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The Interplay between Error, Total Variation, Alpha-Entropy
and Guessing: Fano and Pinsker Direct
and Reverse Inequalities §

Olivier Rioul

LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France; olivier.rioul@telecom-paris.fr
§ This review paper, essentially of tutorial nature with some original material in the various inequalities,

is the extended version of the communication at the 41st International Conference on Bayesian and
Maximum Entropy methods in Science and Engineering (MaxEnt 2022) conference, which was previously
published in Rioul, O. What Is Randomness? The Interplay between Alpha Entropies, Total Variation and
Guessing. Phys. Sci. Forum 2022, 5, 1–9.

Abstract: Using majorization theory via “Robin Hood” elementary operations, optimal lower and
upper bounds are derived on Rényi and guessing entropies with respect to either error probability
(yielding reverse-Fano and Fano inequalities) or total variation distance to the uniform (yielding
reverse-Pinsker and Pinsker inequalities). This gives a general picture of how the notion of random-
ness can be measured in many areas of computer science.

Keywords: entropy; Rényi entropy; guessing entropy; guessing moments; total variation distance; error
probability; data processing inequality; majorization; Schur concavity; Fano inequality; Pinsker inequality

1. Introduction

In many areas of science, it is of primary importance to assess the “randomness” of a
certain random variable X. That variable could represent, for example, a cryptographic key,
a signature, some sensitive data, or any type of intended secret. For simplicity, we assume
that X is an M-ary discrete random variable, taking values in a finite alphabet X of size M,
with known probability distribution p = (p1, p2, . . . , pM) (in short, X ∼ p).

Depending on the application, many different criteria can be used to evaluate random-
ness. Some are information-theoretic, others are related to detection/estimation theory or
to hypothesis testing. We review the most common ones in the following subsections.

1.1. Entropy

A “sufficiently random” X is often described as “entropic” in the literature. The usual
notion of entropy is the Shannon entropy [1]

H(X) = H(p) ,∑
k

pk · log
1
pk

, (1)

which is classically thought of as a measure of “uncertainty”. It has, however, an operational
definition in the fields of data compression or source coding. The problem is to find the
binary description of X with the shortest average description length or “coding rate”.

Note that the base of the logarithm is not specified in (1). Similar to all information-
theoretic quantities, the choice of the base determines the unit of information. Logarithms
of base 2 give binary units (bits) or Shannons (Sh). Logarithms of base 10 give decimal
units (dits) or Hartleys. Natural logarithms (base e) give natural units (nats).

This compression problem can be seen as equivalent to a “game of 20 questions” § 5.7.1
in [2], where a binary codeword for X is identified as a sequence of answers to yes–no
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questions about X that uniquely identifies it. There is no limitation on the type of questions
asked, except that they must be answered by yes (1) or no (0). The goal of the game is to
minimize the average number of questions, which is equal to the coding rate. It is well
known, since Shannon [1], that the entropy H(X) is a lower bound on the coding rate that
can be achieved asymptotically for repeated descriptions.

In this perspective, entropy is a natural measure of efficient (lossless) compression rate.
A highly random variable (with high entropy) cannot be compressed too much without
losing information: “random” means “hard to compress”.

1.2. Guessing Entropy

Another perspective arises in cryptography when one wants to guess a secret key.
The situation is similar to the “game of 20 questions” of the preceding subsection. The
difference is that the only possibility is to actually try out one possible key hypothesis
at a time. In other words, yes–no questions are restricted to be of the form “is X equal
to x?” until the correct value has been found. The optimal strategy that minimizes the
average number of questions is to guess the values of X in order of decreasing probabilities:
first, the value with maximum probability p(1), then the second maximum p(2), and so on.
The corresponding minimum average number of guesses is the guessing entropy [3] (also
known as “guesswork” [4]):

G(X) = G(p) ,∑
k

p(k) · k. (2)

Massey [3] has shown that the guessing entropy G is exponentially increasing as entropy H
increases. A recent improved inequality is [5,6] G >

exp H
e + 1

2 . It is sometimes convenient
to use log G instead of G, to express it in the same logarithmic unit of information as
entropy H.

In this perspective, a highly random variable (with high guessing entropy) cannot be
guessed rapidly: “random” means “hard to guess”.

1.3. Coincidence or Collision

Another perspective is to view X as a (publicly available) “identifier”, “fingerprint”
or “signature” obtained by a randomized algorithm from some sensitive data. In such a
scheme, to prevent “collision attacks”, it is important to ensure that X is “unique” in the
sense that there is only a small chance that another independent X′ obtained by the same
randomized algorithm coincides with X. Since X and X′ are i.i.d., the “index of coincidence”
P(X = X′) = ∑k p2

k should be as small as possible, that is, the complementary quantity
(sometimes called quadratic entropy [7]):

R2(X) = R2(p) , P(X 6= X′) = 1−∑
k

p2
k , (3)

should be as large as possible. In the context of hash functions, this is called “universality”
(Chapter 8 in [8]). The corresponding logarithmic measure is known as the collision entropy
(Rényi entropy [9] of order 2, also known as quadratic entropy [10]):

H2(X) = H2(p) , log
1

1− R2(X)
= log

1
∑k p2

k
(4)

which should also be as large as possible. By concavity of the logarithm, ∑k pk log pk ≤
log ∑k p2

k , that is, H ≥ H2; hence, high collision entropy implies high entropy.
In this perspective, a highly random variable (with high collision entropy) cannot be

found easily by coincidence: “random” means “unique” or “hard to collide”.
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1.4. Estimation Error

In estimation or detection theory, one observes some disclosed data which may depend
on X and tries to estimate X from the observation. The best estimator x̂ minimizes the
probability of error, P(X 6= x̂) = 1− P(X = x̂). Therefore, given the observation, the best
estimation is the value x with highest probability p(1), and the minimum probability of
error is written:

Pe(X) = Pe(p) , 1−max p = 1− p(1). (5)

If X is meant to be kept secret, then this probability of error should be as large as possible.
The corresponding logarithmic measure is known as the min-entropy:

H∞(X) = H∞(p) , log
1

1− Pe(X)
= log

1
p(1)

(6)

which should also be as large as possible. It is easily seen that H ≥ H2 ≥ H∞; hence, high
min-entropy implies high entropy in all the previous senses.

In this perspective, a highly random variable (with high min-entropy) cannot be
efficiently estimated: “random” means “hard to estimate” or “hard to detect”.

Figure 1 illustrates various randomness measures for a binary distribution.
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Figure 1. Various randomness measures (in bits) for a binary distribution (p, 1− p) as a function of p.

1.5. Some Generalizations

One can generalize the above concepts in multiple ways. We only mention a few.
The α-entropy, or Rényi entropy of order α > 0, is defined as follows [9]:

Hα(X) = Hα(p) ,
1

1− α
log ∑

k
pα

k =
α

1− α
log ‖p‖α (7)

where ‖ · ‖α is the “α-norm” (strictly speaking, ‖ · ‖α is a norm only when α ≥ 1). The
Shannon entropy H = H1 is recovered in the limiting case α → 1, the collision entropy
H2 is recovered in the case α = 2, and the min-entropy H∞ is recovered in the limiting
case α→ ∞.

The ρ-guessing entropy, or guessing moment [11] of order ρ > 0, is defined as the
minimum ρth-order moment of the number of guesses needed to find X. The same optimal
strategy as for the guessing entropy yields the following:

Gρ(X) = Gρ(p) ,∑
k

p(k) · kρ, (8)

which generalizes G = G1 for ρ 6= 1. Arikan [11] has shown that log Gρ behaves asymptoti-
cally as ρH 1

1+ρ
. In particular, log G behaves asymptotically as the ½-entropy H 1

2
.
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In some cryptographic scenarios, one has the ability to estimate or guess X in a
given maximum number m of tries. The corresponding error probability takes the form
P(X 6= x̂1, X 6= x̂2, . . . , X 6= x̂m). The same optimal strategy as for guessing entropy Gρ

yields an error probability of order m:

Pm
e (X) = Pm

e (p) , 1− p(1) − p(2) − · · · − p(m), (9)

which generalizes Pe = P1
e for m > 1.

One obtains similar randomness measures by replacing p with its “negation” p̄, as
explained in [12].

1.6. “Distances” to the Uniform

A fairly common convention is that, if we “draw at random” X, it is assumed that we
sample it according to a uniform distribution unless otherwise explicitly indicated. Thus,
the uniform distribution u, where all possible outcomes being equally likely—all M values
have equal probability uk =

1
M for all k—is considered as the ideal randomness.

From this viewpoint, a variable X with distribution p should be all the more “random”
as p is “close to uniform”: randomness can be measured as some complementary “distance”
from p to the uniform u, in the form, say, dmax − d(p, u), where “distance” d has maximum
value dmax. Such d(p, u) should not necessarily obey all axioms of a mathematical distance,
but at least should be nonnegative and vanish only when p = u.

Many of the above entropic criteria fall into this category. For example:

H(p) = log M− D(p‖u), (10)

where D(p‖q) = ∑k pk log pk
qk

denotes the (Kullback–Leibler) divergence (or “distance”).
More generally:

Hα(p) = log M− Dα(p‖u), (11)

where Dα(p‖q) = 1
α−1 log ∑k pα

k q1−α
k denotes the (Rényi) α-divergence [13].

In the particular case α = 2, since ∑k(pk − 1
M )2 = ∑k p2

k −
1
M , the complementary

index of coincidence R2—hence, the collision entropy H2—is also related to the squared
2-norm distance to the uniform:

R2(p) = (1− 1
M )− ‖p− u‖2

2. (12)

It follows that the 2-norm distance is related to the 2-divergence by the formula D2(p‖u) =
log(1 + M‖p− u‖2

2) (see, e.g., Lemma 3 in [14]).
Similarly, in the particular case α = 1

2 , one can write H 1
2
(p) = 2 log(1+ R 1

2
(p)), where

R 1
2
(p) = ∑

k

√
pk − 1 (13)

=
√

M
(
(1− 1√

M
)− 1

2‖
√

p−
√

u‖2
2

)
(14)

is a complementary quantity of the squared Hellinger distance 1
2‖
√

p −
√

u‖2
2, which is

related to the 1
2 -divergence by the formula D1/2(p‖u) = −2 log(1− 1

2‖
√

p−
√

u‖2
2).

Another important example is given next.

1.7. Statistical Distance to the Uniform

Suppose one wants to design a statistical experiment to know whether X follows either
distribution p (null hypothesis H0) or another distribution q (alternate hypothesis). Any
statistical test takes the form “is X ∈ T?”: if yes, then accept H0; otherwise, reject it. Type-I
and type-II errors have total probability P(X 6∈ T) +Q(X ∈ T), where P, Q are the proba-
bility measures corresponding to p and q, respectively. Clearly, if |P(X ∈ T)−Q(X ∈ T)|
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is small enough, the two hypotheses p and q are indistinguishable in the sense that decision
errors have total probability arbitrarily close to 1.

