′ instead of Y as a leakage can be done
without any degradation of the final bound. In this case the bound using
CDC is optimal and holds with equality.

– If the channel K → Y is far from an erasure channel then the channel
K ′ → Y can be noisy. As a consequence, using the DPI to consider K ′ as
the leakage instead of Y incurs an unavoidable loss. In this case the CDC
based bound can be loose and another informational leakage measure such
as MI or TVI may be more suitable to capture the noise in the side-channel.
A very bad channel in this respect is the channel from K → Y where K
and Y are both taking their values in {1, . . . , |X |}, pY |K(y|k) = (|X | − 1)−1

if y ̸= k and pY |K(y|k) = 0 otherwise. In this case, E(K → Y ) = 1 while
I(K;Y ) = log(|X |/(|X | − 1)) is small.

Both of these two extreme cases are toy examples that do not occur in practice.
Depending on the nature of the practical side-channel the bound based on CDC
will be tight or not.

3.3 Theoretical Expressions for Concrete Evaluation

In this Subsection we show how CDC can be evaluated in a practical setting.
We first show how we can derive a closed form expression for univariate func-
tional channels perturbed by an additive Gaussian noise. (This corresponds to
(σ, f)-additive adversaries.) Then we show how this allows to bound CDC in the
multivariate case perturbed by an additive Gaussian noise with a given correla-
tion matrix Σ. This corresponds to the widely used setting from template attack
(TA) [CRR02, LRP07, UKM+17]

We show that in this model CDC is suitable for concrete evaluation, even
when the noise is multivariate and potentially high dimensional.
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Univariate Case

Definition 16 (Radially Symmetric Decreasing). The real-valued r.v. Z is
said to be radially symmetric decreasing if pZ(z) = pZ(|z|) and decreasing in |z|.

We derive a closed-form expression for CDC when the channel is functional per-
turbed by a radially symmetric decreasing additive noise. This includes Gaus-
sian, Laplacian or Cauchy distribution for example. As CDC only depends on
the channel the result does not depend on the probability distribution of X. As
expected the CDC tends to zero as the noise increases.

Proposition 2. Let X be a random variable taking values in X and Y = f(X)+
Z where f is an arbitrary real-valued function and Z is a radially symmetric
decreasing noise with survival function S. Let m = inf

x∈X
f(x) and M = sup

x∈X
f(x).

Then

E(X → Y ) = 2S

(
M −m

2

)
. (40)

For the widely adopted linear leakage model, X = Fn
2 and f(X) =

∑n
i=1 aiXi

where a = (a1, . . . , an) ∈ Rn and Xi denotes the i-th bit in the binary represen-
tation of X, we have m = −∑i a

−
i and M =

∑
i a

+
i so that M −m =

∑
i |ai| =

∥a∥1 and the expression simplifies to

E(X → Y ) = 2S

(∥a∥1
2

)
. (41)

If Z ∼ σN (0, 1), the survival function S is the Marcum function Q, and

E(X → Y ) = 1− 2Q

(∥a∥1
2σ

)
σ→∞
=
∥a∥1√
2π

1

σ
+O

(
σ−3

)
. (42)

For the classical Hamming weight (HW) model, a = (1, . . . , 1) and ∥a∥1 = n.

Proof. See Appendix B.8. ⊓⊔

Remark 12. When f is constant then m = M , and we obtain E(X → Y ) = 1.
This is expected as in this case the channel is opaque.

Multivariate Case Let f : x ∈ F 7→ f(x) ∈ Rm be a multivariate leakage
function and Y = f(X) + N (0,Σ). Then Ỹ ≜ WY = (W · f)(X) + Z̃ where

W is a given whitening matrix (e.g. W = Σ− 1
2 ) so that Z̃ = WZ ∼ N (0, Im).

Given X, Ỹ is a Gaussian vector whose covariance matrix is diagonal. Hence,
by theorem on Gaussian vectors, the different components of Ỹ are independent
given X and Lemma 5 implies that

E(X → Y) = E(X → Ỹ) ⩾
m∏

i=1

E(X → Ỹi). (43)
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Since every channel X → Ỹi is univariate additive Gaussian noise, its expression
is given by Proposition 2. This methodology yields a positively biased estimator
of E(X → Y) from the non-biased estimator of each E(X → Ỹi). This approach
is more conservative but ensures that we do not overestimate the security pa-
rameter which would result in a false sentiment of security. This is by opposition
with the perceived information (PI [RSV+11, Eqn. 3]) which is a negatively
biased estimator of MI as shown in [BHM+19, IUH22].

Example 3. As an example, consider the channel Y ≜ (f(X), f(X))T +Z where
f is a univariate leakage function and Z ∼ N (0,Σ) with a covariance matrix

Σ = σ2

(
1 ρ
ρ 1

)
where σ is the noise standard deviation and ρ ∈ [−1, 1] is the

correlation coefficient of the noise components. Let m = infx f(x) and M =
supx f(x). With a little of linear algebra we observe that Σ = PDPT where

P = PT = 1√
2

(
1 1
1 −1

)
is orthonormal and D = σ2

(
1+ρ 0
0 1−ρ

)
is diagonal. We

compare two noise whitening techniques.
Karhunen–Loève transform (PCA Whitening): Let W = D− 1

2PT be the

noise whitening of Karhunen–Loève transform and WZ ≜ Z̃ ∼ N (0, I2),

Ỹ = WY =

√
2

1 + ρ

1

σ

(
f(X)
0

)
+ Z̃. (44)

By Proposition 2, E(X → Ỹ1) = 2Q
(√

2
1+ρ

1
σ

M−m
2

)
. Furthermore, E(X → Ỹ2) =

1 so that Equation (43) becomes an equality here

E(X → Y) = 2Q
(√ 2

1 + ρ

1

σ

M −m
2

)
= 1− 1

σ

√
2

1 + ρ

M −m√
2π

+O(σ−2). (45)

Equation (45) is coherent:
– When ρ = 1, the leakage is repeated and as expected from Lemma 4 the

CDC remains unchanged.
– When ρ = 0, we have two independent noises, and it is optimal to average

the samples such that the global noise variance is halved.
– As ρ→ −1, E(X → Y)→ 0 which is expected since averaging both compo-

nents completely cancels out the noise and f(X) is revealed.

Mahalanobis transform (ZCA Whitening): Let W = Σ− 1
2 = PD− 1

2PT be

the noise whitening of Mahalanobis transform and WZ ≜ Z̃ ∼ N (0, I2),

Ỹ = Σ− 1
2Y =

√
1

1 + ρ

1

σ

(
f(X)
f(X)

)
+ Z̃. (46)

By Proposition 2, E(X → Ỹi) = 2Q
(√

1
1+ρ

1
σ

M−m
2

)
. Equation (43) becomes

E(X → Y) ⩾ 4Q2
(√ 1

1 + ρ

1

σ

M −m
2

)
. (47)

Interestingly, with Mahalanobis transform we have an inequality in (43) which
shows that the choice of the whitening technique can affect the bound tightness.
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3.4 Comparison with the Other Informational Leakage Measures

Let X be a random variable taking values in a finite set X and a channel X → Y .
The following inequalities proved in Appendix D hold:

Lemma 9.

I(X;Y )
log |X | ⩽ I(X;Y )

H(X)

ARE(X;Y )
2γXλTVI

β(X;Y )
2λTVI





⩽ ∆(X;Y )
λTVI

exp(L(X→Y ))−1
|X |−1





⩽E(X→Y )⩽





ARE(X;Y ) ⩽ RE(X;Y )

γXβ(X;Y )

γX∆(X;Y )⩽γX
(

I(X;Y )
2 log e

) 1
2

(|X | − 1)(exp (L(X → Y ))− 1)

(48)
where H is Shannon entropy, H2 is the collision entropy, λTVI = 1−exp(−H2(X))

and γX ≜
(
inf
x∈X

pX(x)
)−1

. If X ∼ U(X ) then γX = |X | and λTVI = 1− 1
|X | .

Lemma 9 does not lower bound the CDC in terms of RE because it is im-
possible to obtain a meaningful bound. Indeed, as remarked by Masure & Stan-
daert [MS23b] if X → Y is an erasure channel with an arbitrarily small param-
eter E > 0 then RE(X;Y ) = |X | − 1. As a consequence, RE cannot provide a
smooth reduction from noisy leakages to the random probing model. We compare
the different leakage measures in Table. 1 via three criteria:

– the ratio of their lower bound by their upper bound in Lemma 9 when
X ∼ U(X ) (as a measure of relative looseness);

– their maximal value (which measures their normalization);
– their asymptotic values in the Hamming weight leakage model when X ∼
U(Fn

2 ) hence |X | = 2n (which measures their performance for a typical leak-
age model).

This allows us to label the introductive Figure 1. Tab. 1 shows that CDC and
ARE have the same asymptotic expression in the Hamming weight leakage model
with high noise. While ARE is suboptimal and do not verify the properties of
the CDC, it provides a tight reduction to the random probing model in this
scenario. However, the range of ARE is [0, |X | − 1] and its relative looseness
is 2(|X | − 1) which indicates that in a sense ARE contains the field size in its
definition. In any case, it remains preferable to use the CDC which provides the
optimal reduction from noisy leakage to random probing.

4 Direct Proofs via CDC and Prouff-Rivain Subsequences

In this section we revisit the direct security proof in the noisy leakage model
based on Prouff and Rivain’s subsequence decomposition [PR13] to obtain a
new derivation in terms of CDC. The subsequence decomposition of Prouff and
Rivain is recalled in Subsection 4.1. We first prove security for subsequences of
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Table 1: T is the ratio of the lower bound by the upper bound in Lemma 9 when
X ∼ U(X ). M indicates the maximal value of the leakage measures. Finally, H
indicates the asymptotic values of the leakage measure in the Hamming weight
leakage model. We used the values of [PGMP19, Prop. 3] for ARE, EN and TVI,
for MI we used [BCPZ16], for CDC we used Prop. 2. We derived the value for
RE in Appendix E.2.

I(X;Y ) ∆(X;Y ) L(X → Y ) β(X;Y ) RE(X;Y ) ARE(X;Y ) E(X → Y )

T |X| log |X|√
2 log eI(X;Y )

|X | − 1 (|X | − 1)2 2(|X | − 1) +∞ 2(|X | − 1) 1

M log |X | 1− 1
|X| log |X |

√
1− 1

|X| |X | − 1 |X | − 1 1

H n log e
8

1
σ2

√
n

2πσ
n log e√

2πσ

√
n

2π2n
1
σ

2n − 1 n√
2πσ

n√
2πσ

type 1 and 2 in Subsection 4.2. The security of type 3 and type 4 subsequences is
obtained in Subsection 4.3 and Subsection 4.4 respectively. Finally, we combine
the security bounds obtained for each subsequence into a security bound for
the whole circuit in Subsection 4.5 and compare it with a MI based bound in
Subsection 4.6.

