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Abstract—We leverage the Gibbs inequality and its natural
generalization to Rényi entropies to derive closed-form paramet-
ric expressions of the optimal lower bounds of ρth-order guessing
entropy (guessing moment) of a secret taking values on a finite set,
in terms of the Rényi-Arimoto α-entropy. This is carried out in an
non-asymptotic regime when side information may be available.
The resulting bounds yield a theoretical solution to a fundamental
problem in side-channel analysis: Ensure that an adversary will
not gain much guessing advantage when the leakage information
is sufficiently weakened by proper countermeasures in a given
cryptographic implementation. Practical evaluation for classical
leakage models show that the proposed bounds greatly improve
previous ones for analyzing the capability of an adversary to
perform side-channel attacks.

I. INTRODUCTION

Guessing entropy [1], also known as guesswork [2], is
perhaps the most popular security metric in the context
of side-channel attacks of embedded cryptographic devices,
such as the cryptographic microcontrollers used in banking
smartcards [3]–[5]. Such attacks exploit leakage information
to recover the secret key, byte by byte in a divide-and-
conquer strategy, in which each subkey byte K ∈ {1, . . . ,M}
(typically M = 128 or 256) is targeted independently of
the others. The secret key K is generally assumed uniformly
distributed, but in a more general framework, any type of
secret X ∈ {1, . . . ,M} (e.g., passwords, sensitive personal
information, etc.) can be targeted from some disclosed side
information Y .

Guessing entropy [1] G(X|Y ), or more generally, ρth order
guessing moments [6] Gρ(X|Y ), relate to the number of tries
that the attacker has to make to find the actual secret X
for a given leakage side information Y , thereby estimating
the brute force effort to find X by exhaustive search. The
popularity of Gρ (particularly G = G1) as a security criterion
comes from the fact that it is particularly informative, as it
is computed from whole key ranking distribution [7]. The
adversary’s guessing advantage is defined as

∆Gρ(X;Y ) ≜ Gρ(M)−Gρ(X|Y ) (1)

where Gρ(M) = Gρ(K) is for a blind estimation (no leakage)
of a uniformly distributed M -ary secret K.

Side channel leakage was evaluated by information theoretic
measures such as mutual information I(X;Y ) [3], [8]–[10],
maximal leakage [11], [12], and more generally, Arimoto’s α-
information [13] Iα(X;Y ) = Hα(X)−Hα(X|Y ) or Sibson’s
α-information [14]–[17]. The latter two α-informations coin-
cide for uniform secrets: Iα(K;Y ) = logM−Hα(K|Y ) [18].

In many practical cases, such as for protected implemen-
tations with masking or low SNR noise [10], [12], [19]–
[21], the information leakage is small, which means that the
conditional Rényi-Arimoto entropy [22] Hα(X|Y ) approaches
its maximum value logM in the case of uniform secrets.
Thus, to evaluate the impact of leakage in cryptographic
implementations, a significant quantity is the “information
advantage”

∆Hα(X;Y ) ≜ logM −Hα(X|Y ). (2)

A fundamental problem in side-channel analysis is to ensure
that an adversary will not gain much guessing advantage when
the leakage is sufficiently weakened by proper countermea-
sures in some cryptographic implementation [4], [5]. In other
words, it is important to upper bound ∆Gρ(X;Y ) in terms
of ∆Hα(X;Y ), or equivalently, to lower bound Gρ(X|Y ) in
terms of Hα(X|Y ). As explained in [4], [5], this is also useful
to practically evaluate guessing advantage for a full key (e.g.,
256-bit key) whose direct evaluation is not tractable.

Many such bounds have been derived in the literature.
Massey’s original inequality [1] is for α = ρ = 1 and was
improved by Rioul [23] as an asymptotically optimal inequal-
ity [5] as M → +∞. Arikan’s inequalities [6] are for α = 1

1+ρ
and exhibit asymptotic equivalence. More general bounds for
various ranges of α and ρ were established in [23]. These
works, however, can only be optimal as M → +∞ and do
not consider the nonasymptotic scenario for small leakage, i.e.,
around the corner (Hα(X|Y ) ≈ logM,Gρ(X|Y ) ≈ Gρ(M))
for relatively small M .
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Fig. 1: Optimal joint range region between H(X|Y ) and G(X|Y )
for different values of M . The (optimal) upper bound is that of Mc
Eliece and Yu [24]. The optimal lower bound is derived in this paper.
The black dotted and dash-dotted curves correspond to Massey’s [1]
and Rioul’s [23] inequalities, that do not depend on M .