The statistical (total variation) distance § 8.8 in [8] is defined as follows:

∆(p, q) = max
T
|P(T)−Q(T)| = 1

2
‖p− q‖1, (15)

where the 1
2 factor is present to ensure that 0 ≤ ∆(p, q) ≤ 1. The maximum in the definition

of the statistical distance:

∆(p, q) = max
T
|P(T)−Q(T)| = P(T+)−Q(T+) (16)

is attained for any event T+, satisfying the following:

{p > q} ⊂ T+ ⊂ {p ≥ q}. (17)

The statistical distance is particularly important from a hypothesis testing viewpoint, since,
as we have just seen, a very small distance ∆(p, q) ensures that no statistical test can
distinguish the two hypotheses p and q.

Following the discussion of the preceding subsection, we can define “statistical ran-
domness” as the complementary value of the statistical distance ∆(p, u) between p and
the uniform distribution u. Therefore, if q = u is uniform and letting K = |T+|, then
∆(p, u) = P(T+)− K

M has maximum value 1− 1
M and statistical randomness can be de-

fined as follows:

R(X) = R(p) , (1− 1
M )− ∆(p, u) = (1− 1

M )− 1
2‖p− u‖1. (18)

This is similar to (12), where half the 1-norm is used in place of the squared 2-norm.
From the hypothesis testing perspective, it follows that a high statistical randomness R

ensures that no statistical test can effectively distinguish between the actual distribution and
the uniform. This is, for example, the usual criterion used to evaluate randomness extractors
in cryptology. Since equiprobable values are the least predictable, a highly random variable
cannot be easily statistically predicted: “random” means “hard to predict”.

1.8. Conditional Versions

In many applications, the randomness of X is evaluated after observing some disclosed
data or side information Y. The observed random variable Y can model any type of data and
is not necessarily discrete. The conditional probability distribution of X having observed
Y = y is denoted by pX|y to distinguish it from the unconditional distribution p = pX
(without side information). By the law of total probability P(X = x) = EyP(X = x|Y = y),
pX is recovered by averaging all conditional distributions:

pX = Ey pX|y, (19)

where Ey denotes the expectation operator over Y.
The “conditional randomness” of X given Y can then be defined as the average

randomness measure of X|y over all possible observations, that is, the expectation over Y
of all randomness measures of X|Y = y. For example, Shannon’s conditional entropy or
equivocation [1] is given by the following:

H(X|Y) , Ey H(X|y) = Ey H(pX|y). (20)

Similarly:
G(X|Y) , EyG(X|y) = EyG(pX|y) (21)
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gives the average minimum number of guesses to find X after having observed Y. Addi-
tionally:

R2(X|Y) , EyR2(X|y) = EyR2(pX|y) (22)

gives the average probability of non-collision to identify X upon observation of Y, and

Pe(X|Y) , EyPe(X|y) = 1−Ey max pX|y (23)

gives the minimum average probability of error, as achieved by the maximum a posteriori
(MAP) decision rule. The “conditional statistical randomness” is likewise defined as shown:

R(X|Y) , EyR(X|y) = EyR(pX|y). (24)

For the generalized quantities of Section 1.5, the conditional ρ-guessing entropy is
given by the following:

Gρ(X|Y) , EyGρ(X|y) = EyGρ(pX|y) (25)

and the conditional mth-order probability of error is as below:

Pm
e (X|Y) , EyPm

e (X|y) = EyPm
e (pX|y). (26)

For α-entropy, however, many different definitions of conditional α-entropy have been
proposed in the literature [15]. The preferred choice for most applications seems to be
Arimoto’s definition [16]:

Hα(X|Y) , α

1− α
logEy‖pX|y‖α, (27)

where the expectation over Y is taken on the α-norm inside the logarithm and not out-
side. Shannon’s conditional entropy H(X|Y) is recovered in the limiting case α → 1.
One nice property of Arimoto’s definition is that it is compatible with that of Pe(X|Y)
in the limiting case α → ∞, since the relation H∞ = log 1

1−Pe
of (6) naturally extends to

conditional quantities:

H∞(X|Y) = log
1

1− Pe(X|Y) . (28)

Notice that for any order α 6= 1, Arimoto’s definition can be rewritten as a simple expecta-
tion of ϕα(Hα) instead of Hα:

ϕα(Hα(X|Y)) = Ey ϕα(Hα(pX|y)), (29)

where ϕα is the increasing function, defined as follows:

ϕα(x) , sgn(1− α) exp
(1− α

α
x
)
. (30)

The requirement that ϕα is increasing is important in the following. The signum term
was introduced so that ϕα is increasing, not only for 0 < α < 1, but also for α > 1. The
exponential function exp is assumed to the same base as the logarithm: exp x = 2x for x in
bits, 10x in dits, ex in nats). In what follows, we indifferently refer to Hα or ϕα(Hα).

1.9. Aim and Outline

The enumeration in the preceding subsections is by no means exhaustive. Every
subfield or application has its preferred criterion, either information/estimation theoretic
or statistical, conditioned on some observations or not. Clearly, all these randomness
measures share many properties.

Therefore, a natural question is to determine a (possibly minimal) set of properties
that characterize all possible randomness measures. Many axiomatic approaches have
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been proposed for entropy [1,17], α-entropy [9], information leakage [18] or conditional
entropy [19,20].

Extending the work in [21], Section 2 presents a simple alternative, which naturally
encompass all common randomness measures H, Hα, G, Gρ, Pe, Pm

e , R2 and R, based on
two natural axioms:

• Equivalent random variables are equally random;
• Knowledge reduces randomness (on average).

Many properties, shared by all randomness measures described above, are deduced
from these two axioms.

Another important issue is to study the relationship between randomness measures,
by establishing the exact locus or joint range of two such measures among all probability
distributions with tight lower and upper bounds. In this paper, extending the presentation
made in [21], we establish the optimal bounds relating information-theoretic (e.g., entropic)
quantities on one hand and statistical quantities (probability of error and statistical distance)
on the other hand.

Section 3 establishes general optimal Fano and reverse-Fano inequalities, relating any
randomness measure to the probability of error. This generalizes Fano’s original inequal-
ity [22] H(X|Y) ≤ (1−Pe(X|Y)) log 1

1−Pe(X|Y) + Pe(X|Y) log M−1
Pe(X|Y) , which has become

ubiquitous in information theory (e.g., to derive converse channel coding theorems) and
in statistics (e.g., to derive lower bounds on the maximum probability of error in multiple
hypothesis testing).

Section 4 establishes general optimal Pinsker and reverse-Pinsker inequalities, relat-
ing any randomness measure to the statistical randomness or the statistical distance to
the uniform. Generally speaking, Pinsker and reverse-Pinsker inequalities relate some
divergence measure (e.g., d(p‖q) or dα(p‖q)) between two distributions to their statistical
distance ∆(p, q). Here, following the discussion in Section 1.6, we restrict ourselves to
the divergence or distance to the uniform distribution q = u. (For the general case of
arbitrary distributions p, q see, e.g., the historical perspective on Pinsker–Schützenberger
inequalities in [23].). In this context, we improve the well-known Pinsker inequality [24,25],
which reads D(p‖u) = log M− H(p) ≥ 2 log e · ‖p− u‖2

1. This inequality, of more general
applicability for any distributions p, q, is no longer optimal in the particular case q = u.

Finally, Section 5 lists some applications in the literature, and Section 6 gives some
research perspectives.

2. An Axiomatic Approach

Let X be any M-ary random variable with distribution pX . How should a measure of
“randomness” R(X) ∈ R of X be defined in general? To simplify the discussion, we assume
that R(X) ≥ 0 is nonnegative.

As advocated by Shannon [26], such a notion should not depend on the particular
“reversible encoding” of X. In other words, any two equivalent random variables should
have the same measure R(X), where equivalence is defined as follows.

Definition 1 (Equivalent Variables). Two random variables X and Y are equivalent: X ≡ Y, if
there exist two mappings f and g, such that Y = f (X) a.s. (almost surely, i.e., with probability
one) and X = g(Y) a.s.

Remark 1 (Equivalent Measures). Obviously, it is also essentially equivalent to study R(X) or
R(X)2, for example, or any quantity of the form ϕ(R(X)), where ϕ : R+ → R+ is any increasing
(invertible) function.

Definition 2 (Conditional Randomness). Given any random variable Y, the conditional form of
R is defined as follows:

R(X|Y) = EyR(X|y) (31)
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where X|y (or X|Y = y) denotes the random variable X, conditioned of the event Y = y. This
quantity represents the average amount of randomness of X knowing Y.

Remark 2 (Equivalent Conditional Measures). Again, it is essentially equivalent to study
R(X|Y) or ϕ(R(X|Y)), where ϕ : R+ → R+ is any increasing function. One may, therefore,
generalize the notion of conditional randomness by writing ϕ(R(X|Y)) = Ey ϕ(R(X|y)) in place
of (31), the same as (29) for α-entropy. However, in the sequel, we stay with the basic Definition 2
and simply assume that ϕ(R) is considered instead of R whenever it is convenient to do so.

In the sequel, we study the implications of only two axioms:

Axiom 1 (Equivalence). X ≡ Y =⇒ R(X) = R(Y)

Axiom 2 (Knowledge Reduces Randomness).

R(X|Y) ≤ R(X). (32)

We find such postulates quite intuitive and natural. First, equivalent random variables
should be equally random. Second, knowledge of some side observation should, on average,
reduces randomness.

All randomness quantities described in Section 1 obviously satisfy Axiom 1. That they
also satisfy Axiom 2 is shown in the following examples.

Example 1 (Entropies). For Shannon’s entropy H, the inequality H(X|Y) ≤ H(X) is well
known Thm 2.6.5 in [2]. This is often paraphrased as “conditioning reduces entropy”, “knowledge
reduces uncertainty” or “information can’t hurt”. The difference H(X)− H(X|Y) = I(X; Y)
is the mutual information, which is always nonnegative. Inequality Hα(X|Y) ≤ Hα(X) is also
known to hold for any α > 0, see [15,16] and Example 4 below.

Example 2 (Guessing Entropies). Axiom 2 for the guessing entropies G or Gρ can be easily
checked from their definition, as follows.

Let N ∈ N = {1, 2, . . .} be any random variable giving the number of guesses needed to find
X in any guessing strategy. N is equivalent to X (Definition 1) since every value of N corresponds
to a unique value of X, and vice versa. By definition, Gρ(X) = minN≡X E(Nρ), where the
minimum is over all possible N ∈ N equivalent to X (corresponding to all possible strategies). Now,
Gρ(X|Y) = EyGρ(X|y) ≤ EyE(Nρ|y) = E(Nρ), by the law of total expectation. Taking the
minimum over N ≡ X gives Gρ(X|Y) ≤ Gρ(X), which is Axiom 2.

The case ρ = 1 was already shown in [27]. The result is quite intuitive: any side information Y
can only improve the guess of X.