4.1 Subsequence Decomposition

For typical block ciphers like the AES, featuring substitution boxes (denoted by
Sboxes), Prouff and Rivain [PR13, § 4.2] decompose the computations in four
different types of subsequences:

Type 1 (zi ← g(xi))i where g is a linear function (of the block cipher)
Type 2 (xi ← g(yi))i where g is an affine function (of Sbox evaluation)
Type 3 (vi,j ← aibj)i,j (First step of non-linear secure multiplication)
Type 4 (ti,j ← ti,j−1 + vi,j)i,j (Last step of non-linear secure multiplication)

This decomposition has become standard to derive security proofs [PGMP19,
MS23b]. Note that in this model it is classically assumed that the gates leak.

The first type of subsequences considers linear operations on a shared uniform
variable. The second type of subsequence considers linear operations on a shared
polynomial expression of a uniform variable. This is typically the case of linear
operations within Sboxes. The third type of subsequences deals with the first part
of the ISW multiplications involving the cross-product of the input shares of two
(non-necessarily independent) random variables. Finally, the type 4 subsequences
correspond to the compression layer of the ISW multiplication.

Flaws for Type 3 Subsequences in the State of the Art In Appendix E,
we list some flaws in the preceding direct proofs in the noisy leakage model
[PR13], [PGMP19], [MS23b]. While these three proofs are different in nature,
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the flaws appear at a similar step: proving security for type 3 subsequences.
For [PR13], [PGMP19] it is due to an incorrect derivation of the chain rule for
conditional probabilities. For [MS23b] it is due to the fact that the function
used in Mrs. Gerber’s Lemma is convex in one variable when the others are
fixed but not jointly convex. We patch part of the flaws in Appendix E using the
reductions of MI, ARE and EN to the CDC presented in Subsection 3.4. In this
section, X is a sensitive random variable taking values in X = Fn

2 that can be
expressed as a function of the secret K and a public information (e.g., plaintext
or ciphertext).

4.2 Security of Type 1 and Type 2 Subsequences

In [BCG+23, Coro. 1] Béguinot et al. leveraged Mrs. Gerber’s Lemma (MGL)
to derive security bounds for encodings in terms of MI. Masure and Stan-
daert [MS23b, Coro. 4 & 5] showed how to exploit such MGL to prove the
security of type 1 and type 2 subsequences. We now show that CDC also verifies
a sort of MGL that quantifies the security for both type 1 (f = id) and type 2
subsequences (generic f).

Lemma 10 (Mrs. Gerber’s Lemma for CDC, Type 1 and Type 2 Sub-
sequences). Let G = (Gi)

d
i=0 be a d-th order encoding of G = g(X) where g is

a given function. Assume that each share leaks independently through the side-
channels (Gi → Yi)

d
i=0. Let Y ≜ (Y0, . . . , Yd) then, E(X → Y) ⩽

∏
i E(Gi → Yi).

Proof. The key observation is that by the secret sharing property a masked value
is probed if and only if all of its shares are probed. See Appendix B.9. ⊓⊔

4.3 Security of Type 3 Subsequences

Let G = (Gi)
d
i=0 and H = (Hi)

d
i=0 be d-th order encodings of g(X) and h(X)

where g, h are given functions. This section proves security of type 3 subsequences
involving the computations with the pairs (Hi, Gh). We need to introduce family
of polynomials to express the security bound:

Definition 17 (Rook Domination Polynomial [Mer24]). Let (Ei,j)0⩽i,j⩽d

be a collection of independents events with respective probabilities ((E i,j)0⩽i,j⩽d).
Let

Υ ((E i,j)0⩽i,j⩽d) ≜ P
(
(∩di=0 ∪dj=0 Ei,j) ∪ (∩dj=0 ∪di=0 Ei,j)

)
. (49)

For short Υd(E) ≜ Υ ((E i,j)0⩽i,j⩽d) when for all i, j we have E i,j = E.

In fact, Υd corresponds to the domination polynomial of the rook graph [Mer24].
It can be sandwiched explicitly as follows:
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Proposition 3.

max{
d∏

i=0

(
1−

d∏

j=0

Ei,j
)
,

d∏

j=0

(
1−

d∏

i=0

Ei,j
)
} ⩽ Υ ((E i,j)0⩽i,j⩽d) (50)

⩽ min{
d∏

i=0

(
1−

d∏

j=0

Ei,j
)
+

d∏

j=0

(
1−

d∏

i=0

Ei,j
)
, 1}. (51)

In particular when for all i, j, E i,j = E it yields:

(
1− Ed+1

)d+1
⩽ Υd(E) ⩽ min{2

(
1− Ed+1

)d+1
, 1}. (52)

Proof. By monotonicity of probability,

Υ ((E i,j)0⩽i,j⩽d) = P
(
(∩di=0 ∪dj=0 Ei,j) ∪ (∩dj=0 ∪di=0 Ei,j)

)
(53)

⩾ P(∩di=0 ∪dj=0 Ei,j) =

d∏

i=0

(
1−

d∏

j=0

Ei,j
)
. (54)

And similarly Υ ((E i,j)0⩽i,j⩽d) ⩾
∏d

j=0

(
1−∏d

i=0 Ei,j
)
. As a consequence

max{
d∏

i=0

(
1−

d∏

j=0

Ei,j
)
,

d∏

j=0

(
1−

d∏

i=0

Ei,j
)
} ⩽ Υ ((E i,j)0⩽i,j⩽d). (55)

Also, by the union bound,

Υ ((E i,j)0⩽i,j⩽d) ⩽ P(∩di=0 ∪dj=0 Ei,j) + P(∩dj=0 ∪di=0 Ei,j) (56)

=

d∏

i=0

(
1−

d∏

j=0

Ei,j
)
+

d∏

j=0

(
1−

d∏

i=0

Ei,j
)
. (57)

Finally, Υ ((E i,j)0⩽i,j⩽d) ⩽ 1 since it is a probability. ⊓⊔

Stephan Mertens [Mer24, Thm. 4] provides a recursive formula for this poly-
nomial, which gives an efficient way to compute exhaustively the coefficients of
Υd. The coefficients of the first polynomials Υd for d ⩽ 5 are shown in Tab. 2.
Additional properties are mentioned in Appendix C.

Rationale For The Rook Domination Polynomial Within type 3 sub-
sequences of ISW the cross-wise terms GiHj are computed so that each pair
(Gi, Hj) leaks. After degradation into an erasure channel, for each pair (i, j) the
degraded adversary A either probes (Gi, Hj) or receives an erasure symbol. Let
Ei,j be the event that A probes the pair (Gi, Hj). By the secret sharing property,
the sensitive value leaks if and only if we probe each Gi or each Hj .

Let E ≜ (∩di=0∪dj=0Ei,j)∪ (∩dj=0∪di=0Ei,j). Equation (49) defines Υ ≜ P(E).
If one represents the Ei,j in a checkerboard, the sensitive value is probed if and
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Table 2: Some explicit values of Υd(E) from small values of d.

d Υd(E)

0 E
1 6E2E2 + 4E3E + E4

2 48E3E6 + 117E4E5 + 126E5E4 + 84E6E3 + 36E7E2 + 9E8E + E9

3 488E4E12 + 2640E5E11 + 6712E6E10 + 10864E7E9 + 12726E8E8 + 11424E9E7

+8008E10E6 + 4368E11E5 + 1820E12E4 + 560E13E3 + 120E14E2 + 16E15E + E16

4 6130E5E20 + 58300E6E19 + 269500E7E18 + 808325E8E17 + 1778875E9E16

+3075160E10E15 + 4349400E11E14 + 5154900E12E13 + 5186300E13E12

+4454400E14E11 + 3268360E15E10 + 2042950E16E9 + 1081575E17E8

+480700E18E7 + 177100E19E6 + 53130E20E5 + 12650E21E4 + 2300E22E3

+300E23E2 + 25E24E1 + E25

5 92592E6E30 + 1356480E7E29 + 9859140E8E28 + 47187180E9E27 + 167284836E10E26

+469268496E11E25 + 1086623400E12E24 + 2137381200E13E23 + 3642777000E14E22

+5453014080E15E21 + 7235196885E16E20 + 8558765100E17E19 + 9057864300E18E18

+8591124600E19E17 + 7305959610E20E16 + 5567447160E21E15 + 3796214400E22E14

+2310778800E23E13 + 1251676800E24E12 + 600805260E25E11 + 254186856E26E10

+94143280E27E9 + 30260340E28E8 + 8347680E29E7 + 1947792E30E6 + 376992E31E5

+58905E32E4 + 7140E33E3 + 630E34E2 + 36E35E1 + E36

only if at least one event Ei,j occurs at least once in each line (∩di=0 ∪dj=0 Ei,j)

or at least once in each column (∩dj=0 ∪di=0 Ei,j). This results in Equation (49).
Considering that Ei,j occurs when a rook is placed at coordinates (i, j) of

the checkerboard, the event E is realized if and only if every position in the
checkerboard is attacked (or occupied) by at least one rook. The domination
polynomial of the rook graph counts the number of such configurations of m
rooks. Therefore, it allows one to compute Υd when all Ei,j are equiprobable.

We now show the security of type 3 subsequences using the domination poly-
nomial of the rook graph:

Lemma 11 (Type 3 Subsequences). Consider the channels ((Gi, Hj) →
Yi,j)0⩽i,j⩽d and let Y ≜ (Yi,j)0⩽i,j⩽d. Then one has

E(X → Y) ⩽ Υ ((E((Gi, Hj)→ Yi,j))0⩽i,j⩽d). (58)

Proof. See Appendix B.10. ⊓⊔

4.4 Security of Type 4 Subsequences

Type 4 subsequences consider the compression layer in multiplication gadgets. At
this stage, the sensitive variable is masked in (d+1)2 shares. In the compression
layer, the shares are grouped in d+1 groups each of size d+1, and are recombined
to obtain a d-th order encoding of the sensitive variable. Formally, let (Vi,j) be
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an encoding in (d+1)2 shares of f(X) where f is a given function. Let Ti,0 = Vi,0
and Ti,j = Ti,j−1⊕Vi,j . In particular (Ti,d)

d
i=0 is a d-th order encoding of f(X).