As an illustration for α = ρ = 1, Figure 1 shows that
for any fixed value of M , there is a multiplicative gap
of approximately e/2 in guessing entropy from this corner
point (logM, M+1

2 ) compared to Rioul’s inequality. Sason and
Verdú [25] improved Arikan’s inequalities in a non-asymptotic
regime for any ranking function but did not obtain the exact
locus of attainable values of Gρ vs. Hα, nor closed-form
expressions for lower bounds of Gρ vs. Hα.

In this paper, we leverage the Gibbs inequality [26] and its
natural generalization to Rényi entropies [27] to derive closed-
form parametric expressions of the optimal lower bounds of
Gρ(X|Y ) vs. Hα(X|Y ) (or upper bounds of ∆Gρ(X;Y ) vs.
∆Hα(X;Y )). We obtain an explicit, easily computable, first-
order bound of the form ∆Gρ(X;Y ) ⩽ c

√
∆Hα(X;Y ) for

small leakages. We then evaluate and refine our bounds in the
Hamming weight and random probing leakage models.

II. NOTATIONS

The secret is modeled as a random variable X with pmf
pX taking values in a finite set {1, . . . ,M}. The side channel
X → Y leaks some side information Y , which is modeled as
an arbitrary random variable (discrete or continuous). For most
cryptographic applications, X is a uniformly distributed key
K ∼ U(M). In this case the side channel is noted K → Y .

We let α > 0 and ρ > 0 be the entropy and guessing
entropy orders, respectively. The Rényi entropy of order α is
Hα(X) ≜ −α′ log ∥pX∥α where ∥p∥α ≜ (

∑
pα)1/α denotes

the “α-norm”, the logarithm is taken to an arbitrary base, and
α′ is the Hölder conjugate of α: 1

α + 1
α′ = 1, i.e. α′ = α

α−1 or
(α′−1)(α−1) = 1. We also write Hα(p) = −α′ log ∥p∥α. The
limiting case α → 1 is the Shannon entropy H(X) = H1(X).
The limiting case α → ∞ is the min-entropy H∞(X) ≜
− logmax pX .

The ρ-guessing entropy (a.k.a. guessing ρth-order moment)
is Gρ(X) ≜ minσ

∑M
i=1 pX(σ(i))iρ = minσ E(σ(X)ρ),

where the minimum is over all possible permutations of the
secret values. We also write Gρ(p) when X has pmf p.
By the rearrangement inequality, since the sequence iρ is
increasing, the optimal guessing strategy is such that the
pX(σ(i)) are arranged in decreasing order. When X = K
is uniformly distributed, its ρ-guessing entropy is also noted
Gρ(M) ≜ 1

M

∑M
i=1 i

ρ.
In the presence of leakage Y , the most natural defini-

tion of conditional α-entropy is that of Arimoto [13], [22]:
Hα(X|Y ) ≜ −α′ logEY ∥pX|Y ∥α. In particular H∞(X|Y ) ≜
− logEY max pX|Y where EY max pX|Y is the optimal suc-
cess probability as given by the MAP rule. Following
Hirche [28] we also define

Kα(X) ≜ ∥pX∥α = exp
(
1−α
α Hα(X)

)
(3)

Kα(X|Y ) ≜ EY ∥pX|Y ∥α = exp
(
1−α
α Hα(X|Y )

)
(4)

so that Kα(X|Y ) = EyKα(X|Y = y). Likewise, the condi-
tional ρ-guessing entropy is Gρ(X|Y ) ≜ EyGρ(X|Y = y).
In particular for ρ = 1, G(X|Y ) ≜ EyG(X|Y = y).

