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Abstract. As deep learning is becoming more and more popular in a variety of fields, it is
natural to ask whether it can be used for decoding error-correcting codes. In this work, we
show that the answer is yes, but with a caveat: Naive application of general-purpose neural
networks is not well suited for bitwise decoding. We thoroughly identify the challenges that
prevent general-purpose neural networks from decoding successfully, including the curse of
dimensionality and the requirement of extremely high accuracy. We then propose a proba-
bilistic embedding method in the preprocessing stage that facilitate the learning. We also
show that this new method allows general-purpose neural networks to decode with a perfor-
mance that is close to the theoretical optimality while saving time compared to traditional
decoding methods such as maximum-likelihood decoding or the BCJR algorithm.
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1 Motivation

Digital communication is a vital infrastructure of our modern life. It can be abstractively described by a
mechanism of transferring encoded messages over a noisy channel and recovering the original messages with
arbitrarily high reliability. Traditional algebraic decoding methods such as maximum-likelihood decoding
that reach the optimal performance are known to be NP-hard. The thriving deep learning method recently
has provided promising solutions in various areas, including neural decoding. This is especially favorable
as the inference time is kept nearly constant once the neural network has been trained. However, as seen
in the next section, trivially applying a general-purpose neural network to decoding does not perform well,
due to the curse of dimensionality and the extremely high accuracy requirement.

Currently, the most popular approaches to neural decoding are based on learning Tanner Graphs [5, 6].
These approaches provide an effective way to avoid the problem of exponential growth of the number of
parameters. However, they are constrained by the pattern of a known decoding algorithm and the underly-
ing assumptions it represents, which limits the model’s ability to generalize to different decoding scenarios.
Some other studies consider non-domain-specific neural networks such as Autoencoder [7, 4], Transformer
[2], etc. While delivering promising results and showing flexibility, there are remaining problems that pre-
vent them from becoming practical, including relatively big model sizes for mobile devices as well as the
requirement of a redesigned non-linear encoding whereas all practical codes are linear.

Our works present a probabilistic embedding method which is installed before the input layer as a
preprocessing. Such probabilistic embedding overcomes the challenges of decoding with arbitrary general-
purpose neural networks by lowering the barrier of deployment compared to existing methods. To demon-
strate that, we construct a Feedforward Neural Network (FNN) (although our method equally applies to
other neural network structures) and compare the decoding performance with and without probabilistic
embedding. Our results show that the proposed method significantly improves the decoding performance,
and can even approach the theoretical optimality while requiring much less training data.

2 Challenges of decoding with general-purpose neural networks

Although the universal approximation theorem guarantees the existence of a neural network that can
approximate any function under some assumptions, it does not provide relationships between hyperpa-
rameters such as the number of neurons, the sample size, etc., and the targeting accuracy. In reality, the
general-purpose neural networks are observed to be not well suited for decoding in previous studies [3].
We investigate the reasons and give detailed explanations.



Consider an [n, k] binary code C of length n, therefore C is a subspace of F5 of dimension k. For
simplicity, consider an FNN that only decodes the first bit b1, in other words, it plays the role of a binary
classifier that finds a boundary separating the space R™ into decision regions for b1 = 0 and b; = 1. We
can prove that the separating boundary scales at least as 272 A, . piecewise affine models, where A4
is the number of non-zero codewords of minimum Hamming weight in C. This already gives 8704 affine
models for the small [15,11] Hamming code (a BCH code with an error-correction capacity ¢ = 1) and no
less than 1.3 x 10° affine pieces for the binary BCH][31, 26] code. This exponential growth illustrates the
curse of dimensionality in neural decoding. As a result, naively applying general-purpose neural networks
to decoding is very likely to fail, as the minimum number of neurons required increases exponentially with
the code length and the sample size becomes prohibitive.