Lemma 12 (Cumulative Sum). Consider the cumulative sum function hd :
(x0, . . . , xd) ∈ Fd+1 7→ (x0, x0 + x1, . . . , x0 + . . . + xd) ∈ Fd+1. (Vi,0, . . . , Vi,d)
is a d-th order sharing of Ti,d and since Ti,j − Ti,j−1 = Vi,j, a channel from
(Ti,j−1, Vi,j) can be seen as a channel from the pair (Ti,j , Ti,j−1). Let

Ti = (Ti,0, . . . , Ti,d+1)→ pY|Ti
≜

d∏

j=0

pYi,j |(Ti,j−1,Ti,j) → Yi = (Yi,0, . . . , Yi,d)

with the convention that Ti,−1 = 0. Then the channel rewrites,

Ti,d → Maskd → Vi = (Vi,0, . . . , Vi,d)→ hd → Ti → PY|Ti
→ Yi (59)

and E(Ti,d → Yi) ⩽ E((Ti,d−1, Vi,d)→ Yi,d).

Proof. See Appendix B.11. ⊓⊔

We obtain now the following security result for type 4 subsequences:

Lemma 13 (Type 4 Subsequences). Consider ((Ti,j−1, Vi,j) → Yi,j)0⩽i,j⩽d

and let Y = (Yi,j)0⩽i,j⩽d then, E(X → Y) ⩽
∏d

i=0 E((Ti,d−1, Vi,d)→ Yi,d).

Proof. Combine Lemma 10 with Lemma 12. ⊓⊔

4.5 Security for the Whole Circuit

Combining Lemmas 10,11,13 for the different subsequences together with the
single-letterization Lemma 6 we obtain a security guarantee for the whole circuit:

Theorem 2 (Direct Security Proof). Consider an implementation with ni
subsequences of type i (i = 1, 2, 3, 4) and a E-noisy adversary with respect to
CDC with q queries. Let Y be the vector of all corresponding side-informations
acquired by the chosen channel adversary. Then one has

0 ⩽ E(K → Y) ⩽ 1−
((
1− Ed+1)n1+n2+n4

(
1− Υd(E)

)n3
)q

⩽ 1. (60)

The upper bound can be weakened via the union bound to

E(K → Y) ⩽ q
(
(n1 + n2 + n4) + 2n3(d+ 1)d+1

)
Ed+1

. (61)

Also, using the asymptotic equivalent of the domination polynomial of the rook
graph the upper bound of Equation (60) is asymptotically equivalent to

q
(
n1 + n2 +

(
2(d+ 1)d+1 − (d+ 1)!

)
n3 + n4

)
Ed+1

. (62)
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Remark 13. Equation (61) is of a similar form as [MS23b, Thm. 5] but the
constants ni are not scaled by a term depending on the field size |X |, contrary
to the ti occurring in [MS23b, Thm. 7].

Proof. See Appendix B.12. ⊓⊔
De Chérisey et al. obtained a lower bound on the minimum number of queries

required by the adversary to achieve a given advantage in terms of SR in the
unprotected setting with MI [dCGRP19, Thm. 2, Eqn. 4]. Béguinot et al. derived
a tight bound for masked encoding with MI [BCG+23, Coro. 2] and maximal
leakage [BLR+23, Coro. 1]. Liu et al. derived a tight bound for masked encoding
with Sibson’s α-information of order 2 [LBC+23, Thm. 2]. The combination of
Theorem 2 with Proposition 1 yields a lower bound on the minimum number of
queries required by the adversary to achieve a given advantage in terms of SR,
GE or TVI for the entire protected computations (not only encodings).

Theorem 3 (Lower Bound on the Number of Queries). Let

λ(E , d) =
(
ln
((
1− Ed+1)n1+n2+n4

(
1− Υd(E)

)n3
))−1

(63)

=
(
(n1 + n2 + n4) log

(
1− Ed+1)

+ n3 log
(
1− Υd(E)

))−1
(64)

≈
((
n1 + n2 + n4 + n3(2(d+ 1)d+1 − (d+ 1)!)

)
Ed+1)−1

. (65)

The number of queries to achieve Ps,o(K|Y) = Ps,o, G(K|Y) = G or ∆(K;Y ) =
∆ is at least:

qsr ⩾ λ(E , d) ln
(
(1− Ps,o)

−1λSRo

)
,

qge ⩾ λ(E , d) ln
(
(G− 1)−1λGE

)
,

qtvi ⩾ λ(E , d) ln
(
∆−1λTVI

)
.

(66)

Theorem 3 is illustrated by Figure. 3. It shows how it behaves for a fixed
number of queries and increasing level of noise in Figure 3a and how it behaves
for a fixed value of the CDC and increasing number of queries q in Figure 3b. We
can observe on Figure. 3a that there is an optimal masking order with respect
to Theorem 3 depending on the noise level. Further, Figure. 3b shows that the
bound benefits from the single letterization of Lemma 5 and Lemma 6 as it is
an “S”-shaped curve. The weakened version of Lemma 6 into a linear bound
corresponds to the dotted line.

4.6 Comparison With Bounds Based on Mutual Information

Theorem 2 provides bounds on all figures of merits that we compare with bounds
based on MI. Let K → Y be a side-channel of a uniform key K ∼ U(Fn

2 ). Let
Y = HW(K) + N where N ∼ N (0, σ2) is an additive Gaussian noise. Let
Y = (Y1, . . . , Yq) be a side-channel leakage with q queries.

No Constraint on the Noise Level A strength of Theorem 2 is that the
bound on the CDC (Equation (60)) is always less than 1. In particular, our
bound does not require any constraint on the noise level to apply. This is by
contrast with MI based bound such as [MS23b].
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Fig. 3: Plots of Thm. 3 for one subsequence of type 3 (n1 = n2 = n4 = 0, n3 = 1)
and different masking order. The y-axis corresponds to the adversary’s advantage
in terms of success rate.

Scaling with the Number of Queries De Chérisey et al. [dCGRP19, Lemma
5] established an upper bound on the MI for side-channels that grows linearly
with respect to q i.e., I(K;Y) ⩽ qI(K;Y ). However, the MI I(K;Y) is bounded
above by the constant log |K|. Therefore, the linear bound cannot be tight for
large values of q. Finding an alternative practical non-linear bound on the MI
that remains bounded when q increases remains an interesting open question.
However, our bound E(K → Y) ⩽ 1 − (1 − E(K → Y ))q ⩽ qE(K → Y ) of
Lemma 6 for the CDC is nonlinear with respect to q and can be weakened into
a linear bound using Boole’s inequality. This linear approximation is tight when
E → 0.

Attack with One Trace (SPA) and Multiple Traces (DPA) On the one
hand, Béguinot et al. [BLR+23, Eqn. 87] showed that as I(K;Y)→ 0, we have

Ps(K|Y)− Ps(K) ⩽

√
2(2n − 1)

22n
qI(K;Y )

log e
. (67)

On the other hand, Proposition 1 yields

Ps(K|Y)− Ps(K) ⩽ (1− (1− E(K → Y ))q)λSR ≈ qE(K → Y )λSR. (68)

While δMI ∝ 1
σ2 [BCPZ16, Appendix A] and δCDC ∝ 1

σ (Proposition 2), the
square root in the MI-based security bounds (e.g., Eqn. (67)) makes both bounds
on the SR advantage to be O(σ−1). As a consequence, the CDC-based bound
is comparable with the MI-based bound for single trace attack (q = 1) and at
large noise.
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However, in the context of a DPA where the goal is to lower bound the
minimum number of queries q to achieve a given figure of merit the MI based
bound Eqn. (67) will be in O(σ2) while the CDC based bound Eqn. (67) is only
O(σ). In the presence of masking the same observation applies to Theorem 3
and [MS23b, Theorem 7] where σ is replaced by σd+1. In conclusion CDC may
not be the most suitable informational noisiness measure to capture the leakage
in a DPA with many traces. However, since the factorization is optimal this
leads to the important conclusion that such a loss is inherent to a reduction
from noisy leakages to the random probing model. For this reason informational
bounds based on MI remain an interesting tool for side-channel analysis.

5 Indirect Proofs via CDC With Random Probing

In this Section, we explain how existing proof in the random probing model can
be combined with the CDC. We show how a security proof in the random probing
model can be lifted into the noisy leakage model by improving [DDF14, Thm. 1]
in Subsection 5.1. The resulting bound is shown to yield an upper bound on the
side-channel adversary’s advantage in Subsection 5.2. The asymptotic behav-
ior of the security bound is analyzed in Subsection 5.3. This analysis confirms
theoretically the finding from Battistello et al. [BCPZ16] that increasing indef-
initely the masking order of ISW gadgets whose noise rate is not constant can
be detrimental to security.

5.1 Lifting Security Proof in the Random Probing Model to Noisy
Leakage

We first refer back the existing security proofs in the random probing model.
Cassiers et al. [CFOS21] showed how to derive tight security bounds in the ran-
dom probing model using probe distribution table (PDT). Beläıd et al. [BCP+20,
BRT21] also derived security proof in the random probing model based on an
expansion strategy of small gadgets. Their improvements are based on the fact
that when an adversary probes more than t wires it does not necessarily learn
any information about the sensitive variable. The t-threshold probing security
ensures that no subset of at most t wires leak information. However, some subsets
of more than t wires does not leak information either. By carefully determining
the subsets of leaking wires and the subset of non-leaking wires the so-called
probability of simulation failure can be reduced.

Our goal is to show how we can lift a proof in the random probing model to
the noisy leakage model using CDC. To do so we show how to improve [DDF14,
Thm. 1]. In the same way the above-mentioned proof in the random probing
model can be lifted to the noisy leakage model using the CDC.

In this section, the circuit Γ is decomposed in |Γ | regions (gadgets) whose
numbers of wires is specified by the sequence (li). We assume that Γ is secure in
the region probing model, i.e. any set of at most t (probed) wires in each region
of the circuit is independent with the secret key.
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Theorem 4 (Indirect Security Proof). Let A be a E-noisy adversary with
respect to CDC with q queries. Let Y be the vector of all corresponding side-
information acquired by the chosen channel adversary. Then one has

E(K → Y) ⩽ fail(t, (li), E , q) ≜ 1−
|Γ |∏

i=1

(
1−QB(t, li, E)

)q
⩽ q

|Γ |∑

i=1

QB(t, li, E).

(69)

Remark 14. Here the wires leak while the gates leak in Section 4.

Proof. See Appendix B.13. ⊓⊔

Theorem 4 is very generic, it is “agnostic” to the countermeasure imple-
mented to achieve security against t-threshold probing adversary in the region
probing model. Masure & Standaert observed in [MS23b, Tab. 1] that [DDF14,
Thm. 1] does not provide incentive to noisier leakage. Theorem 4 does not suf-
fer from this weakness. In particular, the adversary’s advantage vanishes as the
noise level increases. Theorem 4 depends on five parameters:

1. The noise level as quantified by E .
2. The security order of the gadgets as quantified by t.

3. The “temporal attack surface” quantified by the number of queries q.

4. The attack surface of the adversary within a gadget as measured by the
number l of wires potentially probed within the gadgets.

