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Abstract. This paper presents a tutorial overview of so-called Pinsker
inequalities which establish a precise relationship between information
and statistics, and whose use have become ubiquitous in many informa-
tion theoretic applications. According to Stigler’s law of eponymy, no sci-
entific discovery is named after its original discoverer. Pinsker’s inequal-
ity is no exception: Years before the publication of Pinsker’s book in 1960,
the French medical doctor, geneticist, epidemiologist, and mathemati-
cian Marcel-Paul (Marco) Schützenberger, in his 1953 doctoral thesis,
not only proved what is now called Pinsker’s inequality (with the opti-
mal constant that Pinsker himself did not establish) but also the optimal
second-order improvement, more than a decade before Kullback’s deriva-
tion of the same inequality. We review Schûtzenberger and Pinsker con-
tributions as well as those of Volkonskii & Rozanov, Sakaguchi, McKean,
Csiszár, Kullback, Kemperman, Vajda, Bretagnolle & Huber, Krafft &
Schmitz, Toussaint, Reid & Williamson, Gilardoni, as well as the optimal
derivation of Fedotov, Harremoës, & Topsøe.

Keywords: Pinsker inequality · Total variation · Kullback-Leibler
divergence · Statistical Distance · Mutual Information · Data
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1 Introduction

How far is one probability distribution from another? This question finds many
different answers in information geometry, statistics, coding and information
theory, cryptography, game theory, learning theory, and even biology or social
sciences. The common viewpoint is to define a “distance” ∆(p, q) between prob-
ability distributions p and q, which should at least satisfy the basic property
that it is nonnegative and vanishes only when the two probability distributions
coincide: p = q in the given statistical manifold [1].

Strictly speaking, distances ∆(p, q) should also satisfy the two usual require-
ments of symmetry ∆(p, q) = ∆(q, p) and triangle inequality ∆(p, q)+∆(q, r) ≥
∆(p, r). In this case the probability distribution space becomes a metric space.
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Examples include the Lévy-Prokhorov and the Fortet-Mourier (a.k.a. “Wasser-
stein” or Kantorovich-Rubinstein) distances (which metrize the weak conver-
gence or convergence in distribution), the (stronger) Kolmogorov-Smirnov dis-
tance (which metrizes the uniform convergence in distribution), the Radon dis-
tance (which metrizes the strong convergence), the Jeffreys (a.k.a. Hellinger1)
distance, and many others2.

In this paper, we focus on the total variation distance, which is one of the
strongest among the preceding examples. Arguably, it is also the simplest—as
a L1-norm distance—and the most frequently used in applications, particularly
those related to Bayesian inference.

In many information theoretic applications, however, other types of “dis-
tances,” that do not necessarily satisfy the triangle inequality, are often pre-
ferred. Such “distances” are called divergences D(p, q). They may not even satisfy
the symmetry property: In general, D(p, q) is the divergence of q from p, and
not “between p and q”3. Examples include the Rényi α-divergence, the Bhat-
tacharyya divergence (a variation of the Jeffreys (Hellinger) distance), Lin’s
“Jensen-Shannon” divergence, the triangular divergence, Pearson’s χ2 diver-
gence, the “Cauchy-Schwarz” divergence, the (more general) Sundaresan diver-
gence, the Itakura-Saito divergence, and many more.

In this paper, we focus on the Kullback-Leibler divergence4, historically the
most popular type of divergence which has become ubiquitous in information
theory. Two of the reasons of its popularity are its relation to Shannon’s entropy
(the Kullback-Leibler divergence is also known as the relative entropy); and the
fact that it tensorizes nicely for products of probability distributions, expressed
in terms of the sum of the individual divergences5 (which give rise to useful chain
rule properties).

1 What is generally known as the “Hellinger distance” was in fact introduced by Jeffreys
in 1946. The Hellinger integral (1909) is just a general method of integration that
can be used to define the Jeffreys distance. The Jeffreys (“Hellinger”) distance should
not be confused with the “Jeffreys divergence”, which was studied by Kullback as a
symmetrized Kullback-Leibler divergence (see below).

2 Some stronger types of convergence can also be metrized, but by distances between
random variables rather than between distributions. For example, the Ky Fan dis-
tance metrizes the convergence in probability.

3 Evidently, such divergences can always be symmetrized by considering
(
D(p, q) +

D(q, p)
)
/2 instead of D(p, q).

4 Two fairly general classes of divergences are Rényi’s f -divergences and the Bregman
divergences. Some (square root of) f -divergences also yield genuine distances, like
the Jeffreys (Hellinger) distance or the square root of the Jensen-Shannon divergence.
It was recently shown that the Kullback-Leibler divergence is the only divergence
that is both a f -divergence and a Bregman divergence [13].

5 Incidentally, this tensorization property implies that the corresponding divergence
is unbounded, while, by contrast, most of the above examples of distances (like the
total variation distance) are bounded and can always be normalized to assume values
between 0 and 1.
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A Pinsker-type inequality can be thought of as a general inequality of the
form

D ≥ ϕ(∆) (1)

relating divergence D = D(p, q) to distance ∆ = ∆(p, q) and holding for any
probability distributions p and q. Here ϕ(x) should assume positive values for
x > 0 with ϕ(0) = 0 in accordance with the property that both D(p, q) and
∆(p, q) vanish only when p = q. Typically ϕ is also increasing, differentiable,
and often convex. Any such Pinsker inequality implies that the topology induced
by D is finer6 than that induced by ∆. Many Pinsker-type inequalities have been
established, notably between f -divergences.