Example 3 (Error Probabilities). Axiom 2 for the error probability Pe = P1
e follows from the

corresponding inequality for H∞ = log 1
1−Pe

(see (28) and Example 1 for α = ∞), but it can also
be checked directly from its definition, as well as in the case of Pm

e of order m, as follows.
The mth order error probability is Pm

e (X) = minx̂1,...,x̂m P(X 6= x̂1, X 6= x̂2, . . . , X 6= x̂m),
i.e., the minimum probability that X is not equal to any of the m first estimates x̂1, x̂2, . . . , x̂m. Then,
Pm

e (X|Y) = Ey minx̂1,...,x̂m P(X 6= x̂1, . . . , X 6= x̂m|y) ≤ EyP(X 6= x̂1, . . . , X 6= x̂m|y) =
P(X 6= x̂1, . . . , X 6= x̂m), by the law of total probability, for every sequence x̂1, . . . , x̂m. Taking the
minimum over such sequences gives Pm

e (X|Y) ≤ Pm
e (X), which is Axiom 2.

The case m = 1 was already shown, e.g., in [27]. Again, the result is quite intuitive: any side
information Y can only improve the estimation of X.

2.1. Symmetry and Concavity

We now rewrite Axioms 1 and 2 as equivalent conditions on probability distributions.
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Definition 3 (Probability “Simplex”). Let P be the set of all sequences of nonnegative numbers:

p = (p1, p2, p3, . . .) (33)

such that the following are satisfied:

• Only a finite number of them are positive: pk 6= 0 for finitely many k;
• They sum to 1: ∑k pk = 1.

Notice that P has infinite dimension even though only a finite number of components
are nonzero in every p ∈ P . Thus, any p ∈ P can be seen as the probability distribution of
M-ary random variables with arbitrary large M.

Theorem 1 (Symmetry). Axiom 1 is equivalent to the condition that R(X) = R(p) is a symmet-
ric function of p = (p1, p2, p3, . . .) ∈ P , identified as the probability distribution of X.

Proof. Let X be the finite set (“alphabet”) of all values taken by X ∼ pX, and let f be an
injective mapping from X to N = {1, 2, . . .}, whose image is a finite subset of N. From
Definition 1, X is equivalent to f (X) ∈ N, with probabilities p = (p1, p2, . . .). Then, by
Axiom 1, R(X) does not depend on the particular values ofX but only on the corresponding
probabilities, so that R(X) = R(p), where p ∈ P is identified to pX . Now, letting h be any
bijection (permutation) of N, Axiom 1 implies that R(p) does not depend on the ordering of
the pks, that is, R(p) is a symmetric function of p. Conversely, any bijection applied to X can
only change the ordering of the pks in p = pX , which leaves R(p) = R(X) as invariant.

Accordingly, it is easily checked directly that all expressions in terms of probability
distributions p of random measures given in Section 1 are symmetric in p.

Remark 3. Some authors [17] define P as the union of all PM for M ∈ N, where PM is the
M-simplex {(p1, p2, . . . , pM), pk ≥ 0, p1 + · · · + pM = 1}. With this viewpoint, even when
the expression of R(p) does not explicitly depend on M, one has to define R(p) separately for all
different values of M as a function RM(p1, p2, . . . , pM), defined over PM, and further impose the
compatibility condition that RM+1(p1, p2, . . . , pM, 0) = RM(p1, p2, . . . , pM), as in [17] (this is
called “expansibility” in [20]).

Such expansibility condition is unnecessary to state explicitly in our approach: it is an obvious
consequence of an appropriate choice of f in Definition 1, namely, the injective embedding of
{1, 2, . . . , M} into {1, 2, . . . , M + 1}.

Theorem 2 (Concavity). Axiom 2 is equivalent to the condition that R(p) is concave in p.

Proof. Using the notations of Theorem 1, Definition 2 and (19), Axiom 2 can be rewritten
as shown:

EyR(pX|y) ≤ R(pX) = R(Ey pX|y). (34)

This is exactly Jensen’s inequality for concave functions on the convex “simplex” P .

Remark 4 (ϕ-Concavity). Similarly as in Remark 2, we may consider ϕ(R) in place of R in the
definition of conditional randomness, where ϕ : R+ → R is any increasing function. Then, by
Theorem 2, ϕ(R) is concave, that is, R(p) is a ϕ-concave function of p (for example, for ϕ = log,
one recovers the usual definition of a log-concave function). This is called “core-concavity” in [20].

Example 4 (Symmetric Concave Measures). All randomness measures of Examples 1–3 satisfy
both Axioms 1 and 2, and are, therefore, symmetric concave in p. This can also be checked directly
from certain closed-form expressions given in Section 1:

• Shannon’s entropy H, as well as the complementary index of coincidence R2, can be written
in the form ∑k r(pk), where r is a strictly concave function. Thus, both are symmetric and
strictly concave in p;
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• Statistical randomness R(p) can also be written in this form, where r(pk) = − 1
2

∣∣pk − 1
M

∣∣
is concave in pk. Thus, R(p) is also symmetric concave and, therefore, is also an acceptable
randomness measure satisfying Axioms 1 and 2;

• For α-entropy, consider ϕα(Hα(p)) = sgn(1− α)‖p‖α where ϕα is the increasing func-
tion (30). It is known that the α-norm ‖ · ‖α is strictly convex for finite α > 1 (by Minkowski’s
inequality) and strictly concave for 0 < α < 1 (by the reverse Minkowski inequality). Thus,
α-entropy is symmetric and (strictly) ϕα-concave in the sense of Remark 4. Therefore, one
finds anew that it satisfies Axioms 1 and 2.

Corollary 1 (Mixing Increases Randomness). Let p, q ∈ P be any two probability distributions
and consider the “mixed” distribution λp + λ̄q, where λ ≥ 0, λ̄ ≥ 0, and λ + λ̄ = 1. Then:

R(λp + λ̄q) ≥ λR(p) + λ̄R(q). (35)

In particular, mixing two equally random distributions R(p) = R(q) results in a “more random”
distribution: R(λp + λ̄q) ≥ R(p) = R(q).

Proof. Immediate from the concavity of R.

Example 5. The mixing property of the Shannon entropy H is well-known Thm. 2.7.3 in [2]. A
well-known thermodynamic interpretation is that mixing two gases of equal entropy results in a gas
with higher entropy.

2.2. Basic Properties in Terms of Random Variables

In terms of random variables, one can deduce the following properties.

Corollary 2 (Consistency). If X is independent of Y, then R(X|Y) = R(X). In particular, let 0
denote any deterministic variable (by Defintion 1, any deterministic random variable is equivalent
to the constant 0). Then:

R(X|0) = R(X). (36)

Thus “absolute” (unconditional) randomness R(X) can be recovered as a special case
of conditional randomness.

Proof. If X and Y are independent, then pX|y = pX for (almost) any y, so that R(X|Y) =
EyR(X|y) = EyR(X) = R(X). In particular, X and 0 are always independent.

Remark 5 (Strict Concavity). A randomness measure R is “strictly concave” in p if Jensen’s
inequality (34) holds with equality only when pX|y = pX for almost all y. This can be stated in
terms of random variables as follows. For any strictly concave random measure R, (32) is strict
unless independence holds:

R(X|Y) = R(X) ⇐⇒ X is independent of Y. (37)

Example 6 (Strictly Concave Measures). As already seen in Example 4, entropy H, all α-
entropies ϕα(Hα) for finite α > 0 and R2 are strictly concave.

In particular, for entropy, H(X|Y) = H(X) if and only if X and Y are independent. This is
well known since the mutual information I(X; Y) = H(X)− H(X|Y) vanishes only in the case of
independence [2] (p. 28). More generally, for α-entropy, Hα(X|Y) = Hα(X) if and only if X and
Y are independent.

Guessing entropy G, or, more generally, ρ-guessing entropy Gρ, is not strictly concave in p.
For example, Gρ(1− ε, ε, 0, 0, . . .) = 1− ε + 2ρε is linear in ε < 1

2 .

Corollary 3 (Additional Knowledge Reduces Randomness). Inequality (32) is equivalent to
the following:

R(X|Y, Z) ≤ R(X|Y) (38)
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for any Y, Z.

Proof. Inequality (32) applied to X|y and Z for fixed y gives R(X|y, Z) = Ez|yR(pX|y,z) ≤
R(pX|y) = R(X|y). Taking the expectation over Y of both sides yields the announced
inequality. Conversely, letting Y = 0, one obtains R(X|Z) ≤ R(X), which is (32).

Corollary 4 (Data Processing Inequality: Processing Knowledge Increases Randomness).
For any Markov chain X−Y− Z (i.e., such that pX|Y,Z = pX|Y), one has the following:

R(X|Y) ≤ R(X|Z). (39)

This property is equivalent to (32).

Proof. Since pX|Y = pX|Y,z for (almost) any z, one has R(X|Y) = R(X|Y, z) = R(X|Y, Z),
which, from Corollary 3, is ≤ R(X|Z). Conversely, letting Z = 0, one recovers (32).

Example 7 (Data Processing Inequalities). For entropy H, the property H(X|Y) ≤ H(X|Z)
amounts to I(X; Z) ≤ I(X; Y), i.e., (post-)processing in the Markov chain X−Y− Z can never
increase information § 2.8 in [2]. The data processing inequality for Pe and G was already shown
in [27].

2.3. Equalization (Minorization) via Robin Hood Operations

We now turn to another type of “mixing” probability distributions which are some-
times known as Robin Hood operations. To quote Arnold [28]:

“When Robin and his merry hoods performed an operation in the woods they
took from the rich and gave to the poor. The Robin Hood principle asserts that
this decreases inequality (subject only to the obvious constraint that you don’t
take too much from the rich and turn them into poor.)”

Definition 4 (Robin Hood operations [28]). An elementary “Robin Hood” operation p 7→ q
in P modifies only two probabilities (pi, pj) 7→ (qi, qj) (i 6= j) in such a way that |pi − pj| ≥
|qi − qj|. A (general) “Robin Hood operation” results from a finite sequence of elementary Robin
Hood operations.

Notice that in an elementary Robin Hood operation, the sum pi + pj = qi + qj should
remain the same, since p and q are probability distributions. The fact that |pi− pj| decreases
“increases equality”, i.e., makes the probabilities more equal. This can be written as follows:{

qi = pi − δ

qj = pj + δ
(40)

provided that |δ| ≤ |pi − pj| (“you don’t take too much from the rich and turn them into
poor”). Setting λ = 1− δ

pi−pj
∈ [0, 1], (40) can be easily rewritten in the form:

{
qi = λpi + λ̄pj

qj = λ̄pi + λpj
(41)

where λ ≥ 0, λ̄ ≥ 0 and λ + λ̄ = 1.

Remark 6 (Increasing Probability Product). In any elementary Robin Hood operation (pi, pj) 7→
(λpi + λ̄pj, λ̄pi + λpj), the product:

qiqj = (λpi + λ̄pj)(λ̄pi + λpj) = pi pj + λλ̄(pi − pj)
2 ≥ pi pj (42)
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always increases, with equality if and only if either λ = 0 or 1, or else pi = pj. This equality
condition boils down to |pi − pj| = |qi − qj|, that is, the unordered set {pi, pj} = {qi, qj}
is unchanged.