5. The attack surface of the adversary on the whole circuit as measured by |Γ |.

5.2 Bounds on SCA Advantage

If a cryptographic algorithm is insecure against a black-box adversary then it
is also insecure against a side-channel adversary. For this reason we are inter-
ested in the advantage of the side-channel adversary compared to its black-box
counterpart. In Proposition 4 we upper bound this advantage, contrary to the
usual bound for side-channel attacks it depends on the computational assump-
tion made on the adversary through the term PBB

s,o (q).

Proposition 4. Let A be a E-noisy with respect to CDC adversary with q
queries. Let PBB

s,o (q) and PSCA
s,o (q, E) be the respective SRo of the best black box

and side-channel adversary with q queries. Then,

{
PSCA
s,o (q, E)− PBB

s,o (q) ⩽
(
1− PBB

s,o (q)
)

fail(t, (li), E , q)
GEBB(q)−GESCA(q, E) ⩽

(
GEBB(q)− 1

)
fail(t, (li), E , q).

(70)

Proof. This is a direct consequence of Theorem 4 and Proposition 1 applied to
a (possibly computationally bounded) adversary. ⊓⊔
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5.3 Properties of the Failure Probability Function

We analyze how our bound depends on the order of an implemented countermea-
sure. Consider a masking countermeasure of order d, and for illustrative purposes
assume that t = d (which would obtained for the implementation of [RP10b]
separated by leak-free refresh). Also assume that the li associated with the mul-
tiplication gadgets grow quadratically with respect to d (e.g., ISW). We use
the shorthand notations l(d) = maxi li(d), fail(d, E) = fail(t(d), (li(d)), E , 1) and
fail(d, E , q) = fail(t(d), (li(d)), E , q). We can define an optimal masking order
with respect to Theorem 4:

d∗(E) ≜ argmin
d∈N

fail(d, E , q). (71)

Since fail(d, E , q) = 1−
(
1− fail(d, E)

)q
we have d∗(E) = argmind∈N fail(d, E) so

that the optimal masking order is independent of the number of queries.
It is not true in general that fail(d, E) is a decreasing function of the masking

order d. Though we show that it essentially holds in the limits of high noise.

Proposition 5. For all d1 < d2 there exist a noise threshold E0 such that for

all noise level E ⩽ E0, fail(d1, E) > fail(d2, E), which indicates that d∗(E) E→0−→ ∞.

Proof. See Appendix B.14. ⊓⊔

Proposition 5 means that while the bound is not decreasing with respect to the
masking order d there always exists a noise level for which masking at higher
order is more interesting.

Proposition 6. If l(d)/t(d)
d→∞−→ ∞ then fail(d, E) d→∞−→ 1. Therefore, there

exist a finite optimal masking order with respect to the noise level d∗(E) < ∞
and fail(d, E) cannot be reduced further than fail(d∗, E) > 0. This in turn implies
that the adversary’s advantage cannot be made arbitrarily small.

Proof. See Appendix B.15. ⊓⊔

Proposition 6 means that for a fixed level of noise increasing indefinitely the
masking order is detrimental to the security bounds. As a consequence, there
exists a finite optimal masking order with respect to the noise level.

Proposition 7. If E < E0 ⩽ t
l then QB(t, l, E) ⩽ exp

(
−ldKL

(
t/l
∥∥E
))

⩽
exp

(
−ldKL

(
E0
∥∥E
))

where dKL(p∥q) ≜ DKL(B(p)∥B(q)) = p log p
q + p̄ log p̄

q̄ . In

this case d∗(E) =∞.

Proof. We apply Chernoff-Hoeffding bound [Hoe94]. ⊓⊔

Proposition 7 shows that when the gadget size grows at most linearly with respect
to the security parameter t then masking provides an exponential gain with
respect to the gadget size. The coefficient in the exponential is lower bounded
by a binary divergence between a protection rate t

l and a leakage rate E .
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The original expression of [DDF14, Thm. 1] can be misinterpreted as it seems
that the probability of error converges to 0 when d increases. But when the gad-
get size l grows quadratically with respect to d then the maximum value of d
tolerated in the proof is upper bounded by a function inversely proportional to
the noise level. Hence, it is not true to say that the advantage of the adver-
sary decreases exponentially with respect to d. This confirms the observations
from [BCPZ16] where Battistello et al. observed that the noise is expected to
decrease linearly with the number of shares and that this assumption is not
met in practice. Figure 4a derived from Theorem 4 shows that for quadratic
gadget and a fixed level of noise, the advantage of the adversary is either in-
creasing or decreasing and then increasing with respect to the masking order
depending on the noise level. For linear gadget, Figure 4b shows that mask-
ing does provide an exponential gain with respect to the adversaries advantage.
Note that this is a weakness of the ISW gadget whose noise rate is not con-
stant and not a weakness of the bound. This emphasizes the importance to
obtain gadget with improved noise rate [CS19]. In particular quasi-linear mask-
ing scheme [GJR18, GPRV22, CDGT24] and Toom-Cook based gagdets [Pla22]
are promising approaches.
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Fig. 4: Evolution of Theorem 4 for different masking order d for quadratic and
linear gadget.

Remark 15. Proposition 6 may appear as contradictory with [DFS19, Coro. 2].
It turns out that [DFS19, Coro. 2] is incorrectly derived from [DFS19, Thm. 3].
See the Appendix E.6 for more details.
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6 Conclusion

We showed how the complementary Doeblin coefficient (CDC) can be used to
reduce optimally a noisy adversary to a random probing adversary. This allows
us to exhibit the unavoidable inherent cost of a reduction from noisy leakages
to the random probing model. We derived a set of properties of the CDC which
makes it a sound leakage measure that is easy to manipulate and showed that it
is amenable to evaluation in a multivariate setting.

The CDC yields security bounds for all figures of merits that scale well with
the number of side-channel queries (single letterization property). As a byprod-
uct we also lower bounded the minimum number of queries to achieve a given
figure of merit.

Furthermore, security bounds in terms of CDC are easily derived using the
Prouff-Rivain subsequence decomposition or can be naturally combined with ex-
isting security proofs in the random probing model for any type of countermea-
sures. We analyzed the asymptotic behavior of the obtained bounds in terms of
countermeasure order and confirmed the existence of an optimal masking order
with respect to the security bounds.

Overall, we believe that these contributions are essential to ground the secu-
rity of masked implementations in the noisy leakage model on solid foundations.
As perspectives, we would like to obtain direct security proof of code-based
masking implementation using CDC leveraging a new appropriate subsequence
decomposition. Investigating formal security proof of masking combined with
shuffling [ABG+22] using CDC could also be relevant as a way to reduce the
physical noise requirement to obtain relevant security parameters.
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— SUPPLEMENTARY MATERIAL —

A Two Equivalent Descriptions of a Channel

In this section, we provide a proof sketch that any random transformation X →
PY |X → Y can be seen as a random function Y = F (X) where F is distributed

according to a distribution PF (F ∼ PF ).
On one hand, the random function description Y = F (X) is obviously a

particular case of a channel X → PY |X → Y where for every input x and every

event E ⊂ Y,
PY |X(Y ∈ E|X = x) = P(F (x) ∈ E). (72)

and the probability on the right-hand side is taken over F ∼ PF .

Conversely, any channel X → PY |X → Y can be seen as a random function

Y = F (X) for a suitably defined F ∼ PF . This fact was proved rigorously
in [vW74] and can be seen as follows. For each fixed input x define the random
variable F (x) by the probability distribution

P(F (x) ∈ E) = PY |X(Y ∈ E|X = x) (73)

for any event E ⊂ Y. This defines a stochastic process F = {F (x)|x ∈ X} in-
dexed by X that follows some probability distribution PF . It can be shown [vW74]

that F is the desired random function such that X → PY |X → Y = F (X).

B Technical Proofs

B.1 Proof of Lemma 1

Proof. We verify that we obtain the same transition probability. Let x ∈ X and
y′ ∈ Y. First on the left-hand side:



pY ′|X(⊥|x) =

∑∫

X∪{⊥}
pX′|X(x′|x)p⊥Y |X(⊥|x′) = Ēp⊥Y |X(⊥|x) + Ep⊥Y |X(⊥|⊥) = E

pY ′|X(y′|x) = Ēp⊥Y |X(y′|x) + Ep⊥Y |X(y′|⊥) = ĒpY |X(y′|x).
(74)

On the right-hand side:




pY ′|X(⊥|x) =
∑∫

Y
pY |X(y|x)pY ′|Y (⊥|y) =

∑∫

Y
pY |X(y|x)E = E

pY ′|X(y′|x) =
∑∫

Y
pY |X(y|x)pY ′|Y (y

′|y) = ĒpY |X(y′|x).
(75)

⊓⊔
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B.2 Proof of Proposition 1

Proof. This is a consequence of a DPI. By Theorem 1, we obtain

K → EC⊥
E(K→Y ) → K ′ → Y. (76)

Hence, by DPI on the SR (Lemma 8), we have

Ps,o(K|Y ) ⩽ Ps,o(K|K ′) = E(K → Y ) + E(K → Y )Ps,o(K). (77)

Further by DPI on the GE (Lemma 8), we have

G(K|Y ) ⩾ G(K|K ′) = E(K → Y ) + E(K → Y )G(K). (78)

Finally, by DPI on the TVI (Lemma 8), we have

∆(K|Y ) ⩽ ∆(K|K ′) = E(K → Y )
∑

k∈K
pK(k)(1− pK(k)) (79)

= E(K → Y ) (1− exp (−H2(K))) . (80)

⊓⊔

B.3 Proof of Theorem 1

Proof. Consider a channel PY |X with a given Doeblin coefficient E . We show
that there exists a channel PY |X′ such that the channel PY |X factorizes into
PX′|XPY |X′ where PX′|X is an erasure channel with parameter E . Let




pY |X′(y|⊥) = E−1 inf

x∈X
pY |X(y|x)

pY |X′(y|x) = E−1
(pY |X(y|x)− inf

x∈X
pY |X(y|x))

. (81)

This is a well defined channel since all terms are nonnegative and Σ
∫
Y pY |X′(y|⊥) =

Σ
∫
Y pY |X′(y|x) = 1. This gives the desired factorization since EE−1 inf

x∈X
pY |X(y|x)+

EE−1
(pY |X(y|x)− inf

x∈X
pY |X(y|x)) = pY |X(y|x).