III. OPTIMAL LOWER BOUND ON Gρ(X|Y ) VS. Hα(X|Y )

A. Case ρ = 1: G(X|Y ) vs. H(X|Y )

Theorem 1: The optimal lower bound on G(X|Y ) vs.
H(X|Y ) is given by the parametric curve for γ ∈ (0, 1):{

G(X|Y ) = 1
1−γ − MγM

1−γM

H(X|Y ) = log(γ 1−γM

1−γ )−(log γ)( 1
1−γ −

MγM

1−γM )
(5)

where the limiting case γ → 1 gives G = M+1
2 and H =

logM attained for the uniform distribution.
The optimal upper bound on ∆G(X;Y ) = M+1

2 −G(X|Y )
vs. ∆H(X;Y ) = logM−H(X|Y ) is given by the parametric
curve for µ ∈ (0,+∞):{

∆G(X;Y ) = 1
2

(
M coth(Mµ)− coth(µ)

)
∆H(X;Y ) = log M sinhµ

sinh(Mµ) + 2µ(log e)∆G(X;Y ).
(6)

Proof: Here α = ρ = 1 is the classical situation studied
by Massey [1], where the essential ingredient is the Gibbs
inequality [26]: In the unconditional case, for any pmf q,

H(X) ⩽ −EX log q(X) (7)

with equality iff q = pX . One may always assume that
pX(x) is nonincreasing in x, in which case G(X) = E(X).
Therefore, we choose q such that log q(x) = a + bx for real
constants a, b, so that EX log q(X) = a + bG(X). To allow
equality in the Gibbs inequality (q = pX ), it is necessary
that q(x) be nonincreasing in x, i.e., b ⩽ 0. Now q(x)
rewrites as a truncated geometric pmf q(x) = cγγ

x where
γ = exp(b) ∈ (0, 1] and cγ = (

∑M
i=1 γ

i)−1 > 0 is a
normalization factor. Thus one obtains

H(X) ⩽ − log cγ − (log γ)G(X). (8)

for all γ ∈ (0, 1), with equality iff pX = q where H(X) =
H(q) and G(X) = G(q).

In the conditional case, we similarly have H(X|Y = y) ⩽
− log cγ − (log γ)G(X|Y = y) for every y. Taking the
expectation over Y yields the same inequality for conditioned
entropies:

H(X|Y ) ⩽ − log cγ − (log γ)G(X|Y ), (9)

that is, G(X|Y ) ⩾ −(log γ)−1(H(X|Y ) + log cγ). The
equality case still corresponds to H(X|Y ) = H(q) and
G(X|Y ) = G(q). Since q approaches the uniform distribution
as γ → 1 and the Dirac distribution as γ → 0+, all possible
values of entropies are attainable.

We thus obtain the following parameterization of the opti-
mal lower bound on G(X|Y ) vs. H(X|Y ):{

G(X|Y ) = G(q) = cγ
∑M

i=1 iγ
i

H(X|Y ) = H(q) = − log cγ −G(q) log γ
(10)

where γ ∈ (0, 1]. The case γ = 1 gives H = logM and G =
M+1

2 attained for the uniform distribution. For 0 < γ < 1, a
straightforward calculation gives (5). Setting µ ≜ − 1

2 ln γ ∈
(0,∞), i.e., γ = e−2µ gives (6) for ∆G(X;Y ) = M+1

2 −
G(X|Y ) and ∆H(X;Y ) = logM −H(X|Y ).



B. Gρ(X|Y ) vs. H(X|Y )

Theorem 2: The optimal lower bound of Gρ(X|Y ) vs.
H(X|Y ) is given by the parametric curve for γ ∈ (0, 1]:Gρ(X|Y ) = (

∑M
i=1 i

ργiρ)(
∑M

i=1 γ
iρ)−1

H(X|Y ) = log(
∑M

i=1 γ
iρ)− (log γ)

∑M
i=1 iργiρ∑M
i=1 γiρ

(11)

Proof: The proof is analog to the case of the preceding
subsection, where log q(x) = a + bxρ, q(x) = cγγ

xρ

,
γ = exp b ∈ (0, 1] and cγ = (

∑M
i=1 γ

iρ)−1 > 0. Again q
approaches the uniform distribution as γ → 1 and the Dirac
distribution as γ → 0+, hence all possible values of entropies
are attainable. One readily obtains{

Gρ(X|Y ) = Gρ(q) = cγ
∑M

i=1 i
ργiρ

H(X|Y ) = H(q) = − log cγ −Gρ(q) log γ
(12)

which gives (11).