Therefore, in any general Robin Hood operation, the product of all modified probabilities always
increases, unless the probability distribution is unchanged (up to the order of the probabilities).

Remark 7 (Inverse Robin Hood Operation). One can also define a “Sheriff of Nottingham”
operation as an inverse Robin Hood operation, resulting from a finite sequence of elementary Sheriff
of Nottingham operations of the form (pi, pj) 7→ (qi, qj), where |pi − pj| ≤ |qi − qj|. Increasing
the quantity |pi − pj| “increases inequality”, i.e., makes the probabilities more unequal.

Definition 5 (Equalization Relation). We write X � Y (“X is equalized by Y”) if pY can be
obtained from pX by a Robin Hood operation. Such operation “equalizes” pX in the sense that pY
is “more equal” or “more uniform” than pX. In terms of distributions, we also write pX � pY.
Equivalently, pX can be obtained from pY by a Sheriff of Nottingham operation (pX is more unequal
than pY). We may also write Y � X or pY � pX .

Remark 8 (Generalization). The above definitions hold verbatim for any vector or finitely many
nonnegative numbers pk with a fixed sum s = ∑k pk (not necessarily equal to one). In the following,
we sometimes use the concept of “equalization” in this slightly more general context.

Remark 9 (Minorization). X � Y amounts to saying that pX “majorizes” pY in majorization
theory [28,29]. So, in fact, the equalization relation � is a “minorization”—the opposite of a
majorization. Unfortunately, it is common in majorization theory to write “Y � X” when X

“majorizes” Y, instead of X � Y when Y is “more equal” than X. Arguably, the notation adopted in
this paper is more convenient, since it follows the usual relation order between randomness measures
such as entropy.

Also notice that the present approach avoids the use of Lorenz order [28,29] and focuses on the
more intuitive Robin Hood operations.

Remark 10 (Partial Order). It is easily seen that � is a partial order on the set of (finitely
valued) discrete random variables (considering two variables “equal” if they are equivalent in the
sense of Definition 1). Indeed, reflexivity and transitivity are immediate from the definition, and
antisymmetry is, e.g., an easy consequence of Remark 6: if X � Y and Y � X, then the product of all
modified probabilities of X cannot increase by the two combined Robin Hood operations. Therefore,
pY should be the same as pX up to order; hence, X ≡ Y.

The following fundamental lemmas establish expressions for maximally equal and
unequal distributions.

Lemma 1 (Maximally Equal = Uniform). For any vector p = (p1, p2, . . . , pM) of nonnegative
numbers with sum s = ∑k pk:

p � (
s

M
,

s
M

, . . . ,
s

M
). (43)

In particular, any probability distribution p is equalized by the uniform distribution u:

p � u (44)

Proof. Suppose at least one component of p is 6= s
M . Since the pks sum to s, there should

be at least one pi >
s

M and one pj <
s

M . By a suitable Robin Hood operation on (pi, pj),
at least one of these two probabilities can be made = s

M , reducing the total number of
components 6= s

M . Continuing in this manner, we arrive at all probabilities equal to s
M after,

at most, M− 1 Robin Hood operations.
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Lemma 2 (Maximally Unequal). For any vector p = (p1, p2, . . . , pM) of nonnegative numbers
with sum s = ∑k pk and constrained maximum maxk pk ≤ P:

p � (P, . . . , P, r, 0, . . . , 0) (45)

with remainder component r = s − b s
P cP. Without the maximum constraint (P = s), one

simply has the following:
p � (s, 0, . . . , 0). (46)

In particular, for any probability distribution p:

p � δ (47)

where δ is the (Dirac) probability distribution of any deterministic variable. (This can be written in
terms of random variables as X � 0, since, by Defintion 1, any deterministic random variable is
equivalent to the constant 0.)

Proof. Suppose at least two components lie between 0 and P: 0 < pi, pj < P. By a suitable
Sheriff of Nottingham operation on (pi, pj), at least one of these two probabilities can be
made either = 0 or = P, reducing the number of components lying inside (0, P). Continuing
in this manner, we arrive at, at most, one component r ∈ (0, P). Finally, the sum constraint
implies s = qP + r where 0 < r < P, whence q = b s

P c.

Theorem 3 (Schur Concavity [28,29]).

X � Y =⇒ R(X) ≤ R(Y) (48)

Proof. It suffices to prove the inequality for an elementary Robin Hood operation (pi, pj) 7→
(λpi + λ̄pj, λ̄pi + λpj). Dropping the dependence on the other (fixed) probabilities, one
has, by symmetry, (Theorem 1) and concavity (Theorem 2):

R(pi, pj) = λR(pi, pj) + λ̄R(pj, pi) ≤ R(λpi + λ̄pj, λpj + λ̄pi). (49)

Inequality (48), expressed in terms of distributions:

pX � pY =⇒ R(pX) ≤ R(pY) (50)

is known as “Schur concavity” [28,29].

Remark 11. Theorem 3 can also be given a physical interpretation similar to Corollary 1. In fact,
from (41), any Robin Hood operation can be seen as mixing two permuted probability distributions,
which have equal randomness. Such mixing can only increase randomness.

Example 8 (Entropy is Schur-Concave). That the Shannon entropy is Schur-concave is well
known § 13 E in [29]. Similar to concavity (Example 5), this also has a similar physical interpre-
tation: a liquid mixed with another results in a “more disordered”, “more chaotic” system, which
results in a “more equal” distribution and a higher entropy § 1 A9 in [29].

Remark 12 (ϕ-Schur Concavity). Schur concavity is not equivalent to concavity (even when
assuming symmetry). In fact, with the notations of Remark 4, it is obvious that Schur concavity of
R is equivalent to Schur concavity of ϕ(R), where ϕ : R+ → R+ is any increasing function. In
other words, while “ϕ-concavity” (in the sense of Remark 4) is not the same as concavity, there is no
need to introduce “ϕ-Schur concavity”, since it is always equivalent to Schur concavity.
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Remark 13 (Strict Schur Concavity). A randomness measure R is “strictly Schur concave” if
the inequality R(X) ≤ R(Y) for X � Y holds with equality R(X) = R(Y) if and only if X ≡ Y.

If R(p) is strictly concave (see Remark 5), then equality holds in (49) if and only if either
λ = 0 or 1, or else pi = pj. Either of these conditions means that {pi, pj} is unchanged. Therefore,
in this case, R is also strictly Schur concave.

Remark 6 states that the product of nonzero probabilities is strictly Schur-concave.

Example 9 (Strictly Schur Concave Measures). Randomness measures presented in Section 1
are (Schur) concave, but not all of them are strictly Schur concave:

• Not only the Shannon entropy H is Schur concave (Example 8), but, as seen in Example 6,
H, as well as all α-entropies ϕα(Hα) for finite α > 0 and R2, are strictly concave and, hence,
strictly Schur concave;

• As seen also in Example 6, guessing entropy G, or, more generally, ρ-guessing entropy
Gρ, is not strictly concave in p. However, G and Gρ are strictly Schur concave by the
following argument.
It suffices to show that some elementary Robin Hood operation (40) (pi, pj) 7→ (pi− δ, pj + δ)
(with δ 6= 0) strictly increases Gρ. One may always choose δ as small as one pleases, since any
elementary Robin Hood operation on (pi, pj) can be seen as resulting from other ones on (pi, pj)
with smaller δ. One chooses δ small enough such that the elementary Robin Hood operation
does not change the order of the probabilities in p. With the notations of Section 1.2, assuming,
for example, that pi = p(i) > pj = p(j), where i < j, then δ > 0 and iρ p(i) + jρ p(j) <
iρ(p(i) − δ) + jρ(p(j) + δ), since jρ > iρ. This shows that Gρ strictly increases;

• Error probability Pe, or, more generally, Pm
e , is neither strictly concave nor strictly Schur

concave in general. In fact, if M ≥ m + 2, any elementary Robin Hood operation on pi, pj <
p(m) leaves Pm

e unchanged;
• Statistical randomness R is neither strictly concave nor strictly Schur concave if M > 2. For

example, it is easily checked from the definition (18) that the elementary Robin Hood operation
( 1

M , 2
M ) 7→ ( 4/3

M , 5/3
M ) leaves R unchanged.

2.4. Resulting Properties in Terms of Random Variables

Corollary 5 (Minimal and Maximal Randomness).

R(δ) ≤ R(X) ≤ R(u) (51)

In other words, minimal randomness is achieved for X = 0 (for any deterministic variable 0) and
maximal randomness is achieved for uniformly distributed X.

Proof. From Lemmas 1 and 2, one obtains δ � pX � u. The result follows by Theorem 3.

Remark 14 (Zero Randomness). Without loss of generality, we may always impose that R(0) = 0
by considering R(X)−R(0) in place of R(X). Then, zero randomness is achieved when X ≡ 0.
It is easily checked from the expressions given in Section 1 that this convention holds for H, Hα,
log G, log Gρ, Pe, Pm

e , R2 and R.
To simplify notations in the remainder of this paper, we assume that the zero randomness

convention R(0) = 0 always holds.

Example 10 (Distribution Achieving Zero Randomness). By Remark 13, if R is strictly Schur
concave, zero randomness is achieved only when X ≡ 0:

R(X) = 0 ⇐⇒ X ≡ 0. (52)

• As seen in Example 9, this is the case for H, Hα, log G, log Gρ and R2. In particular, we
recover the well known property that zero entropy is achieved only when X is deterministic;
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• Although the error probability is not strictly Schur concave, one can check directly that
Pe(p) = 0 if and only if p(1) = 1, which corresponds to the δ distribution;

• Similarly, from the discussion in Section 1.7, R(p) = 0 correspond to the maximum value of
∆(p, u) = 1− 1

M attained for K = |T+| = 1 and P(T+) = 1, which, again, corresponds to a
δ distribution.

To summarize, all quantities H, Hα, log G, log Gρ, Pe, R2 and R satisfy (52).

Remark 15 (Maximal Randomness Increases with M). For an M-ary random variable, maximal
randomness RM = R(uM) is attained for a uniform distribution uM = ( 1

M , 1
M , . . . , 1

M ). Since,
by Lemma 1, uM � uM+1, one has RM ≤ RM+1: maximal randomness RM increases with M.

Example 11 (Distribution Achieving Maximum Randomness). The following maximum
values for M-ary random variables are easily checked from the expressions given in Section 1:

• max H = H(u) = log M, and, more generally, max Hα = Hα(u) = log M. Since H and
Hα are strictly Schur-concave, the maximum Hα(X) = log M is attained if and only if X is
uniformly distributed. This observation is also an easy consequence of (10) or (11);

• max G = G(u) = M+1
2 , max G2 = G2(u) =

(M+½)(M+1)
3 , max G3 = G3(u) =

M(M+1)2

4 ,
etc. Again, since G and Gρ are strictly Schur-concave, their maximum is achieved if and only
if X is uniformly distributed;

• maxPe = Pe(u) = 1− 1
M , and, more generally, maxPm

e = Pm
e (u) = 1− m

M . The maximum
of Pe(X) is achieved if and only if the maximum probability p(1) equals 1

M , which implies that
X is uniformly distributed;

• max R2 = max R = 1− 1
M (see (12) and (18)) is achieved if and only if p = u.