Conversely, assume that there exists a channel PY |X′ such that the channel
PY |X factorizes into PX|X′PY |X′ where PX|X′ is an erasure channel with parame-

ter E . Then for any pair x, y we have pY |X(y|x) = EpY |X′(y|x) + EpY |X′(y|⊥) ⩾
EpY |X′(y|⊥). Since this is true for all x, this is also true by taking the infi-
mum over x: infx pY |X(y|x) ⩾ EPY |X(y|⊥). Summing over y and noting that
Σ
∫
y∈Y PY |X(y|⊥) = 1 gives Σ

∫
y∈Y infx∈X pY |X(y|x) ⩾ E . ⊓⊔

42



B.4 Proof of Lemma 3

Proof. The composition can be computed explicitly




pZ|X(z|x) = 0 if x ̸= z

pZ|X(z|x) = E0E1 if x = z

pZ|X(⊥0|x) = E0 for all x

pZ|X(⊥1|x) = E0E1 for all x

(82)

Hence the result by computing equation (30), E = 0+E0+E0E1 = 1−E0E1. ⊓⊔

B.5 Proof of Lemma 4

Proof.

∑∫

Y×Z
inf
x∈X

p(yz|x) =∑
∫

Y×Z
inf
x∈X

pY |X(y|x)pZ|XY (z|xy) (83)

=
∑∫

Y×Z
inf
x∈X

pY |X(y|x)pZ|Y (z|y) (84)

=
∑∫

Y×Z
pZ|Y (z|y) inf

x∈X
pY |X(y|x) (85)

=
∑∫

Y

(∑∫

Z
pZ|Y (z|y)

)
inf
x∈X

pY |X(y|x) (86)

=
∑∫

Y
inf
x∈X

pY |X(y|x). (87)

⊓⊔

B.6 Proof of Lemma 5

Remark 16. Very recently Makur and Singh [MS23a] established the same prop-
erty of CDC in the discrete setting (with transition matrices) for Bayesian net-
works [FGG97].

Proof.

∑∫

Y1×Y2

inf
x
pY1Y2|X(y1y2|x) =

∑∫

Y1×Y2

inf
x
pY1|X(y1|x)pY2|XY1

(y2|xy1) (88)

=
∑∫

Y1×Y2

inf
x
pY1|X(y1|x)pY2|X(y2|x) (89)

⩾
∑∫

Y1×Y2

inf
x
pY1|X(y1|x) inf

x
pY2|X(y2|x) (90)

=
∑∫

Y1

inf
x
pY1|X(y1|x)

∑∫

Y2

inf
x
pY2|X(y2|x). (91)

The result with q channels follows by induction.
The inequality is a consequence of the union bound. Indeed, if 0 ⩽ x1, . . . , xq ⩽

1 we can see each as a probability of a given event Ei, xi = P(Ei) and 1−∏q
i=1(1−

xi) = P(∪qi=1Ei) ⩽
∑q

i=1 P(Ei) =
∑q

i=1 xi. ⊓⊔
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B.7 Proof of Lemma 6

Proof. The key point is that for any observation y1, the channelX → PY2|X,Y1=y1
→

Y2 is E-noisy with respect to CDC. This exactly means that for all y1, Σ
∫
Y2

infx p(y2|xy1) =
Ey1

(X → Y2) ⩾ E .

∑∫

Y1×Y2

inf
x
pY1Y2|X(y1y2|x) =

∑∫

Y1×Y2

inf
x
pY1|X(y1|x)pY2|XY1

(y2|xy1) (92)

⩾
∑∫

Y1×Y2

inf
x
pY1|X(y1|x) inf

x
p(y2|xy1) (93)

=
∑∫

Y1

((∑∫

Y2

inf
x
pY2|XY1

(y2|xy1)
)
inf
x
pY1|X(y1|x)

)

(94)

⩾
∑∫

Y1

(
E inf

x
pY1|X(y1|x)

)
(95)

⩾ E2. (96)

The result with q channels follows by induction. ⊓⊔

B.8 Proof of Proposition 2

Proof. Since the channel noise is additive pY |X(y|x) = pZ(y−f(x)). As the noise
is radially symmetric pZ(y − f(x)) = pZ(|y − f(x)|). Since the noise is radially
symmetric decreasing infx pY |X(y|x) = pZ(supx |y − f(x)|). If y ⩾ m+M

2 then
supx |y−f(x)| = y−m else supx |y−f(x)| =M−y. Hence the result by splitting
the integral over Y into two parts,

E(X → Y ) =

∫ m+M
2

−∞
pZ(M − y) dy +

∫ ∞

m+M
2

pZ(y −m) dy = 2

∫ ∞

M−m
2

pZ(u) du.

(97)
Since Q(x) = 1

2 − x√
2π

+O(x3), we also obtain the announced approximation for

high noise and additive Gaussian noise. ⊓⊔

B.9 Proof of Lemma 10

Proof. Consider the channel

X → f → G→ Maskd → G→
d∏

i=0

pYi|Gi
→ Y. (98)

Since by the strengthened DPI (Lemma 7), E(X → Y) ⩽ E(X → G)E(G →
Y) ⩽ E(G→ Y). We can limit ourselves to the channel G→ Y. By Theorem 1,
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Gi → PYi|Gi
→ Yi is a stochastically degraded erasure channel with erasure

probability Ei = E(Gi → Yi). Consequently, the channel rewrites

Gi → EC⊥i

Ei
→ G′

i → PYi|G′
i
→ Yi. (99)

So that the channel is

G→ Maskd →
d∏

i=0

EC⊥i

Ei
→ Y′ →

d∏

i=0

pYi|Gi
→ Y. (100)

Hence, the channel G→ Y is stochastically degraded with respect to the channel
G→ Y′. By the strengthened DPI (Lemma 7) we obtain

E(X → Y) ⩽ E(G→ Y) ⩽ E(G→ Y′). (101)

Recall that by definition

E(G→ Y′) = EY ′
0 ,...,Y

′
d

[
sup

g∈f(X )

(
1− p(g|Y ′

0 , . . . , Y
′
d)

p(g)

)]
. (102)

If there exists an index i such that y′i = ⊥i then by secret sharing property
p(g|y′0, . . . , y′d) = p(g) so that

sup
g∈f(X )

(
1− p(g|y′0, . . . , y′d)

p(g)

)
= 0. (103)

Otherwise, for all i ∈ {0, . . . , d}, y′i ̸= ⊥i and

{
p(g|y′0, . . . , y′d) = 1 if g = y′0 + . . .+ y′d
p(g|y′0, . . . , y′d) = 0 if g ̸= y′0 + . . .+ y′d

(104)

so that

sup
g∈f(X )

(
1− p(g|y′0, . . . , y′d)

p(g)

)
= sup(1, 1− 1

p(y′0 + . . .+ y′d)
) = 1. (105)

As a consequence,

E(G→ Y′) = EY ′
0 ,...,Y

′
d

[
1Y ′

0 ̸=⊥0,...,Y ′
d ̸=⊥d

]
= P (Y ′

0 ̸= ⊥0, . . . , Y
′
d ̸= ⊥d) =

d∏

i=0

E i.

(106)
⊓⊔
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B.10 Proof of Lemma 11

Proof. By Theorem 1, (Gi, Hj) → Yi,j is stochastically degraded with respect

to an erasure channel with erasure probability Ei,j ≜ E((Gi, Hj)→ Yi,j). Hence,
we can write

(Gi, Hj)→ EC
⊥i,j

Ei,j
→ (G′

i, H
′
j)→ Yi,j . (107)

As a consequence the channel X → Y is stochastically degraded with respect
to the channel X → ((G′

i, H
′
j))0⩽i,j⩽d. By the strengthened DPI (Lemma 7) we

have E(X → Y) ⩾ E(X → ((G′
i, H

′
j))0⩽i,j⩽d). It only remains to show that

E(X → ((G′
i, H

′
j))0⩽i,j⩽d) = Υ ((E i,j)0⩽i,j⩽d).

By the secret sharing property we have p(x|((g′i, h′j))i,j) = p(x) whenever
∃i,∀j, (g′i, h′j) = ⊥i,j and ∃j,∀i, (g′i, h′j) = ⊥i,j . In this case

sup
x∈X

(
1−

p(x|((g′i, h′j))i,j)
p(x)

)
= 0. (108)

Otherwise, when ∀i, ∃j, (g′i, h′j) ̸= ⊥i,j or ∀j,∃i, (g′i, h′j) ̸= ⊥i,j , as in the previous
proof,

sup
x∈X

(
1−

p(x|((g′i, h′j))i,j)
p(x)

)
= 1. (109)

Let Ei,j be the event (G′
i, H

′
j) ̸= ⊥i,j . Then the Ei,j are mutually independents

events with probabilities E i,j . Further we have

sup
x∈X

(
1−

p(x|((G′
i, H

′
j))i,j)

p(x)

)
= 1 (110)

on the event
E = (∩di=0 ∪dj=0 Ei,j) ∪ (∩dj=0 ∪di=0 Ei,j) (111)

and 0 otherwise. As a consequence,

E(X → ((G′
i, H

′
j))0⩽i,j⩽d) = E [1E ] = P(E). (112)

⊓⊔

B.11 Proof of Lemma 12

Proof. By Theorem 1 the channel (Ti,j , Ti,j−1)→ Yi,j rewrites

(Ti,j , Ti,j−1)→ EC⊥i

Ei,j
→ Y ′

i,j → Yi,j (113)

where Ei,j ≜ E((Ti,j , Ti,j−1)→ Yi,j). Hence, Ti,d → Yi is stochastically degraded
with respect to

Ti,d → Ti →
d∏

j=0

EC
⊥j

Ej
→ Y′

i. (114)
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Thus, by the strengthened DPI (Lemma 7) E(Ti,d → Yi) ⩾ E(Ti,d → Y′
i). It

remains to show that E(Ti,d → Y′
i) = E((Ti,d, Ti,d−1)→ Yi,d). By secret sharing

property if y′i,d = ⊥ then p(t|y′i,1, . . . , y′i,d) = p(t) . Hence,

sup
t

(
1−

p(t|y′i,1, . . . , y′i,d)
p(t)

)
= 0 (115)

in this case. Otherwise, yi,d = (ti,d, ti,d−1) so that p(t|y′i,1, . . . , y′i,d = (ti,d, ti,d−1)) =
1t=ti,d . Hence,

sup
t

(
1−

p(t|y′i,1, . . . , y′i,d)
p(t)

)
= 1 (116)

in this case. Finally,

E(Ti,d → Y′
i) = EY′

i
[1Y ′

i,d ̸=⊥] = P(Y ′
i,d ̸= ⊥) = E((Ti,d, Ti,d−1)→ Yi,d). (117)