C. Gρ(X|Y ) vs. Hα(X|Y )

The most general optimal lower bound is given by the
following Theorem. It generalizes Theorems 1 and 2, which
can be recovered in the limiting case α → 1.

Theorem 3: When 0 < α < 1, the optimal lower bound of
Gρ(X|Y ) vs. Hα(X|Y ) is given by the parametric curve for
γ ∈ (0,∞):

Gρ(X|Y ) = 1 + γ−1
( ∑M

i=1(1−γ+γiρ)α
′∑M

i=1(1−γ+γiρ)α′−1 − 1
)

Hα(X|Y ) = α′ log
∑M

i=1(1− γ + γiρ)α
′−1

+ (1− α′) log
∑M

i=1(1− γ + γiρ)α
′
.

(13)

When α > 1, the optimal lower bound of Gρ(X|Y ) in terms
of Hα(X|Y ) is given by the parametric curve for γ ∈ (0, 1):

Gρ(X|Y ) = γ−1
(
1−

∑M
i=1(1−γiρ)α

′
+∑M

i=1(1−γiρ)α
′−1

+

)
Hα(X|Y ) = α′ log

∑M
i=1(1− γiρ)α

′−1
+

+ (1− α′) log
∑M

i=1(1− γiρ)α
′

+

(14)

where x+ = max(x, 0) denotes the positive part of x.
The proof relies on the following Gibbs inequality for Rényi

entropies [27, Prop. 8]:
Lemma 1 (Generalized Gibbs Inequality): For any pmf q,

Hα(X) ⩽ −α′ logEXq1/α
′

α (X) (15)

with equality iff pX = q. Here qα is the escort distribution [27]
of q, defined by qα(x) = qα(x)/∥q∥αα.
The proof given [27] was for random variables having pdfs
with respect to the Lebesgue measure, but applies verbatim
to discrete random variables having pmfs with respect to the
counting measure on {1, 2, . . . ,M}. The Gibbs inequality (15)
can be easily rewritten directly in terms of q(x) as

Hα(X) ⩽ (1− α)Hα(q)− α′ logEXqα−1(X). (16)

In terms of (3) it also rewrites

Kα(X) ≶ EXq1/α
′

α (X) =
EXqα−1(X)

∥q∥α−1
α

(17)

where ≶ denotes ⩾ for 0 < α < 1 and ⩽ for α > 1.
Proof of Theorem 3: First consider the unconditional

case. One may always assume that pX(x) is nonincreasing
in x, in which case Gρ(X) = E(Xρ). Therefore, we wish
to choose q such that qα−1(x) = a + bxρ for real constants
a, b, i.e., q(x) = (a + bxρ)α

′−1, so that EXqα−1(X) = a +
bGρ(X).

When 0 < α < 1, α′ < 0, to allow equality in the Gibbs
inequality (pX = q), it is necessary that a + bxρ ⩾ 0 with
nonempty support and that (a + bxρ)α

′−1 is nonincreasing
for x = 1, 2, . . . ,M . This gives the conditions b ⩾ 0 and
a > −b. Rewriting a+ bxρ = (a+ b) + b(xρ − 1) we obtain
q(x) = cγ(1+γ(xρ−1))α

′−1 where γ ≜ b
a+b ∈ [0,+∞) and

cγ = (
∑M

i=1(1 + γ(iρ − 1))α
′−1)−1 > 0 is a normalization

factor. Note that q is the uniform distribution when γ = 0
and approaches the Dirac distribution as γ → +∞, hence all
possible values of entropies are attainable.