To summarize, for all quantities H, Hα, log G, log Gρ, Pe, R2 and R, the unique maximizing
distribution is the uniform distribution. Notice that, as expected, each of these maximum values
increases with M.

Corollary 6 (Deterministic Data Processing Inequality: Processing Reduces Randomness).
For any deterministic function f :

R( f (X)) ≤ R(X). (53)

Proof. Consider preimages by f of values y = f (x). The application of f can be seen
as resulting from a sequence of elementary operations, each of which puts together two
distinct values of x (say, xi and xj) in the same preimage of some y. In terms of probability
distributions, this amounts to a Sheriff of Nottingham operation (pi, pj) 7→ (pi + pj, 0).
Overall, one has f (X) � X. The result then follows by Schur concavity (Theorem 3).

Example 12. The fact that H( f (X)) ≤ H(X) is well known (see Ex. 2.4 in [2]). This can also be
seen from the data processing inequality of Corollary 4 by noting that, since X− f (X)− f (X) is
trivially a Markov chain, H( f (X)) = I( f (X); f (X)) ≤ I(X; f (X)) ≤ H(X).

Remark 16 (Lattices of Information and Majorization). Shannon [26] defined the order relation
X ≤ Y if X = g(Y) a.s. and showed that it satisfies the properties of a lattice, called the “ìnformation
lattice” (see [30] for detailed proofs). With this notation, (53) writes as shown:

X ≤ Y =⇒ R(X) ≤ R(Y). (54)

Majorization (or the order relation X � Y) also satisfies the properties of a lattice—the “majorization
lattice”, as studied in [31]. From the proof of Corollary 6, one actually obtains the following:

X ≤ Y =⇒ X � Y =⇒ R(X) ≤ R(Y). (55)

Therefore, the majorization lattice is denser than the information lattice.
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Corollary 7 (Addition Increases Randomness).

R(X) � R(X, Y) (56)

This property is equivalent to (53).

Proof. Apply Corollary 6 to the projection f (x, y) = x. Conversely, (53) follows from (56),
by taking Y = f (X) and noting that (X, f (X)) ≡ X.

Corollary 8 (Total Dependence). Assuming the zero randomness convention (Remark 14), if (52)
holds, then the following holds:

R(X|Y) = 0 ⇐⇒ X = f (Y) a.s., (57)

that is, R(X|Y) = 0 ⇐⇒ X ≤ Y in the sense of Shannon (Remark 16).

Proof. Since R(X|y) ≥ 0 for any y, R(X|Y) = EyR(X|y) = 0 if and only if R(X|y) = 0
for (almost) all y. By (52), this implies that X is deterministic given Y = y, i.e., X is a
deterministic function of Y.

Example 13. From Example 10, (57) is true for H, Hα, log G, log Gρ, Pe, R2 and R.

• The equivalence H(X|Y) = 0 ⇐⇒ X = f (Y) a.s. is well known ([2], Ex. 2.5). Knowledge
of Y removes equivocation only when X is fully determined by Y;

• log G(X|Y) = 0 ⇐⇒ G(X|Y) = 1 ⇐⇒ X = f (Y) a.s. is intuitively clear: knowing Y
allows one to fully determine X in only one guess;

• Pe(X|Y) = 0 ⇐⇒ X = f (Y) a.s.: knowing Y allows one to estimate X without error only
when X is fully determined by Y.

3. Fano and Reverse-Fano Inequalities

Definition 6 (Fano-type inequalities). A “Fano inequality” (resp. “reverse Fano inequality”) for
R(X) gives an upper (resp. lower) bound of R(X) as a function of the probability of error Pe(X).
Fano and reverse-Fano inequalities are similarly defined for conditional randomness R(X|Y), lower
or upper bounded as a function of Pe(X|Y).

In this section, we establish optimal Fano and reverse-Fano inequalities, where upper
and lower bounds are tight. In other words, we determine the maximum and minimum
of R for fixed Pe. The exact locus of the region p ∈ PM 7→ (Pe(p),R(p)) = (Pe(X),R(X)),
as well as the exact locus of all attainable values of (Pe(X|Y),R(X|Y)), is determined
analytically for fixed M, based on the following.

Lemma 3. Let Pe = Pe(p) and Ps = 1− Pe. For any M-ary probability distribution p ∈ PM:

(Ps, . . . ,Ps︸ ︷︷ ︸
b 1
Ps
c times

, 1−b 1
Ps
cPs, 0, . . . , 0) � p � (Ps, Pe

M−1 , . . . , Pe
M−1 ). (58)

Proof. On the left side, apply Lemma 2 with P = max p = p(1) = Ps and s = 1. On the
right side, with p(1) = Ps being fixed, apply Lemma 1 to the M− 1 remaining probabilities
(p(2), . . . , p(M)), which sum to s = 1− Ps = Pe.

Theorem 4 (Optimal Fano and Reverse-Fano Inequalities for R(X)). The optimal Fano and
reverse-Fano inequalities for the randomness measure R(X) of any M-ary random variable X in
terms of Pe = Pe(X) are given analytically by the following:

R(1−Pe, . . . , 1−Pe, 1−b 1
1−Pe
c(1−Pe), 0, . . . , 0) ≤ R(X) ≤ R(1−Pe, Pe

M−1 , . . . , Pe
M−1 ). (59)
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Proof. The proof is immediate from Lemma 3 and Theorem 3. The Fano and reverse-Fano
bounds are achieved by the distributions on the left and right sides of (58), respectively.

A similar proof holding for any Schur concave R(X) was already given by Vajda and
Vašek [17].

Assuming the zero randomness convention for simplicity (Remark 14), Fano and
reverse-Fano bounds can be qualitatively described as follows. They are illustrated in
Figure 2.
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Figure 2. Typical upper Fano bounds (thin) for M = 2 to 16 and lower reverse-Fano bound for R(X)

(solid) and for R(X|Y) (dashed).

Proposition 1 (Shape of Fano Bounds). The (upper) Fano bound:

Pe ∈ [0, 1− 1
M ] 7→ R(1−Pe, Pe

M−1 , . . . , Pe
M−1 ) ∈ [0,RM] (60)

where RM denotes maximal randomness (Remark 15) is continuous in Pe > 0, concave in Pe and
increases from 0 (for Pe = 0) to RM (for Pe = 1− 1

M ). For any fixed Pe, it also increases with M.

Proof. Since R(p) ≥ 0 is concave over PM (Theorem 2), it is continuous on the interior
of PM. Since Pe 7→ (1−Pe, Pe

M−1 , . . . , Pe
M−1 ) is linear, the Fano bound results from the

composition of a linear and a concave function. It is, therefore, concave, and continuous at
every Pe > 0. It is clear from Lemma 3, or using a suitable Robin Hood operation, that the
maximizing distribution becomes more equal as Pe increases. Therefore, the Fano bound
increases with Pe. The maximum is attained for Pe = 1− 1

M , which corresponds to the
uniform distribution achieving maximum randomness RM. For fixed Pe, it is also clear,
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using a suitable Robin Hood operation, that the maximizing distribution becomes more
equal if M is increased by one. Therefore, the Fano bound also increases with M.

Proposition 2 (Shape of reverse-Fano Bounds). The (lower) reverse-Fano bound:

Pe ∈ [0, 1− 1
M ] 7→ R(1−Pe, . . . , 1−Pe, 1−b 1

1−Pe
c(1−Pe), 0, . . . , 0) ∈ [0,RM] (61)

is continuous in Pe > 0, increases from 0 (for Pe = 0) to RM (for Pe = 1− 1
M ) and is composed

of continuous concave increasing curves connecting successive points (Pe = 1− 1
k , R = Rk) for

k = 1, 2, . . . , M.

Proof. For any k ∈ {1, 2, . . . , M}, the reverse-Fano bound at Pe = 1− 1
k is R( 1

k , . . . , 1
k ) = Rk.

It suffices to prove that the reverse-Fano bound is continuous, concave and increasing for
1− 1

k ≤ Pe ≤ 1− 1
k+1 . When b 1

1−Pe
c = k, that is, 1− 1

k ≤ Pe < 1− 1
k+1 , the reverse-Fano

bound is R(1−Pe, . . . , 1−Pe, 1−k(1−Pe)). This results from the composition of a linear and
a concave function R(p), which is continuous in the interior of Pk. Therefore, it is concave
in Pe, and continuous on the whole closed interval [1− 1

k , 1− 1
k+1 ]. Finally, it is clear from

Lemma 2 or using a suitable Robin Hood operation that (1−Pe, . . . , 1−Pe, 1−k(1−Pe))
becomes more equal as Pe increases. Therefore, each curve increases from Rk to Rk+1.

Remark 17 (Independence of the reverse-Fano Bound from the Alphabet Size). Contrary to
the (upper) Fano bound, the (lower) reverse-Fano bound is achieved by a probability distribution
that does not depend on M. As a result, when the definition of R does not itself explicitly depend
on M (as is the case for H, Hα, G, Gρ, Pe, Pm

e , R2), the reverse-Fano bound is the same for all M,
except that it is truncated up to Pe = 1− 1

M , at which point it meets the (upper) Fano bound (see
Figure 2).

Theorem 5 (Optimal Fano and Reverse-Fano Inequalities for R(X|Y)). The optimal Fano
and reverse-Fano inequalities for the randomness measure R(X|Y) of any M-ary random variable
X in terms of Pe = Pe(X|Y) are given analytically by the following:

(� 1
Ps
�Ps − 1)b 1

Ps
cR
b 1
Ps
c
+ (1− b 1

Ps
cPs)� 1

Ps
�R
� 1
Ps
�
≤ R(X|Y) ≤ R(1−Pe, Pe

M−1 , . . . , Pe
M−1 ). (62)

where we have noted � x �= bxc+ 1 (� x � is the usual ceil function dxe, unless x is an integer),
Ps = 1− Pe and Rk = R( 1

k , . . . , 1
k ).

Proof. The Fano region for X|Y = y, i.e., the locus of the points (Pe(pX|y),R(pX|y)) for
each Y = y, is given by the inequalities (59). From the definition of conditional randomness,
the exact locus of points (Pe(X|Y),R(X|Y)) = Ey(Pe(pX|y),R(pX|y)) is composed of all
convex combinations of points in the Fano region, that is, its convex envelope. The extreme
points (Pe = 0,R = R1 = 0) and (Pe = 1− 1

M ,R = RM) are unchanged. The upper
Fano bound joining these two extreme points is concave by Proposition 1 and, therefore,
already belongs to the convex envelope. It follows that the upper Fano bound in (59)
remains the same, as given in (62). However, the lower reverse-Fano bound for R(X|Y)
is the convex hull of the lower bound in (59). By Proposition 2, it is easily seen to be the
piecewise linear curve joining all singular points (Pe = 1− 1

k , R = Rk) for k = 1, 2, . . . , M
(see Figure 2). A closed-form expression is obtained by noting that, when b 1

1−Pe
c = k, that

is, 1− 1
k ≤ Pe < 1− 1

k+1 , the equation of the straight line joining (1− 1
k , Rk) and (1− 1

k+1 ,
Rk+1) is ((k + 1)Ps − 1)kRk + (1− kPs)(k + 1)Rk+1. Plugging k = b 1

Ps
c and k + 1 =� 1

Ps
�

gives the lower reverse-Fano bound in (62).