Another difficulty of neural decoding is the requirement of extremely high accuracy. For instance, the
optimal BCH[15, 11] decoder nowadays can decode with a bit error rate (BER) of about 10™* at a signal-
to-noise ratio (SNR) of 6 dB, which translates to a classifier of an accuracy of about 99.99%. Reaching such
a high level of accuracy is not conventional in common deep learning tasks, especially with noisy input
data, as typical fine-tuning/optimizing techniques would, in this extreme case, easily lead to overfitting.
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3 Proposed method of probabilistic embedding

Word embedding is a popular technique in natural language processing in order to represent words in real-
valued vectors in such a way that words with similar semantics are closer to each other in the embedding
vector space. Here, we develop a novel preprocessing procedure that embeds the input vector into a larger
vector space, whereby some apriori knowledge of the code structure is combined with the channel likelihood.
This is done by transforming the received channel likelihoods (the observation) into vectors of posterior
probabilities with the help of a parity check matrix of the considered code, i.e., the proposed embedding
does a partial probabilistic decoding.

Specifically, in the context of an [n, k| binary code, a parity check matrix H is a (n — k) X n matrix such
that He" = 0, where ¢ = (¢1,...,¢n) € C is a codeword. The binary digits of a codeword are transmitted
over a memoryless channel defined by the conditional density p(y;|c;) of the noisy channel output y; € R
given the input ¢;. The channel output y = (y1,...,yn) is transformed into a (n— k) x n matrix of posterior
probabilities Extr;; (known as the extrinsics) by the following equation:
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where the probability obs(c;) is a normalized version of p(y;|c;) assuming that c¢;’s are Bernoulli(1/2). The
matrix Extr;; and the line vector obs(c;) are then stacked together vertically, resulting in an input matrix
of dimension (n — k + 1) X n for the neural network. After the transformation, the received signals that
originate from the same codeword form better-separated clusters in the probability space (concerning the
digit to be decoded), which is a more suitable and learnable input for neural networks.

4 Experiments and results

In our experiment, we built and trained FNNs of four hidden layers with 256, 64, 32, and 8 hyperbolic
tangent activated neurons and an output layer with sigmoid activation on randomly generated messages
coded using the BCH[15, 11] code and transmitted through additive white Gaussian noise (AWGN) channel.
For the neural network, the input is the (probabilistically embedded) received signals, and the output is
the soft approximation of codewords. The training is done with the Adam optimizer with a learning rate of
1073, and the loss function is the binary cross entropy (BCE). For each trial of training, 200 epochs with
a batch size of 10000 are carried out. The training database is generated at a fixed SNR of 2 dB, and the
test is done on a range of SNRs from 0 to 7 dB. The results are shown in Fig. 1. For reference, we compare
the results to the performance of BCJR decoder [1] which represents the theoretical optimality. From
the figure, we can see that the naive neural decoder is far from the optimal performance. However, after
probabilistic embedding, the performance is much closer to the optimality. Moreover, the neural decoder
with embedding outperforms the naive neural decoder with much smaller sample sizes. As far as we know,
this is the first approach that demonstrates decoding performance on par with the theoretical optimality
of BCHJ15, 11] with an FFN.

5 Conclusion

In this study, we have demonstrated the efficacy of our novel probabilistic embedding method in enhancing
the decoding performance of general-purpose neural networks for error correction tasks. Our method has
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Fig. 1. Comparison of the performance of the FNN decoder with/without probabilistic embedding trained
with different sample sizes and the optimal decoder [1]. Each curve is averaged from 10 trials of training.

shown notable success in improving the accuracy of decoding for the BCH[15,11] code. As a next step, it
is important to extend our investigation to more complex error-correcting codes with higher dimensions,
longer block lengths, and potentially more intricate patterns.

Additionally, understanding the impact of various parameters on our preprocessing method is another
avenue for future research, including sample size, the choice of the training SNR, the choice of the training
algorithm, etc.

Moreover, judging from the sparsity and the locality of the input matrix in probability space, it would
be possible to apply conventional image processing techniques such as convolutional filters to the input
data, in order to achieve effective input compression. This is a promising direction for overcoming the curse
of dimensionality.

The method’s versatility, potential for adaptation, and performance improvements make it a strong
candidate for driving advancements in communication systems. By addressing the critical challenge of
decoding with general-purpose neural networks, we believe that our approach can serve as a foundational
building block for the design and implementation of next-generation communication systems.
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