When α > 1, α′ > 0, we choose the positive part
q(x) = (a + bxρ)α

′−1
+ . Again to allow equality in the Gibbs

inequality (pX = q), it is necessary q(x) has nonempty support
and is nonincreasing for x = 1, 2, . . . ,M . This gives the
conditions b ⩽ 0 and a > −b. Factoring out a > 0 we
obtain q(x) = cγ(1 − γxρ)α

′−1
+ where γ ≜ −b

a ∈ (0, 1) and
cγ = (

∑M
i=1(1 − γxρ)α

′−1
+ )−1 > 0 is a normalization factor.

Note that q approaches the uniform distribution when γ → 0
and the Dirac distribution when γ → 1—in fact, it is the Dirac
distribution for all γ ∈ [2−ρ, 1). Hence all possible values of
entropies are again attainable.

In both cases, the Gibbs inequality (17) takes the form1

Kα(X) ≶ φ
(
Gρ(X)

)
for some linear function φ, with

equality iff pX = q, in which case Hα(X) = Hα(q) and
Gρ(X) = Gρ(q). In the conditional case, we similarly have
Kα(X|Y = y) ≶ φ

(
Gρ(X|Y = y)

)
for every y, and

taking the expectation over Y yields the same inequality
for conditioned entropies: Kα(X|Y ) ≶ φ

(
Gρ(X|Y )

)
. The

equality case still corresponds to Hα(X|Y ) = Hα(q) and
Gρ(X|Y ) = Gρ(q).

When 0 < α < 1, EXqα−1(X) = cα−1
γ (1+γ(Gρ(X)−1))

and the equality case of the Gibbs inequality (16) rewrites
Hα(q) = −α′

α logEXqα−1(X) = −α′

α log
(
1−γ+γGρ(q)

)
−

log cγ . Since by definition Hα(q) = −α′ log ∥q∥α we obtain
the parametric curve{

Gρ(X|Y ) = γ−1(∥q∥ααc1−α
γ − 1) + 1

Hα(X|Y ) = −α′ log ∥q∥α.
(18)

Substituting ∥q∥αα = cαγ
∑M

i=1(1 + γ(iρ − 1))α
′

gives (13).
When α > 1, EXqα−1(X) = cα−1

γ (1 − γGρ(X)), and the
equality case of the Gibbs inequality (16) rewrites Hα(q) =
−α′

α logEXqα−1(X) = −α′

α log(1 − γGρ(q)) − log cγ . We
similarly obtain the parametric curve{

Gρ(X|Y ) = γ−1(1− ∥q∥ααc1−α
γ )

Hα(X|Y ) = −α′ log ∥q∥α
(19)

1For α > 1, the Gibbs inequality takes this form because when pX = q,
these pmfs have the same support, so that equality also holds in the inequality
EX(a+ bXρ)+ ⩾ EX(a+ bXρ) ⇐⇒ EXqα−1(X) ⩾ a+ bGρ(X).



Substituting ∥q∥αα = cαγ
∑M

i=1(1− γiρ)α
′

+ gives (14).
Remark 1: Sason and Verdú [25] stated an implicit lower

bound on guessing moment vs. Rényi entropy in the un-
conditional case, by specifying only the minimizing pmf
(equation (59) in [25]) for a guessing strategy which is not
necessarily optimal. Their minimizing pmf is not the same as
in the above proof when 0 < α < 1 because it is does not
satisfy the constraint that pX(x) should be decreasing in x.
Additionally, it can be checked that it cannot approach the
Dirac distribution, hence does not provide the full range of
the entropy values.

As an important consequence, an explicit first-order upper
bound on ∆Gρ(X;Y ) can be obtained, which is easy to
compute for any adversary observing small leakages.

Corollary 1: As ∆Hα(X;Y ) → 0, up to first order,

∆Gρ(X;Y ) ≲

√
2(G2ρ(M)−G2

ρ(M))

α

√
∆Hα(X;Y )

log e
.

(20)
In particular, ∆G(X;Y ) ≲

√
M2−1
6α

√
∆Hα(X;Y )

log e .
Proof: One has ∆Gρ(q) → 0 and ∆Hα(q) → 0 when q

approaches the uniform distribution, i.e., when γ → 0 in (13)
or (14). Taylor expansion about γ = 0 in both cases gives{

∆Gρ(X;Y ) = γ|1− α′|(G2ρ(M)−G2
ρ(M)) +O(γ2)

∆Hα(X;Y )
log e = |α′(1−α′)|

2 (G2ρ(M)−G2
ρ(M))γ2 +O(γ3)

(21)
which yields (20). This is also valid for α = 1 by taking the
limit α → 1.