Remark 18 (Shape of Fano and reverse-Fano bounds for Conditional Randomness). By
Theorem 5, the Fano inequality for the conditional version R(X|Y) takes the same form as for
R(X). In particular, it is increasing and concave in Pe(X|Y). Compared to that for R(X), the
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reverse-Fano bound for R(X|Y), however, is a piecewise linear convex hull. Clearly, it is still
continuous and increasing in Pe(X|Y), as illustrated in Figure 2. If the corresponding sequence of
slopes k(k + 1)(Rk+1 −Rk) is increasing in k, then the reverse-Fano bound for R(X|Y) is also
convex in Pe(X|Y).

Remark 19 (ϕ-Fano Bounds). If ϕ(R) is used instead of R, where ϕ is an increasing function (in
particular, to define conditional randomness as in Remark 4), then Theorem 4 and the (upper) Fano
bound of Theorem 5 can be directly applied to R. When ϕ is nonlinear, this may result in (upper)
Fano bounds that are no longer concave.

However, to obtain the reverse-Fano inequalities for R(X|Y), one has to apply Theorem 5 to
ϕ(R(X|Y)) and then apply the inverse function ϕ−1 to the left side of (62). When ϕ is nonlinear,
the resulting “reverse-Fano bound” for R(X|Y) will not be piecewise linear anymore. This is the
case, e.g., for conditional α-entropies (see Example 15 below).

Example 14 (Fano and reverse-Fano Inequalities for Entropy). For the Shannon entropy, the
optimal Fano inequality (right sides of (59) and (62)) takes the form:

H(X) ≤ h(Pe(X)) + Pe(X) log(M− 1) (63)

H(X|Y) ≤ h(Pe(X|Y)) + Pe(X|Y) log(M− 1) (64)

where h(Pe) = Pe log 1
Pe

+ (1− Pe) log 1
1−Pe

is the binary entropy function. Inequality (64) is
the original Fano inequality established in 1952 [22], which has become ubiquitous in information
theory and in statistics to relate equivocation to probability of error. Inequality (63) trivially follows,
in case of blind estimation (Y ≡ 0). That these inequalities are sharp is well known (see, e.g., [32]).

The optimal reverse-Fano inequality (left sides of (59) and (62) with Rk = log k) takes
the form:

H(X) ≥ φ(Ps(X)) = φ(1− Pe(X)) (65)

H(X|Y) ≥ φ̄(Ps(X|Y)) = φ̄(1− Pe(X|Y)) (66)

where

φ(x) = h
(
b 1

x cx
)
+ b 1

x cx logb 1
x c (67)

φ̄(x) =
(
� 1

x �x− 1
)
b 1

x c logb 1
x c+

(
1− b 1

x cx
)
� 1

x � log� 1
x � (68)

These two lower bounds were first derived by Kovalevsky [33] in 1965. Optimality was already
proven in [32].

Example 15 (Fano and reverse-Fano Inequalities for α-Entropy). By Remark 19, the optimal
Fano inequality for Hα(X) is obtained as the right side of (59), which gives the following:

Hα(X) ≤ 1
1−α log

(
(M− 1)1−αPe(X)α + Ps(X)α

)
. (69)

This was proven by Toussaint [34] for 0 < α < 1 and, independently, by Ben-Bassat and Raviv [35]
for α 6= 1.

Additionally, by Remark 19, the optimal Fano inequality for Hα(X|Y) is obtained by averaging
over Y the Fano upper bound of ϕα(Hα(X|y)), which is of the form φ(Pe(X|y)), where φ(x) =
sgn(1− α)

(
(M − 1)1−αxα + (1− x)α

)1/α, which is concave Lemma 1 in [36]. Therefore, the
optimal Fano inequality for Hα(X|Y) is likewise obtained as the right side of (62), which gives
the following:

Hα(X|Y) ≤ 1
1−α log

(
(M− 1)1−αPe(X|Y)α + Ps(X|Y)α

)
. (70)
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The optimal reverse-Fano inequality for Hα(X) is obtained as the left side of (59). By
Remark 19, Hα(X|Y) is obtained by applying ϕ−1

α (x) = α
1−α log(sgn(1− α)x) to the left side

of (62) for ϕα(Hα(X|Y)), where ϕα is given by (30). This gives the following:

Hα(X) ≥ φα(Ps(X)) = φα(1− Pe(X)) (71)

Hα(X|Y) ≥ φ̄α(Ps(X|Y)) = φ̄α(1− Pe(X|Y)) (72)

where

φα(x) =
1

1− α
log(b 1

x cx
α + (1− b 1

x cx)
α) (73)

φ̄α(x) =
α

1− α
log
((
� 1

x �x− 1
)
b 1

x c
1
α +

(
1− b 1

x cx
)
� 1

x �
1
α

)
(74)

Fano and reverse-Fano inequalities for Hα(X) and Hα(X|Y) were recently established by Sason
and Verdú [36].

Example 16 (Fano and reverse-Fano Inequalities for non collision R2). Theorem 4 readily
gives the optimal Fano region for R2(X):

1− b 1
Ps
cP2

s − (1− b 1
Ps
cPs)

2 ≤ R2(X) ≤ 1− P2
s (X)− P2

e (X)

M− 1
. (75)

This can also be easily deduced from (69) and (71) for α = 2 via (4). Fano and reverse-Fano
inequalities for R2(X) were first stated without proof in [7].

The optimal Fano region for R2(X|Y), however, cannot be directly deduced from that of
H2(X|Y), because a different kind of average over Y is involved. However, a direct application of
Theorem 5 with Rk = 1− 1

k gives the optimal Fano region:

Pe(X|Y) ≤ R2(X|Y) ≤ 1− P2
s (X|Y)− P2

e (X|Y)
M− 1

. (76)

Remarkably, the reverse-Fano inequality has a very simple form R2(X|Y) ≥ Pe(X|Y) (see Figure 3).

0

R2

Pe 0

R2

Pe

Figure 3. Optimal Fano regions for R2 vs. Pe. Solid: Fano region R2(X) vs. Pe(X). Dashed: Fano
region R2(X|Y) vs. Pe(X|Y). Left M = 4; right M = 32.

Example 17 (Fano and reverse-Fano Inequalities for Guessing Entropy). For guessing entropy
G, the Fano inequality is written as shown:

G(X) ≤ 1 +
M
2
Pe(X) (77)

G(X|Y) ≤ 1 +
M
2
Pe(X|Y) (78)

One obtains similarly G2 ≤ 1 + M
3 (M + 5

2 )Pe, G3 ≤ 1 + M
4 (M2 + 3M + 4)Pe, etc.

Due to the fact that Gρ(p) is linear in p, for fixed b 1
1−Pe
c = k, the reverse-Fano bound for

Gρ(X) is linear in Pe. It follows that the bound is already piecewise linear, with a sequence of slopes
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sk = k(k + 1)(Rk+1 −Rk) = k(1ρ + · · ·+ (k + 1)ρ)− (k + 1)(1ρ + · · ·+ kρ), which is easily
seen to be increasing. Therefore, the (lower) reverse-Fano bound is piecewise linear and convex and
coincides with its convex hull. In other words, the reverse-Fano inequality for Gρ(X) and Gρ(X|Y)
takes the same form:

Gρ(X) ≥ φρ(Ps(X)) = φρ(1− Pe(X)) (79)

Gρ(X|Y) ≥ φρ(Ps(X|Y)) = φρ(1− Pe(X|Y)). (80)

The following is easily determined from the left side of either (59) or (62):

φρ(x) = x(1ρ + · · ·+ b 1
x c

ρ) + (1− b 1
x cx)d

1
x e

ρ. (81)

For example, φ1(x) = (b 1
x c+ 1)(1− b 1

x c
x
2 ), such that the following occurs:

G(X) ≥ (b 1
Ps(X)

c+ 1)(1− b 1
Ps(X)

cPs(X)
2 ) (82)

G(X|Y) ≥ (b 1
Ps(X|Y) c+ 1)(1− b 1

Ps(X|Y) c
Ps(X|Y)

2 ). (83)

Fano and reverse-Fano inequalities for Gρ(X|Y) were recently established by Sason and Verdú [37].
As already shown in [27] for ρ = 1, the use of Schur concavity greatly simplifies the derivation.

Figure 4 shows some optimal Fano regions for H1/2(X), H(X), H2(X) and log G(X).
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Figure 4. Optimal Fano regions: Entropies (in bits) vs. error probability. Top row M = 4; bottom row
M = 32.

4. Pinsker and Reverse-Pinsker Inequalities

Pinsker and reverse-Pinsker inequalities relate some divergence measure (e.g., d(p‖q)
or dα(p‖q)) between two distributions to their statistical distance ∆(p, q). For simplicity,
even though we restrict ourselves to the divergence or distance to the uniform distribution
q = u, we still use the generic name “Pinsker inequalities”. Following the discussion
in Section 1.6, we adopt the following.

Definition 7 (Pinsker-type inequalities). A “Pinsker inequality” (resp. “reverse-Pinsker in-
equality”) for R(X) gives an upper (resp. lower) bound of R(X) as a function of the statistical
randomness R(X) (or statistical distance ∆(p, u)). Pinsker and reverse-Pinsker inequalities are
similarly defined for conditional randomness R(X|Y), lower or upper bounded as a function
of R(X|Y).
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In this Section, we establish optimal Pinsker and reverse-Pinsker inequalities, where
upper and lower bounds are tight. In other words, we determine the maximum and mini-
mum of R for fixed R (or fixed ∆). The exact locus of the region p ∈ PM 7→ (R(p),R(p)) =
(R(X),R(X)), as well as the exact locus of all attainable values of (R(X|Y),R(X|Y)) is
determined analytically for fixed M, based on the following.