This concludes the proof since E((Ti,d−1, Vi,d)→ Yi,d) = E((Ti,d, Ti,d−1)→ Yi,d).
⊓⊔

B.12 Proof of Theorem 2

Proof. Each sensitive variable in the different subsequences is a function f of
the secret key K and public information T i.e X = f(K,T ). By Lemma 7 we
have E(K → Y ) ⩽ E(X → Y ). Since the CDC does not depend on the input
distribution and by Lemma 6 carries over adaptively chosen channel we can re-
combine the different leakages from the different queries and subsequences. Since
the subsequences are separated by leakage-free refreshing and that the channel
noise is independent of one query to another we can use Lemma 6 to combine the
different leakages of each subsequence and query. Further, the Lemmas 10,11,13
provide the bounds for each subsequence. The asymptotic equivalence is a con-
sequence of Proposition 14. ⊓⊔

B.13 Proof of Theorem 4

Proof. Let Y = (Yj,i) be the vector of all leakages, where Yj,i corresponds to
the leakage of the li wires of the i-th gadget for the j-th trace. By Lemma 6 we
obtain for an adaptive chosen channel adversary that

E(K → Y) ⩽ 1−
q∏

j=1

|Γ |∏

i=1

1− E(K → Yj,i). (118)

It remains to show that E(K → Yj,i) ⩽ QB(t, li, E) for all (j, i). Let X1, . . . , Xli

be the li considered wires and L1, . . . , Lli be the corresponding leakage for the
j-th trace Yj,i = (L1, . . . , Lli). The channel K → Yj,i is factorized by Theorem 1
to

K → (X1, ..., Xli)→ (X ′
1, . . . , X

′
li)→ Yj,i (119)
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where Xi → X ′
i is an erasure channel with erasure probability E . By the DPI

(Lemma 7), E(K → Yj,i) ⩽ E(K → (X ′
1, . . . , X

′
li
)).

Now supk 1 −
p(k|x′

1,...,x
′
li
)

p(k) = 0 provided that there exists at most t non-

erased values in the tuple (x′1, . . . , x
′
li
). Otherwise, supk 1 −

p(k|x′
1,...,x

′
li
)

p(k) ⩽ 1.

Hence E(K → (X ′
1, . . . , X

′
li
)) ⩽ EX′

1,...,X
′
li
1E = P(E) where E is the event that

there is at least t non-erased values in the tuple (X ′
1, . . . , X

′
li
). Since the number

of non-erased values follows a binomial distribution with parameters li and E we
obtain that P(E) = QB(t, li, E) which concludes the proof. ⊓⊔

B.14 Proof of Proposition 5

Proof. As E → 0 we have

fail(d1, E) ∼
(∑

i

(
li(d1)

t(d1) + 1

))
Ed1

= Cd1
Ed1

(120)

and similarly for d2. As a consequence,

fail(d2, E)
fail(d1, E)

∼ Cd2

Cd1

Ed2−d1
. (121)

Since d2 > d1 the ratio in the equivalent becomes strictly inferior to 1 whenever

E <
(

Cd1

Cd2

) 1
d2−d1

. Finally, fail(d1, E) > fail(d2, E) if E is small enough. ⊓⊔

B.15 Proof of Proposition 6

Proof. We assume E < 1. We have

QB(t(d), l(d), E) = 1−QB(l(d)− t(d) + 1, l(d), E) (122)

Since l(d)
t(d)

d→∞−→ ∞, from a certain rank El(d) < l(d)− t(d)+1, and we can apply

Chernoff-Hoeffding [Hoe94] bound

1 ⩾ QB(t(d), l(d), E) ⩾ 1− exp

(
−l(d)dKL

(
l(d)− t(d) + 1

l(d)

∥∥∥∥E
))

(123)

where dKL(p∥q) ≜ DKL(B(p)∥B(q)) = p log p
q + p̄ log p̄

q̄ .

We have dKL

(
l(d)−t(d)+1

l(d)

∥∥∥E
)
→ dKL(1∥E) > 0 and l(d) → ∞ so by sand-

wiching theorem 1−QB(t(d), l(d), E) converges exponentially fast to 0. Then

0 ⩽
∏

i

(
1−QB(t(d), li(d), E)

)
⩽
(
1−QB(t(d), l(d), E)

)
. (124)

As a consequence, fail(d, E) d→∞−→ 1. ⊓⊔
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C Technical Properties of the Rook Domination
Polynomial

Lemma 14 (Properties of Υd). Υd verifies the following properties:

– Lower and upper bounds:

(
1− Ed+1

)d+1
⩽ Υd(E) ⩽ min{2

(
1− Ed+1

)d+1
, 1}. (125)

– Υd is a polynomial function of degree (d+ 1)2. The multiplicity of zero as a
root of Υd is d+ 1. Namely we can write:

Υd(E) =
(d+1)2∑

j=d+1

ajE
jE(d+1)2−j . (126)

– For all i ∈ {0, . . . , (d+ 1)2}, ai ∈ N and





ad+1 = 2(d+ 1)d+1 − (d+ 1)!

0 ⩽ ak ⩽
(
(d+1)2

k

)
−
(
d2

k

)
d+ 2 ⩽ k ⩽ d2

ak =
(
(d+1)2

k

)
k ⩾ d2 + 1.

(127)

In particular,
∑(d+1)2

j=d+1 ai < 2(d+1)2 − 2d
2

.

Proof. See Stephan Mertens’s article [Mer24] on the domination polynomial of
the rook graph. ⊓⊔

D Comparison with Other Noisiness Metrics

Proof. The lower bound is obtained via the DPI. Namely, we degrade the channel
X → Y as

X → EC⊥
E → X ′ → Y (128)

where E = E(X → Y ) Then by DPI Lemma 8 we obtain

I(X;X ′) ⩾ I(X;Y ). (129)

Since I(X;X ′) = H(X)−H(X|X ′) = H(X)−EH(X)−Ē0 = ĒH(X) we obtain

Ē ⩾
I(X;Y )

H(X)
⩾
I(X;Y )

log |X | . (130)
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For TVI we proceed similarly to proposition 1. By DPI Lemma 8,∆(X;X ′) ⩾
∆(X;Y ) and

∆(X;X ′) =
∑

X
pX′(x)(1− pX(x)) (131)

= Ē
∑

X
pX(x)(1− pX(x)) (132)

= Ē
(
1−

∑

X
pX(x)2

)
(133)

= Ē
(
1− exp(−H2(X))

)
(134)

⩽ Ē
(
1− 1

|X |
)
. (135)

We obtain

Ē ⩾
∆(X;Y )

1− exp(−H2(X))
⩾
∆(X;Y )|X |
|X | − 1

. (136)

For maximal leakage we can also leverage the DPI,

log(1 + (|X | − 1)Ē(X → Y )) = L(X → X ′) ⩾ L(X → Y ). (137)

By Jensen’s inequality, as in Rivain’s HDR [Riv22], we obtain that β(X;Y ) ⩽
2∆(X;Y ). Also,

ARE(X;Y ) = Ey sup
x

∣∣∣∣
pX|Y (x|y)
pX(x)

− 1

∣∣∣∣ (138)

=
∑∫

y∈Y
sup
x∈X

1

pX(x)
|pX,Y (x, y)− pX(x)pY (y)| (139)

⩽ 2γX∆(X;Y ). (140)

We have

E(X → Y ) = 1−∑
∫

y

inf
x
p(y|x) =∑

∫

y

sup
x
p(y)− p(y|x) = Ey

[
sup
x

(
1− p(y|x)

p(y)

)]
.

(141)
Hence similarly to [PGMP19, Proposition 1] we obtain,

E(X → Y ) ⩽ Ey

[
sup
x

∣∣∣∣1−
p(y|x)
p(y)

∣∣∣∣
]
= ARE(X;Y ) ⩽ RE(X;Y ). (142)
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For TVI we simplify the derivations from [DDF14, Appendix C, Eqn. 14] and
use Pinsker’s inequality as [DFS19] to obtain a bound for MI.

E(X → Y ) ⩽ Ey

[
sup
x

(
1− p(y|x)

p(y)

)+
]

(143)

⩽ Ey

[∑

x

(
1− p(y|x)

p(y)

)+
]

(144)

= Ey

[∑

x

1

p(x)
(p(x)− p(x|y))+

]
(145)

⩽
1

inf
x∈X

pX(x)
∆(X;Y ) (146)

⩽
1

inf
x∈X

pX(x)

√
I(X;Y )

2 log e
. (147)

Finally by adding positive term we obtain the bound for EN,

E(X → Y ) ⩽ Ey



√√√√∑

x

(
1− p(y|x)

p(y)

)2

 (148)

= Ey

[√∑

x

1

pX(x)2
(p(x)− p(x|y))2

]
(149)

⩽
1

inf
x∈X

pX(x)
β(X;Y ). (150)

The upper bound in terms of maximal leakage is obtained as follows, let xy
be a value of x achieving infx p(y|x) then

inf
x
p(y|x) =

∑

x

p(y|x)−
∑

x̸=xy

p(y|x) (151)

⩾
∑

x

p(y|x)− (|X | − 1) sup
x
p(y|x). (152)

Summing over y yields the announced result. ⊓⊔

E Extensive State of the Art: Flaws and Patches

E.1 “Masking against Side-Channel Attacks: a Formal Security
Proof”

In their seminal work Prouff and Rivain [PR13] introduced the noisy leakage
model and provided for the first time a direct proof of security for masking in
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this model. The proof of the technical lemma used in [PR13] are available in
Rivain HDR [Riv22]. Though, we identified a critical flaw in [PR13, Lemma 4]
used to derive [PR13, Thm. 3] and the main theorem. Recall [PR13, Lemma 4]:

Let A,B be two uniform and mutually independent random variables
defined over F. Let L = f(A,B) be a leakage corresponding to the side-
channel f : (a, b) ∈ F2 7→ l ∈ L. Then for every a, b ∈ F and l ∈ L we
have

β(A; f(A, b) = l) ⩽ |F|β((A,B);L = l). (153)

Lemma 15 (Counter Example to Lemma 4 in [PR13]). If F = F2 and
L = f(A,B) = A ·B then

|F|β((A,B);L = 0) =
1√
3
<

1√
2
= β(A; f(A, 1) = 0) (154)

which violates strictly the statement of [PR13, Lemma 4]

Proof. If f(A, 1) = 0 then A = 0 and β2(A; f(A, 1) = 0) = 1
2 . If L = 0 then there

are three equilikely cases (A,B) ∈ {(0, 0); (0, 1); (1, 0)} hence |F|2β2((A,B);L =
0) = 4 ∗

(
3 ∗ ( 13 − 1

4 )
2 + ( 14 )

2
)
= 1

3 . ⊓⊔
The error comes from a flawed statement of the chain rule for conditional prob-
abilities in the third equation in the proof of the lemma. Indeed, it is not true
that p(a|bl)p(b) = p(ab|l) since p(b|l) ̸= p(b) in general. We provided a counter-
example to [Lemma 4, [PR13]]. As a consequence, the proof of Theorem 3
in [PR13] recalled below is also flawed.