Fig. 2 illustrates the results of this section. Next we give
two examples for which explicit upper and lower bounds can
be derived directly.

Example 1 (Binary Random Variables): Let B(p) be the
Bernoulli distribution with parameter p ∈ [0, 1] and define
hα(p) ≜ Hα(B(p)) = 1

1−α log((1 − p)α + pα) and kα(p) ≜
Kα(B(p)) = ((1 − p)α + pα)1/α. We let h−1

α and k−1
α be

their inverse when restricted to [0, 1
2 ]. Note that kα is concave

increasing if α ∈ (0, 1); and convex decreasing if α > 1.
For M = 2 in the unconditional case (without side informa-

tion) we simply have Gρ(X) = (1−p)+p2ρ = 1+(2ρ−1)p =
1 + (2ρ − 1)k−1

α (Kα(X)). Since k−1
α is convex, by Jensen’s

inequality, we obtain the desired lower bound explicitly. The
upper bound is similarly obtained by taking the chord of k−1

α :

1 + (2ρ − 1)h−1
α (Hα(X|Y )) ⩽ Gρ(X|Y )

⩽ 1 + 2ρ−1
2

exp
(
1−α
α Hα(X|Y )

)
− 1

2
1−α
α − 1

.
(22)

Since h−1
α (log 2 − δ) ≈ 1

2 −
√

1
2α

δ
log e as δ → 0 we recover

Corollary 1 as δ = ∆Hα(X;Y ) → 0, which for M = 2 takes
the form

∆Gρ(X;Y ) ≲ (2ρ − 1)

√
∆Hα(X;Y )

2α log e
. (23)
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Fig. 2: Solid: Illustration of Theorems 1,2,3 (upper bounds of ∆Gρ

vs. ∆Hα) for various values of α and ρ when M = 28. Dashed:
First-order lower bound ∆Gρ ⩽ c

√
∆Hα from Corollary 1.

In the other direction we also obtain at first order that

∆Gρ(X;Y ) ≳ 2ρ−1
2

1−α
α

2
1−α
α

2
1−α
α −1

∆Hα(X;Y )

log e
(24)

which reads ∆Gρ(X;Y ) ≳ 2ρ−1
2

∆H(X;Y )
log e in the limiting case

α → 1.
Example 2 (Guessing vs. Min-Entropy): When α = ∞

explicit bounds can also be derived. Sason and Verdù [25, The-
orem 9] provided the joint range between probability of error
ϵX|Y and ρth-order guessing moments. Since H∞(X|Y ) =
− log(1− ϵX|Y ), their results can be easily rewritten in terms
of min-entropy. This gives

K

⌊K−1⌋∑
i=1

iρ + (1−K⌊K−1⌋)(1 + ⌊K−1⌋)ρ

⩽ Gρ(X|Y ) ⩽ 1 +
M

M − 1
(Gρ(M)− 1)(1−K)

(25)

where K = K∞(X|Y ) = exp(−H∞(X|Y )). For ρ = 1, as
shown in [29], this simplifies to (⌊K−1⌋+1)(1− ⌊K−1⌋

2 K) ⩽
G(X|Y ) ⩽ 1 + M

2 (1−K).
For small leakages of uniform secrets with maximal leakage

I∞(K;Y ) = H∞(K)−H∞(K|Y ) ⩽ log M
M−1 , this rewrites

1
2 (e

I∞(K;Y ) − 1) ⩽ ∆G(K;Y ) ⩽ M−1
2 (eI∞(K;Y ) − 1). As

I∞(K;Y ) → 0 this yields the first order approximation,

1
2
I∞(K;Y )

log e ≲ ∆G(K;Y ) ≲ M−1
2

I∞(K;Y )
log e . (26)



The upper bound is linear in I∞(K;Y ) which agrees with the
fact that in (20) the term in

√
∆Hα(K;Y ) =

√
Iα(K;Y )

vanishes as α → +∞.