Lemma 4. Let R = R(p) and ∆ = ∆(p, u) = 1− 1
M − R. For any M-ary probability distribution

p ∈ PM and any integer K such that

|{p > 1
M}| ≤ K ≤ |{p ≥ 1

M}|, (84)

where |A| denotes the cardinality of the set A, one has the following:

(∆ + 1
M , 1

M , . . . , 1
M︸ ︷︷ ︸

bMRc times

, R− bMRc
M , 0, . . . , 0) � p � ( 1

M + ∆
K , . . . , 1

M + ∆
K︸ ︷︷ ︸

K times

, 1
M−

∆
M−K , . . . , 1

M−
∆

M−K︸ ︷︷ ︸
M−K times

). (85)

Proof. Let T+ be defined as in (17) for a uniform distribution q = u. Then, K = |T+|
satisfies (84), and (16) gives ∆ = P(T+)− K

M . First, consider the largest K probabilities,
which are all ≥ 1

M and sum to P(T+) =
K
M + ∆. One obtains the following:

1
M + (∆, 0, . . . , 0) � (p(1), p(2), . . . , p(K)) � ( 1

M+ ∆
K , . . . , 1

M+ ∆
K ) (86)

where, on the right side, we have used Lemma 1 and, on the left side, we have used
Lemma 2, applied to (p(1) − 1

M , p(2) − 1
M , . . . , p(K) − 1

M ), which sum to ∆. Next, consider
the smallest M− K probabilities, which are all ≤ 1

M and sum to 1− P(T+) =
M−K

M − ∆.
One has the following:

( 1
M , . . . , 1

M , r, 0, . . . , 0) � (p(K+1), p(K+2), . . . , p(M)) � ( 1
M−

∆
M−K , . . . , 1

M−
∆

M−K ) (87)

where, on the right side, we have used Lemma 1 and, on the left side, we have used
Lemma 2 with P = 1

M . Combining (86) and (87) gives (85), where the remainder component
0 ≤ r < 1

M is computed so that the sum of probabilities on the left side equals one, which

gives r = (1− ∆)− bM(1−∆)c
M = R− bMRc

M .

Theorem 6 (Optimal Pinsker and Reverse-Pinsker Inequalities for R(X)). The optimal
Pinsker and reverse-Pinsker inequalities for the randomness measure R(X) of any M-ary random
variable X in terms of R = R(X) are given analytically as below:

R(1− R, 1
M , . . . , 1

M , R− bMRc
M , 0 . . .)≤R(X)≤max

K
R( 1

M + ∆
K , . . . , 1

M + ∆
K , 1

M−
∆

M−K , . . . , 1
M−

∆
M−K ) (88)

where ∆ = 1− 1
M−R and the maximum is over all integers 1 ≤ K ≤ bM(1− ∆)c = 1 + bMRc.

Proof. Apply Lemma 4 and Theorem 3. The Pinsker and reverse-Pinsker bounds are
achieved by the distributions on the left and right sides of (85), respectively. The best value
of K maximize the randomness R of the distribution on the right side of (85), with the
constraint 1

M−
∆

M−K ≥ 0, that is, K ≤ M(1− ∆).

Assuming the zero randomness convention for simplicity (Remark 14), Pinsker and
reverse-Pinsker bounds can be qualitatively described as follows. They are illustrated in
Figure 5.
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Figure 5. Typical lower and upper Pinsker bounds for M = 8. Some optimal values of K are given in
this example.

Proposition 3 (Shape of Pinsker Bounds). The (upper) Pinsker bound:

R ∈ [0, 1− 1
M ] 7→ max

K
R( 1

M+ ∆
K , . . . , 1

M+ ∆
K , 1

M−
∆

M−K , . . . , 1
M−

∆
M−K ) ∈ [0,RM] (89)

where ∆ = 1− 1
M−R and the maximum is over all integers 1 ≤ K ≤ bM(1− ∆)c = 1 + bMRc,

is increasing and piecewise continuous in each subinterval [ k
M , k+1

M ], (k = 0, . . . , M− 1), with
possible jump discontinuities at points k

M (k = 1, . . . , M− 2).

Proof. First, notice that the distributions ( 1
M + ∆

K , . . . , 1
M + ∆

K , 1
M−

∆
M−K , . . . , 1

M−
∆

M−K ) are
not necessarily comparable in terms of equalization (partial) order for different values of
K. It follows that, in general, the optimal value of K maximizing R( 1

M+ ∆
K , . . . , 1

M+ ∆
K , 1

M−
∆

M−K , . . . , 1
M−

∆
M−K ) depends not only on ∆ (or R), but also on the choice of the randomness

measure R.
However, for fixed K, ∆ 7→ ( 1

M + ∆
K , . . . , 1

M + ∆
K , 1

M−
∆

M−K , . . . , 1
M−

∆
M−K ) is linear. In

addition, since R(p) ≥ 0 is concave over PM (Theorem 2), it is continuous on the interior
of PM. Therefore, the bound R( 1

M+ ∆
K , . . . , 1

M+ ∆
K , 1

M−
∆

M−K , . . . , 1
M−

∆
M−K ) results from the

composition of a linear and a continuous concave function. It is, therefore, continuous and
concave over the domain K ≤ 1 + bMRc, that is, R ∈ [K−1

M , 1− 1
M ]. Also, it is clear, using a

suitable Robin Hood operation, that, for a fixed K, R( 1
M+ ∆

K , . . . , 1
M+ ∆

K , 1
M−

∆
M−K , . . . , 1

M−
∆

M−K ) is decreasing in ∆, and, therefore, increasing in R.
It follows that the (upper) Pinsker bound is a maximum of at most M increasing con-

tinuous concave functions, defined over intervals of the form [K−1
M , 1− 1

M ]. It is, therefore,
increasing over the entire interval [0, 1− 1

M ] and piecewise continuous in each subinterval
[ k

M , k+1
M ], with possible jumps at the endpoints (see Figure 5).
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Proposition 4 (Shape of reverse-Pinsker Bounds). The (lower) reverse-Pinsker bound:

R ∈ [0, 1− 1
M ] 7→ R(1− R, 1

M , . . . , 1
M , R− bMRc

M , 0 . . .) ∈ [0,RM] (90)

is continuous in R > 0, increases from 0 (for R = 0) to RM (for R = 1− 1
M ) and is composed

of continuous concave increasing curves connecting successive points (R = k
M , R = rk for

k = 0, 1, . . . , M− 1, where the following holds:

rk = R(1− k
M , 1

M , . . . , 1
M ). (91)

Proof. For fixed k = bMRc, that is, k
M ≤ R < k+1

M , the bound R(1− R, 1
M , . . . , 1

M , R−
k
M , 0 . . .) results from the composition of a linear and a concave function. It is, therefore,
concave, and continuous at every R > 0. It is clear, using a suitable Robin Hood operation
on (1− R, R− k

M ), that this bound increases with R on the subinterval [ k
M , k+1

M ]. For R = k
M ,

it equals R(1− k
M , 1

M , . . . , 1
M ) = rk, which is easily seen, using a suitable Robin Hood

operation, to be increasing with k, with maximum rM−1 = RM.

Theorem 7 (Optimal Pinsker and Reverse-Pinsker Inequalities for R(X|Y)). The optimal
Pinsker and reverse-Pinsker inequalities for the randomness measure R(X|Y) of any M-ary random
variable X in terms of R = R(X|Y) are given by the convex envelope of the Pinsker region
determined by (88). In particular, consider the following:

• If the (upper) Pinsker bound for R(X) is concave (with no discontinuities), then the same
optimal bound holds for R(X|Y) in terms of R(X|Y) = R = 1− 1

M − ∆:

R(X|Y) ≤ max
K

R( 1
M+ ∆

K , . . . , 1
M+ ∆

K , 1
M−

∆
M−K , . . . , 1

M−
∆

M−K ); (92)

• If the sequence rk − rk−1 (k = 1, . . . , M−1) is nondecreasing, where rk is defined by (91),
then the optimal (lower) reverse-Pinsker bound for R(X|Y) is given by the piecewise linear
function connecting points ( k

M , rk);
• If the sequence rk − rk−1 (k = 1, . . . , M−1) is nonincreasing, then the optimal (lower)

reverse-Pinsker bound for R(X|Y) writes as follows:

R(X|Y) ≥ RM −R0

1− 1/M
R(X|Y) +R0 (93)

where, as before: Rk = R( 1
k , . . . , 1

k ) and R0 = R(0).

Proof. The Pinsker region for X|Y = y, i.e., the locus of the points (R(pX|y),R(pX|y)) for
each Y = y, is given by the inequalities (88). From the definition of conditional randomness,
the exact locus of points (R(X|Y),R(X|Y)) = Ey(R(pX|y),R(pX|y)) is composed of all
convex combinations of points in the Pinsker region, that is, its convex envelope.

The extreme points (R = 0,R = R1 = 0) and (R = 1 − 1
M ,R = RM) are un-

changed. The upper Pinsker bound joining these two extreme points is piecewise concave
by Proposition 3 and, therefore, if continuous, already belongs to the convex envelope. It
follows, in this case, that the upper Pinsker bound in (88) remains the same, as given in (92).

The lower reverse-Pinsker bound for R(X|Y) is the convex hull of the lower bound
in (88). By Proposition 4, if the sequence rk − rk−1 is non nondecreasing, the piecewise
linear curve joining all singular points (R = k

M , R = rk) for k = 0, 1, . . . , M− 1) is convex
and already coincides with its convex hull. If, on the contrary, the sequence rk − rk−1 is
non nonincreasing, that piecewise linear curve is concave, and its convex hull is simply
the straight line joining the extreme endpoints (R = 0, R = r0 = R1 = 0) and (R = 1− 1

M ,
R = RM), which is given by (93).
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Remark 20 (ϕ-Pinsker Bounds). If ϕ(R) is used instead of R, where ϕ is an increasing func-
tion (in particular, to define conditional randomness as in Remark 4), then Theorem 6 can be
directly applied to R. When ϕ is nonlinear, this may result in (upper) Pinsker bounds that are no
longer concave.

However, to obtain the reverse-Pinsker inequalities for R(X|Y), one has to apply Theorem 7 to
ϕ(R(X|Y)) and then apply the inverse function ϕ−1 to (92). When ϕ is nonlinear, the resulting

“reverse-Pinsker bound” for R(X|Y) is no longer piecewise linear. This is the case, e.g., for conditional
α-entropies (see Example 19 below).

Example 18 (Pinsker and reverse-Pinsker Inequalities for Entropy). For the Shannon entropy,
the optimal Pinsker bounds of Theorem 6 are easily determined as shown:

(1− R) log
1

1− R
+ bMRc

M log M + (R− bMRc
M ) log

1

R− bMRc
M

≤ H(X) ≤

max
1≤K≤bM(1−∆)c

(
( K

M + ∆) log
1

1
M + ∆

K
+ (1− K

M − ∆) log
1

1
M −

∆
M−K

)
(94)

where R = R(X) and ∆ = 1− 1
M − R(X). The maximizing value of K depends on the value of ∆.

The lower bound was proven in implicit form in Thm. 3 in [38], while the upper bound was given
in Thm. 26 in [39].