Let A and B be two random variables uniformly distributed over some
finite set X . Let d be a positive integer, and let (Ai)i and (Bj)j be two
dth-order encoding of A and B respectively. Let E be a real number such
that E ⩽ α

(d+1)|X |2 for some α ∈ (0, 1] and let (fi,j)i,j be noisy leakage

functions defined over X × X and belonging to N (E). We have:

β((A,B); (fi,j(Ai, Bj))i,j) ⩽ 2|X | 3d+2
2 (λ(E , d)E)d+1 (155)

where λ(E , d) = infα∈[(d+1)|X |2E,1]
eα−1
α d+ eα−1

α + eα.

We propose the following patch to their main theorem based on our deriva-
tions. A weakened version of Theorem 2 using Lemma 9 yields:

Patch 1

1

2

( |X |
|X | − 1

)
β(X;Y) ⩽ E(X → Y) (156)

⩽ 1−
((

1− Ed+1
)n1+n2+n4 (

1− Υd(E)
)n3

)q

(157)

⩽ 1−
((

1− (|X |β)d+1
)n1+n2+n4

(
1− Υd(|X |2β)

)n3
)q

(158)

⩽ q
(
(n1 + n2 + n4) + 2n3(d+ 1)d+1|X |d+1

)
|X |d+1βd+1. (159)
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E.2 “Unifying Leakage Model on a Rényi Day”

The proof of [PGMP19, Lemma 8] is flawed, which also affects [PGMP19, Thm. 6,
Corollary 4] and the main result. Recall Lemma 8 from [PGMP19]:

Let A,B be two independent random variable over F with |F|. Let f :
(a, b) ∈ F2 7→ l ∈ L be a side-channel for (A,B) i.e., L = f(A,B). Then
for every b ∈ F,

RE(A|f(A, b)) ⩽ RE((A,B)|L). (160)

The flaw is similar as in Lemma 4 of [PR13]. The chain rule of probability is
used wrongly since p(b|l) ̸= p(b). As a consequence, [PGMP19, Thm. 6] recalled
below is, unfortunately, incorrect.

Let A,B be two uniform random variables over a finite field X , d a
positive integer, and (Ai),(Bi) be d + 1 additive sharing of A and B
respectively. Let δ ∈ R such that δ ⩽ 1

2d+1 , and (fi,j)i,j be a family of
randomized and mutually independent functions such that each fi,j is
δRE-noisy with respect to RE. We have:

RE((A,B)|(fi,j(Ai, Bj))i,j) ⩽ 3

(
(d+ 1)δRE

1− dδRE

)d+1

. (161)

We revise the asymptotic evaluation of RE in [PGMP19, Prop. 3]:

Patch 2 Let X = Fn
2 and consider X ∼ U(X ). Let Y = wH(X) + Z where is

an independent additive Gaussian noise Z ∼ σN (0, 1). Then

RE(X;Y ) = 2n − 1 = |X | − 1. (162)

Proof. First pY (y) ∼ 1
2n

(
n
n

)
φσ(y − n) as y → ∞. Second for x = (1, . . . , 1)

we have pY |X(y|x) = φσ(y − n). Hence,
pY |X(y|x)

pY (y) → 2n as y → ∞. Hence,

by sandwich theorem 2n − 1 ⩾ supx

∣∣∣pY |X(y)

pY (y) − 1
∣∣∣ ⩾ pY |X(y|(1,...,1))

pY (y) − 1 tends to

2n−1 as y →∞. This in turn implies that RE(X;Y ) = supy supx

∣∣∣pY |X(y)

pY (y) − 1
∣∣∣ =

2n − 1 = |X | − 1. ⊓⊔

A potential fix would be to redefine the RE to remove the worst y that are
extremely unlikely.

Definition 18 (Alternative Definition of RE). We relax the definition of
RE to allow it to be large on a set whose probability is less than E,

REE(X;Y ) ≜ inf
A⊆Y

P(Y ∈Ac)⩽E

sup
y∈A

sup
x∈X
|PMI(x; y)− 1| . (163)

Though, this patch would require to re-derive all results in terms of this new
definition. We suggest the following patch in terms of ARE weakening Theorem 2
with Lemma 9:
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Patch 3 (Patch Based on CDC)

1

2(|X | − 1)
ARE(X;Y) ⩽ E(X → Y) (164)

⩽ 1−
((

1− Ed+1
)n1+n2+n4 (

1− Υd(E)
)n3

)q

(165)

⩽ 1−
((

1− δd+1
ARE

)n1+n2+n4
(1− Υd(δARE))

n3

)q
. (166)

E.3 “Prouff & Rivain Formal Security Proof of Masking, Revisited”

The proof of [MS23b, Thm. 5] is flawed, which affects the main result [MS23b,
Thm. 7]. In the last step of the proof the bound is averaged over the values of
b in equation (27). However, the i-th coordinates depends on all the b0, . . . , bd
and no only on bi. Indeed, it is Ai that is fixed on this coordinate. Hence, the
average on the i-th coordinate should be over b0, . . . , bd and not only on bi. But
the inequality cannot be obtained this way because the bound provided by Mrs.
Gerber lemma is convex in one variable when the others are fixed, but is not
jointly convex. Recall [MS23b, Thm. 5],

Let A,B be two independent and uniform random variables over a finite
field F. Let (Ai)0⩽i⩽d, (Bi)0⩽i⩽d be d-encodings of A and B respectively.
Let Li,j be the side-channel for the cross term Ai, Bj i.e., we observe
Li,j(Ai, Bj). Let L = (Li,j)0⩽i,j⩽d. Further it is assumed that

I((Ai, Bj);Li,j(Ai, Bj)) ⩽ δi,j ⩽ δMI ⩽ 1. (167)

Then,

I((A,B);L) ⩽ fMGL(
∑

j

δ0,j , . . . ,
∑

j

δd,j) + fMGL(
∑

i

δi,0, . . . ,
∑

i

δi,d)

(168)

We suggest the following patch based on the CDC. A weakened version of
Theorem 2 using Lemma 9 yields:

Patch 4 (Patch Based on CDC)

I(X;Y)

log |X | ⩽ E(X → Y) (169)

⩽ 1−
((

1− Ed+1
)n1+n2+n4 (

1− Υd
(
E
))n3

)q

(170)

⩽ 1−
((

1−
(
δACDC

)d+1
)n1+n2+n4 (

1− Υd
(
δBCDC

))n3

)q

(171)

where 



δACDC = min

(
1, |X |

(
δMI

2 log e

) 1
2

)

δBCDC = min

(
1, |X |2

(
δMI

2 log e

) 1
2

)
.

(172)
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The choice of the uniform prior in the definition of a noisy adversary is
arbitrary but makes sense for most cryptographic sensitive variables. However,
replacing the uniform prior by the maximum over all input distribution to obtain
the analog of a communication “capacity” 4 [CT06] is also meaningful.

Definition 19 (Channel Capacity). The capacity of the channel X → PY |X →
Y is

C(X → Y ) ≜ sup
pX

I(X;Y ). (173)

As pointed out by by Masure & Standaert [MS23b] we can bound capacity (for
MI) by a function of the δ noisiness using results on the universality of the
uniform prior [SF04]. This roughly leads to an overhead of O(|X |) in the worst
case though. Note that like CDC the channel capacity is a property of the channel
(hence the notation with the arrow). This provides another patch for [MS23b,
Thm. 5].

Patch 5 (Patch Based on Capacity) Let A,B be two independent and uni-
form random variables over a finite field F. Let (Ai)0⩽i⩽d, (Bi)0⩽i⩽d be d-encodings
of A and B respectively. Consider the side-channels ((Ai, Bj) → Yi,j)0⩽i,j⩽d.
Further, assume that the adversary is a δC capacity noisy adversary (i.e., C((Ai, Bj)→
Yi,j) ⩽ δC for all i, j). Then,

I((A,B);L) ⩽ 2fMGL((d+ 1)δC , . . . , (d+ 1)δC). (174)

Proof. We upper-bound every term within the MGL function in [MS23b, Eqn. 27]
by (d + 1)δC . We do not need to take the average anymore since we upper-
bounded [MS23b, Eqn. 27] uniformly in b. ⊓⊔

Also, [MS23b, Coro. 2] can be slightly improved:

Patch 6 (Slightly Improved Corollary 2) Let Y be uniformly distributed over
F. Let Y → Y k → L be a δMI-noisy with respect to MI channel. Then,

I(Y ;L) ⩽ GCD(k, |X | − 1)δMI (175)

where we removed the |X |−1
|X | overhead factor from the original lemma.

Proof. Indeed, for s = yk, s ̸= 0,

P(Y k = s|Y ̸= 0) =
GCD(k, |X | − 1)

|X | − 1
. (176)

Hence,

P(Y k = s) = P(Y ̸= 0)P(Y k = s|Y ̸= 0) (177)

=
|X | − 1

|X |
GCD(k, |X | − 1)

|X | − 1
(178)

=
GCD(k, |X | − 1)

|X | . (179)

We can conclude using the original proof from [MS23b, Coro. 2]. ⊓⊔
4 This term is usually reserved for communication problems.
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Now we can state a revisited [MS23b, Thm. 7]:

Proposition 8. Consider a δC-noisy adversary with respect to capacity on the
same setting of [MS23b, Thm. 7].

I(Y,L) ⩽ t32fMGL((d+1)δC , . . . , (d+1)δC)+t1,2,4fMGL(δC , . . . , δC) (180)

where

t3 =
∑

p,q∈M
φ(p, q, |Y|), t1,2,4 =

∑

p,q∈M
ξ(p, q, |Y|) +

∑

k∈S
ψ(k, |Y|) (181)

and





φ(p, q, |Y|) = |Y|min{GCD(p, |Y| − 1),GCD(q, |Y| − 1)}
ξ(p, q, |Y|) = GCD(p+ q, |Y| − 1)

ψ(k, |Y|) = GCD(k, |Y| − 1).