D. Evaluation in the Hamming Weight Lekage Model

A standard leakage model in side-channel analysis [3],
[4], [8]–[10], [17], [20], [21] is the Hamming weight leak-
age model Y = wH(K) + N , in which the Hamming
weight wH(K) of the binary representation of the secret
byte K ∼ U(M), M = 2n leaks under additive Gaussian
noise N ∼ N (0, σ). Fig. 3 compares our bounds to previous
ones and to the numerical evaluation of the actual guessing
advantage. While the case α = 1 (Thm. 1) is slightly better
than α = 1

2 (Thm. 3), both bounds are very close to the exact
value as noise increases, with huge gaps compared to previous
Arikan’s [6] and Rioul’s [23] bounds which were used in [4],
[5] for practical evaluation of full-key guessing entropy.
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Fig. 3: Bound on the guessing advantage in the Hamming
weight leakage model for increasing noise variance σ2.

E. Evaluation in the Random Probing Model

The random probing model [30]–[32] is a well-known set-
ting for security evaluation of cryptographic circuits. The side-
channel is noiseless but has a random state: Y =(Z, fZ(K))
where fz is a deterministic leakage function depending on
state z. Typically Y is either erased or leaks f(K,T ) with
publicly available plain or cyphertext T .

Theorem 4: In the random probing model,

1 + M−1
2

exp(
1−α
α Hα(K|Y ))−1

M(1−α)/α−1
≶ G(K|Y ) ≶ 1+exp(Hα(K|Y ))

2 .
(27)

where ≶ denotes ⩾ for α ⩾ 1/2 and ⩽ for α ⩽ 1/2. In the
limiting case α = 1,

1 + expH(K|Y )

2
⩽ G(K|Y ) ⩽ 1 +

M − 1

2

H(K|Y )

logM
. (28)

Proof: First, consider a fixed function f = fz with pre-
image cardinality My = |f−1({y})|. Then Hα(K|Y = y) =

logMy and G(K|Y = y) =
My+1

2 = exp(Hα(K|Y=y))+1
2 =

Kα(K|Y=y)
α

1−α +1
2 . If α = 1, since x 7→ 1+exp(x)

2 is convex we
obtain by Jensen’s inequality that G(K|Y ) ⩾ exp(H(K|Y ))+1

2 .

If α ̸= 1, x 7→ 1+x
α

1−α

2 is convex if α ⩾ 1
2 and concave

otherwise, hence G(K|Y ) ≶ Kα(K|Y )
α

1−α +1
2 . The other bound

is obtained by taking the chord of x 7→ 1+x
α

1−α

2 . The region
when fz is obtained at random is obtained by taking the convex
hull of the region (Kα, G), which is already convex.

Fig. 4 shows that Theorem 4 greatly improves Theorem 3
in the random probing model. Interestingly, the case α = 1

2
gives equality ∆G(K;Y ) = M

2 (1 − exp(−I 1
2
(K;Y ))) ≈

M
2

I 1
2
(K;Y )

log e where the approximation holds for small leakages.
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Fig. 4: Improved bound (M = 32) from Theorem 4 (solid, red)
compared to Theorem 3 (solid, black), Corollary 1 (dashed), and
scatter plot of exact values when Y = f(K) for arbitrarily given
functions f .

IV. CONCLUSION

We derived closed-form optimal regions with explicit
bounds on the guessing advantage ∆Gρ of a secret random
variable in terms of the α-information advantage ∆Hα. An
important outcome is that it decreases as the square root
∆Gρ ⩽ c

√
∆Hα for small leakages. Simulations in the clas-

sical Hamming weight leakage model show that our bounds
are much tighter than previous ones, especially for large
noise (small leakage). We further sharpened the bounds in
the random probing model where the guessing advantage is
actually equal to a function of the Rényi-Arimoto entropy of
order 1/2.

As possible extensions of this work, it would be valuable to
obtain sharpened bounds for any additive noise leakage model
Y = f(X) + Z, for secrets with known (nonuniform) prior
pmf pX and generalize to negative values of α [33].
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