Here, (91) is of the form rk = φ( k
M ), where φ(x) = (1− x) log 1

1−x + x log M is strictly
concave increasing for 0 ≤ x ≤ 1− 1

M . As a consequence, the sequence rk − rk−1 is decreasing
for k = 1, . . . , M− 1, and, by Theorem 7, the optimal reverse-Pinsker inequality for conditional
entropy is simply the following:

H(X|Y) ≥ M log M
M− 1

R(X|Y). (95)

Example 19 (Pinsker and reverse-Pinsker Inequalities for α-Entropy and for R2). By
Remark 20, the optimal Pinsker and reverse-Pinsker inequalities (88) for α-entropy Hα(X) are
given as below:

1
1−α log

(
(1− R)α + bMRc

Mα + (R− bMRc
M )α

)
≤ Hα(X) ≤

max
1≤K≤bM(1−∆)c

1
1−α log

(
K( 1

M + ∆
K )

α + (M− K)( 1
M −

∆
M−K )

α
)

(96)

where R = R(X) and ∆ = 1− 1
M − R(X). Again, the maximizing value of K depends on the

value of ∆.
For collision entropy (α = 2), since K( 1

M + ∆
K )

2 + (M− K)( 1
M −

∆
M−K )

2 = 1
M + M∆2

K(M−K)

achieves its minimum when the integer K is closest to M
2 , the optimal Pinsker and reverse-Pinsker

inequalities simplify to the following:

− log
(
(1− R)2 + bMRc

M2 + (R− bMRc
M )2) ≤ H2(X) ≤ − log

( 1
M + M∆2

K∗(M−K∗)

)
(97)

where K∗ = min(bM
2 c, bM(1− ∆)c). In terms of R2, the optimal Pinsker and reverse-Pinsker

inequalities read as shown:

1− (1− R)2 − bMRc
M2 − (R− bMRc

M )2 ≤ R2(X) ≤ 1− 1
M −

M∆2

K∗(M−K∗) . (98)



Entropy 2023, 25, 978 26 of 31

Since x(1− x) ≤ 1
4 , one always has K(M− K) ≤ K∗(M− K∗) ≤ M2

4 (maximum achieved
when K∗ = M

2 ), so that the (upper) Pinsker bound can be further bounded:

H2(X) ≤ log
M

1 + 4∆2 ,

R2(X) ≤ 1− 1 + 4∆2

M

(99)

This upper bound was derived by Shoup Thm 8.36 in [8] and was later re-derived in the Lemma in
4 [40]. This, however, is the optimal Pinsker bound only when K∗ = M

2 , that is, when M is even
and ∆ ≤ 1

2 (i.e., R ≥ 1
2 −

1
M ).

By Remark 20, to obtain the optimal reverse-Pinsker inequality for H2(X|Y), we consider
ϕ2(H2(X|Y)), where, from (30), ϕ2(x) = − exp(−x/2) and ϕ−1

2 (y) = −2 log(−y). For this
quantity, one has, from (91), rk = ϕ2(− log((1− k

M )2 + k
M2 )) of the form rk = φ( k

M ), where

φ(x) = −
√
(1− x)2 + x

M is strictly concave increasing for 0 ≤ x ≤ 1− 1
M . As a consequence,

the sequence rk − rk−1 is decreasing for k = 1, . . . , M− 1, and, by Theorem 7, the optimal reverse-
Pinsker bound for conditional 2-entropy is ϕ−1

2 (
ϕ2(log M)−ϕ2(0)

1−1/M R(X|Y) + ϕ2(0)), which gives the
optimal reverse-Pinsker inequality:

H2(X|Y) ≥ −2 log
(

1− R(X|Y)
1 + 1√

M

)
. (100)

For R2(X|Y), one has rk = 1− (1− k
M )2 − k

M2 = ψ( k
M ), where ψ(x) = (2− 1

M )x− x2

is strictly concave increasing for 0 ≤ x ≤ 1− 1
M . As a consequence, the sequence rk − rk−1 is

decreasing for k = 1, . . . , M − 1, and, since RM = 1− 1
M , by Theorem 7, the optimal reverse-

Pinsker inequality for R2(X|Y) is simply as below:

R2(X|Y) ≥ R(X|Y) (101)

(see Figure 6).

1/3 2/3

H2

R 1/3 2/3

R2

R

0.875

H2

R
0.875

R2

R

Figure 6. Optimal Pinsker regions: H2 (in bits) and R2 vs. statistical randomness R. Solid: Pinsker
region H2(X) (resp. R2(X)) vs. R(X). Dashed: Pinsker region H2(X|Y) (resp. R2(X|Y)) vs. R(X|Y).
Dash-dotted: Shoup’s upper bound (99). Top row M = 3; bottom row M = 8.
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Example 20 (Pinsker and reverse-Pinsker Inequalities for Guessing Entropy). For the guess-
ing entropy, the optimal Pinsker bounds of Theorem 6 are easily determined:

1 + (bMR(X)c+ 1)(R(X)− bMR(X)c
2M

) ≤ G(X) ≤ 1 +
MR(X)

2
. (102)

A notable property is that the optimal upper bound does not depend on the value of K. The upper
bound is mentioned by Pliam in [4] as an upper bound of ∆(p, u). The methodology of this paper,
based on Schur concavity, greatly simplifies the derivation.

For the conditional guessing entropy G(X|Y), observe that the upper Pinsker bound for G(X)

is linear (hence, concave) in R and that (91) is of the form rk = 1 + k(k+1)
2M , where the sequence

rk − rk−1 = k
M is increasing. Therefore, by Theorem 7, the optimal Pinsker region for conditional

entropy G(X|Y) is the same as for G(X):

1 + (bMR(X|Y)c+ 1)(R(X|Y)− bMR(X|Y)c
2M

) ≤ G(X|Y) ≤ 1 +
MR(X|Y)

2
. (103)

Figure 7 shows some optimal Pinsker regions for H1/2(X), H(X), H2(X) and log G(X).
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Figure 7. Optimal Pinsker regions: Entropies (in bits) vs. statistical randomness R. Top row M = 4;
bottom row M = 32.

Example 21 (Statistical Randomness vs. Probability of Error). As a final example, we present
the optimal regions of statistical randomness R vs. probability of error Pe. In this case, observe the
following from Definitions 6 and 7:

• The (optimal) Fano inequality for R is the same as the (optimal) reverse-Pinsker inequality for Pe;
• The (optimal) Pinsker inequality for Pe is the same as the (optimal) reverse-Fano inequality for R.

Letting R = R(X) and Ps = Ps(X), Theorem 4 readily gives the optimal Fano and reverse-
Fano inequalities:

1
2
(
1− 1

M − (Ps − 2
M )b 1

Ps
c −

∣∣1− b 1
Ps
cPs − 1

M

∣∣) ≤ R(X) ≤ Pe(X) (104)

while Theorem 6 gives the optimal Pinsker and reverse-Pinsker inequalities:

R(X) ≤ Pe(X) ≤ 1− 1
M −

∆
bM(1−∆)c =

R + bMRc − bMRc
M

1 + bMRc (105)

since the maximum of 1− 1
M −

∆
K in the right side of (88) is for maximum K = bM(1− ∆)c.
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Similarly, letting R = R(X|Y) and Ps = Ps(X|Y), Theorem 5 with Rk =
k−1
M readily gives

the optimal Fano and reverse-Fano inequalities:

(� 1
Ps
�Ps − 1)(b 1

Ps
c2−b 1

Ps
c) + (1− b 1

Ps
cPs)(� 1

Ps
�

2−� 1
Ps
�)

M
≤ R(X|Y) ≤ Pe(X|Y) (106)

while Theorem 7 gives the optimal Pinsker and reverse-Pinsker inequalities:

R(X|Y) ≤ Pe(X|Y) ≤ 1− 2
bMRc+2 + MR

(bMRc+1)(bMRc+2) (107)

where the upper bound is the piecewise linear function connecting points (Pe = 1− 1
k+1 , R = k

M )
for k = 0, 1, . . . , M− 1.

From the above observation, the left (reverse-Fano) inequality in (104) is equivalent to the right
(Pinsker) inequality in (105), and, similarly, the left (reverse-Fano) inequality in (106) is equivalent
to the right (Pinsker) inequality in (107), which do not seem obvious from the expressions above.
The optimal Fano/Pinsker region is illustrated in Figure 8.

0

R

Pe 0

R

Pe

Figure 8. Optimal Fano/Pinsker region for R vs. Pe. Solid: region R(X) vs. Pe(X). Dashed: region
R(X|Y) vs. Pe(X|Y). Left M = 4; right M = 32.

5. Some Applications

Fano and Pinsker inequalities find many applications in many areas of science; we only
mention a few. They have been applied in character recognition [33], feature selection [7],
Bayesian statistical experiments [17], statistical data processing [13], quantization [41],
hypothesis testing [36], entropy estimation [38], channel coding [42], sequential decod-
ing [11] and list decoding [36,43], lossless compression [37,43,44] and guessing [37,44],
knowledge representation [12], cipher security measures [4], hash functions [8], random-
ness extractors [40], information flow [18], statistical decision making [20] and side-channel
analysis [14,27,45]. Some of the various inequalities used for these applications are not
optimal (or not proven optimal) for various reasons (simplicity of the expressions, approxi-
mations, etc.). By contrast, the methodology of this paper always provides optimal direct
or reverse-Fano and -Pinsker inequalities.

6. Conclusions and Perspectives

We have derived optimal regions for randomness measures compared to either the
error probability or the statistical randomness (or the total variation distance). One per-
spective is to provide similar optimal regions relating two arbitrary randomness measures.
Of course, by (6), Fano regions such as Hα vs. Pe can be trivially reinterpreted as regions
Hα vs. H∞ (see, e.g., Figure 2 in [42] for the region H vs. H∞). Using some more involved
derivations, the authors of [46] have investigated the optimal regions H vs. H2 and, more
generally, the authors of [47,48] have investigated the optimal regions between two α-
entropies of different orders. It would be desirable to apply the methods of this paper to the
more general case of two arbitrary randomness measures. In particular, the determination
of the optimal regions Hα vs. Gρ will allow one to assess the sharpness of the “Massey-type”
inequalities of [5].

Catalytic majorization [49] was found to be a necessary and sufficient condition for
the increase of all Rényi entropies (including the ones with negative parameters α). It
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would be interesting to find similar necessary and sufficient conditions for other types of
randomness measures.

It is also possible to generalize the notion of entropies and other randomness quantities
with respect to an arbitrary dominating measure instead of the counting measure, e.g., to
extend the considerations of this paper from the discrete case to the continuous case. The
relevant notion of majorization in this more general context is studied, e.g., in [50].

Concerning Pinsker regions, another perspective is to extend the results of this paper
to the more general case of Pinsker and reverse-Pinsker inequalities, relating “distances”
of two arbitrary distributions p, q by removing the restriction that q = u is uniform. Some
results in this direction appear in [38,51–57].

Other types of inequalities on randomness measures with different constraints can
also be obtained via majorization theory [43,44].
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Abbreviations
The following abbreviations are used in this manuscript:

X ∼ p X follows the probability distribution p
H = H1 Shannon entropy
H2 collision entropy
H∞ min-entropy
Hα α-entropy
G = G1 guessing entropy
Gρ ρ-guessing moment
Pe probability of error
Pm

e error probability of order m
Ps = 1− Pe probability of success
R = R1 statistical randomness
∆ = 1− 1

M − R statistical distance to the uniform
R2 complementary index of coincidence
R any randomness measure
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