(182)

E.4 “Making Masking Security Proof Concrete”

We revise several claims from [DFS19]. Recall [DFS19, Thm. 2]:

Let d be the number of shares used for a key encoding, m be the number
of measurements, and I(Yi;LYi

) ⩽ δMI for some δMI ⩽ 2
|X |2 . Then, if we

refresh the encoding in a leak-free manner between each measurement,
the probability of success of a key recovery adversary under independent
leakage is:

Ps ⩽ 1−


1−

(
|X |
√
δMI

2

)d



m

. (183)

Equation. (183) is slightly incorrect because when the side-information is
“erased” the adversary still guesses the secret with probability 1

|X | . Also, implic-

itly the unit of the MI is the nats here. We prefer to normalize the inequality by
log e so that the result holds in all basis and to make explicit that δMI

loge has no
physical dimension:

Patch 7

Ps ⩽ 1−


1−

(
|X |
√

δMI

2 log e

)d



m(
1− 1

|X |

)
. (184)

Proof. As in [DFS19] the adversary is reduced to a random probing adversary

with probing probability E = |X |
√

δMI

2 log e . The adversary probes all d shares

with probability Ed. This does not happen with probability 1 − Ed. This does
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not happen for all m queries with probability
(
1− Ed

)m
. In this case the SR is

1
|X | otherwise it is 1 so that

Ps ⩽
(
1− Ed

)m 1

|X | + 1−
(
1− Ed

)m
= 1−

(
1− Ed

)m(
1− 1

|X |

)
. (185)

⊓⊔

[DFS19, Coro. 1] is revised accordingly:

Patch 8 In the same setting as [DFS19, Coro. 1] we have:

0 ⩽ Ps −
1

|X | ⩽ m

(
1− 1

|X |

)
exp (−αd) (186)

where

α = − log

(
|X |
√

δMI

2 log e

)
> 0. (187)

E.5 “Unifying Leakage Models: from Probing Attacks to Noisy
Leakage”

Tightness Recall Theorem 1 from [DDF14].

Let Γ be an arbitrary stateful arithmetic circuit over some field F. Let
Γ ′ be the circuit derived from Γ using the ISW compiler. Then Γ ′ is a
(δ, |Γ |exp(− d

12 ))-noise-resilient implementation of Γ where

δ ≜ ((28d+ 16)|F|)−1 = O((d|F|)−1). (188)

As pointed out by Masure & Standaert in [MS23b], [DDF14, Thm. 1] is
limited in the sense that the security bound does not depend on the noise level.
The bound only depends on the masking order. Further, the required number
of shares to obtain a negligible probability of error is prohibitive. Indeed, the
bound on the adversary’s advantage is

|Γ |exp
(
− d

12

)
. (189)

Since the advantage is always upper bounded by 1 this bound is non-trivial only

if |Γ |e−−d
12 ⩽ 1 which happens when d ⩾ ⌈12 log |Γ |⌉. If we consider a very

minimalistic implementation with only |Γ | = 2 gadgets then we already need
the unpractical masking order d ⩾ 9. This non-tightness essentially comes from
the use of concentration inequality. It is applied in a non-asymptotic context
to the number of wires l in a gadget. [DDF14] is improved by removing this
concentration inequality.

57



Random Probing to t-Threshold Probing. [DDF14, Lemma 4] shows that
the security in the random probing model can be reduced to security in the
t-threshold probing model using a Markov style argument. The original proof
comports two minor flaws. First the simulator presented in [DDF14, Appendix
E] is not 2El − 1 threshold probing but ⌈2El − 1⌉ threshold probing. Further it
is not true that [DDF14, Equation 23] holds, we clarify why in our proof. We
revise [DDF14, Lemma 4] as follows:

Patch 9 Let A be an E-random-probing adversary on X l. Then for all t ∈
N, there exists a t-threshold probing adversary S on X l such that for every
(x1, . . . , xl) ∈ X l we have,

∆(outA(x1, . . . , xl); outS(x1, . . . , xl)) ⩽ QB(t, l, E) (190)

where QB(·, l, E) is the survival function of the binomial distribution with pa-
rameters (l, E).
Proof. We follow the proof-line of [DDF14]. Let x ≜ (x1, . . . , xl) ∈ X l. As
explained in [DDF14] we can assume without loss of generality that the adversary
outputs all the information that he obtains i.e.,

outA(x) = (φ1(x1), . . . , φl(xl)) (191)

where φ1, . . . , φl are erasure channel with probability of erasure 1−E . We show
that A can be simulated by a t-threshold probing adversary S. First, S draw l iid
Bernoulli random variables B1, . . . , Bl with parameter E . Let Sl = B1+ · · ·+Bl,
Sl ∼ B(l, E).
– If Sl ⩽ t then S queries the values xi such that Bi = 1. Then S outputs the

vector (y1, . . . , yl) where yi = xi if Bi = 1 and yi = ⊥ if Bi = 0.
– Else Sl > l then S fails and outputs the error vector (⊥, . . . ,⊥).
Let NE be the random variable that counts the number of values that A

receives without erasures (i.e., l−NE is the number of erasures that A receives).
The distribution of outA(x) given the event (NE ⩽ t) is equal to the distribution

of outS(x) given the event (Sl ⩽ t)5. Let ∆ ≜ ∆(outA(x); outS(x)) and y ∈
Y ≜ (X ∪ {⊥})l. By the law of total probability P(outA(x) = y) = P(NE ⩽
t)P(outA(x) = y|NE ⩽ t) + P(NE > t)P(outA(x) = y|NE > t), and P(outS(x) =
y) = P(Sl ⩽ t)P(outS(x) = y|Sl ⩽ t) + P(Sl > t)P(outS(x) = y|Sl > t). Further,





P(Sl ⩽ t) = P(NE ⩽ t)

P(Sl > t) = P(NE > t) = QB(t, l, E)
P(outS(x) = y|Sl ⩽ t) = P(outA(x) = y|NE ⩽ t)

(192)

5 However, it is not true to say that conditionally to Sl < t then outS(x) is equal
in distribution with outA(x) as claimed in [DDF14]. Indeed outA(x) is independent
from the event Sl < t hence its distribution is the same when conditioned on this
event. On the one hand it is possible that Sl < t but outA(x) outputs all the values
(x1, . . . , xl) without any erasure. On the other hand when conditioned on the event
Sl < t, outS(x) will produce at least l − t erasures.
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so part of the terms cancels, and we obtain P(outA(x) = y)− P(outS(x) = y) =
P(Sl > t) (P(outA(x) = y|NE > t)− P(outS(x) = y|Sl > t)) .

Now let U be a random variable that follows the distribution of outA(x) given
NE > t and V be a random variable that follows the distribution of outS(x) given
Sl > t. We can conclude the proof since

∆ =
1

2

∑

y∈Y
|P(outA(x) = y)− P(outS(x) = y)| (193)

=
1

2

∑

y∈Y

∣∣QB(t, l, E) (P(outA(x) = y|NE > t)− P(outS(x) = y|Sl > t))
∣∣

(194)

= QB(t, l, E)
1

2

∑

y∈Y
|P(outA(x) = y|NE > t)− P(outS(x) = y|Sl > t)| (195)

= QB(t, l, E)∆(U ;V ) (196)

⩽ QB(t, l, E). (197)

⊓⊔

[DDF14, Lemma 4] is used in [DFS19, Thm. 3] and [PGMP19, Lemma 5] so
our patch directly improves their corresponding results.

E.6 Optimal Masking Order in Other Bounds

Proposition 6 may appear as contradictory with [DFS19, Coro. 2]. It turns out
that [DFS19, Coro. 2] is incorrectly derived from [DFS19, Thm. 3]. Namely,
inverting equation (13) from [DFS19, Thm. 3] yields

d ⩽ d∗DFS ≜


1− 16|X |

√
δMI

2 log e

28|X |
√

δMI

2 log e

 =

⌊
1

28|X |

(
δMI

2 log e

)− 1
2

− 4

7

⌋
(198)

while the inequality is in the opposite direction in [DFS19, Coro. 2]. It follows
that equation (15) in [DFS19, Coro. 2] does not hold. This corollary may lead to
the misleading conclusion that provided that the masking order is high enough
then the adversary’s advantage can be made arbitrarily small. The patched in-
equality however indicates that the bound derived in [DFS19, Thm. 3] is only
valid up to a given maximal masking order d∗DFS. In [DDF14, Thm. 1], it is
required that δ−1

TVI ⩾ (28d+ 16)|X | which in turn implies for a fixed noise level
and because d is an integer that

d ⩽ d∗DDF ≜

⌊
δ−1
TVI

28|X | −
4

7

⌋
. (199)

The security bound provided in [DDF14, Thm. 1] being decreasing with respect
to the masking order d, d∗DDF is the optimal masking order predicted by the
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inequality. The advantage of the adversary cannot be reduced further than

|Γ |exp
(
−d

∗
DDF

12

)
= |Γ |exp

(
− 1

12

⌊
δ−1
TVI

28|X | −
4

7

⌋)
(200)

with this security proof. Once again this is in line with Proposition 6 and the
observation of Battistello et al. [BCPZ16], from a certain rank as d increases the
bound on the adversary’s advantage increases in ISW gadgets whose noise rate
is not constant.

In [PR13, Coro. 2] it is required that d ⩽
⌊
δ−1
EN|X |−2

⌋
which implies the ex-

istence of a finite optimal masking order d∗EN ⩽
⌊
δ−1
EN|X |−2

⌋
with respect to the

bound. Also in [PGMP19, Thm. 6] it is required that δ−1
RE ⩾ 2d+1 i.e., the deriva-

tion holds for d ⩽
⌊
1
2 (δ

−1
RE − 1)

⌋
. Also the security bound presented in [PGMP19]

also has an optimal masking order d∗RE ⩽
⌊
1
2 (δ

−1
RE − 1)

⌋
. In [MS23b] it is required

that δ−1
MI ⩾ d + 1 which in turn implies that there is an optimal masking order

d∗MI ⩽ ⌊δ−1
MI⌋. For these three bounds a term of the form ((d + 1)δ)d+1 appear

which is maximized for d+1 ∈ {⌊(δe)−1⌋, ⌈(δe)−1⌉}. This indicates that in these
bounds it is sub-optimal with respect to the security bound to maximize the
masking order.

In the direct security proof (Theorem 2) the bottleneck is associated to the
type 3 subsequences. While it is complicated to derive analytically the minimal
value of Υd(E) with respect to d we know that (1−Ed+1)d+1 ⩽ Υd(E) ⩽ 1. Since
(d + 1) ln(1 − Ed+1) ∼ −dEd+1 → 0, (1 − Ed+1)d+1 → 1 and by the sandwich
theorem we obtain that Υd(E)→ 1 as d→ +∞. This implies the existence of an
optimal masking order d∗(E) with respect to the direct security proof that can
be computed numerically.
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