In this paper, we present historical considerations of the classical Pinsker
inequality whereD is the Kullback-Leibler divergence and ∆ is the total variation
distance. This inequality is by far the most renowned inequality of its kind, and
finds many applications, e.g., in statistics, information theory, and computer
science. Many considerations in this paper, however, equally apply to other types
of distances and divergences.

2 Preliminaries

Notations. We assume that all considered probability distributions over a given
measurable space (Ω,A) admit a σ-finite dominating measure µ, with respect
to which they are absolutely continuous. This can always be assumed when
considering finitely many distributions. For example, p and q admit µ = (p+q)/2
as a dominating measure since p " µ and q " µ. By the the Radon-Nikodym
theorem, they admit densities with respect to µ, which we again denote by p
and q, respectively. Thus for any event7 A ∈ A, p(A) =

∫
A pdµ =

∫
A p(x) dµ(x),

and similarly for q. Two distributions p, q are equal if p(A) = q(A) for all A ∈ A,
that is, p = q µ-a.e. in terms of densities.

If µ is a counting measure, then p is a discrete probability distribution with∫
A pdµ =

∑
x∈A p(x); if µ is a Lebesgue measure, then p is a continuous prob-

ability distribution with
∫
A pdµ =

∫
A p(x) dx. We also consider the important

case where p and q are binary (Bernoulli) distributions with parameters again
denoted p and q, respectively. Thus for p ∼ B(p) we have p(x) = p or 1− p. This
ambiguity in notation should be easily resolved from the context.

Distance. The total variation distance ∆(p, q) can be defined in two different
ways. The simplest is to set

∆(p, q) ! 1
2

∫
|p − q|dµ, (2)

6 If, in addition, a reverse Pinsker inequality ∆ ≥ ψ(D) holds, then the associated
topologies are equivalent.

7 This is an overload in notations and one should not confuse p({x}) with p(x).
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that is, half the L1(µ)-norm of the difference of densities. It is important to note
that this definition does not depend on the choice of the dominating measure
µ. Indeed, if µ " µ′, with density dµ

dµ′ = f , then the densities w.r.t. µ′ become
p′ = pf and q′ = qf so that

∫
|p′ − q′|dµ′ =

∫
|p − q|dµ.

That ∆ is a distance (metric) is obvious from this definition. Since
∫
(p −

q) dµ = 0, we can also write ∆(p, q) =
∫
(p − q)+ dµ =

∫
(p − q)− dµ (positive

and negative parts) or ∆(p, q) =
∫
p ∨ q dµ − 1 = 1 −

∫
p ∧ q dµ in terms of

the maximum and minimum. The normalization factor 1/2 ensures that 0 ≤
∆(p, q) ≤ 1, with maximum value ∆(p, q) = 1 −

∫
p ∧ q dµ = 1 if and only if

p∧ q = 0 µ-a.e., that is, p and q have “non-overlapping” supports. Note that the
total variation distance between binary distributions B(p) and B(q) is simply

δ(p, q) = |p − q|. (3)

The alternate definition of the total variation distance is to proceed from the
discrete case to the general case as follows. One can define

∆(p, q) ! 1
2
sup

∑

i

|p(Ai) − q(Ai)|, (4)

where the supremum is taken all partitions of Ω into a countable number of (dis-
joint) Ai ∈ A. When Ω ⊂ R, this supremum can simply be taken over partitions
of intervals Ai, and (apart from the factor 1/2) this exactly corresponds to the
usual notion of total variation of the corresponding cumulative distribution f of
the signed measure p − q. This is a well-known measure of the one-dimensional
arclength of the curve y = f(x), introduced by Jordan in the 19th century, and
justifies the name “total variation” given to ∆.

That the two definitions (2) and (4) coincide can easily be seen as follows.
First, by the triangular inequality, the sum

∑
i |p(Ai) − q(Ai)| in (4) can only

increase by subpartitioning, hence (4) can be seen as a limit for finer and finer
partitions. Second, consider the subpartition A+

i = Ai ∩ A+, A−
i = Ai ∩ A−,

where, say, A+ = {p > q} and A− = {p ≤ q}. Then the corresponding sum
already equals

∑
i(p−q)(A+

i )+(q−p)(A−
i ) = (p−q)(

∑
i A

+
i )+(q−p)(

∑
i A

−
i ) =

(p − q)(A+) + (q − p)(A−) =
∫
(p − q)+ + (p − q)− dµ =

∫
|p − q|dµ.

As a side result, the supremum in (4) is attained for binary partitions
{A+, A−} of the form {A,A!}, so that ∆(p, q) = 1

2 sup
(
|p(A)− q(A)|+ |p(A!)−

q(A!)|
)
, that is,

∆(p, q) = sup
A

|p(A) − q(A)| (5)

(without the 1/2 factor). This important property ensures that a sufficiently
small value of ∆(p, q) implies that no statistical test can effectively distinguish
between the two distributions p and q. In fact, given some observation X follow-
ing either p (null hypothesis H0) or q (alternate hypothesis H1), such a statistical
test takes the form “is X ∈ A?” (then accept H0, otherwise reject it). Then since
|p(X ∈ A)−q(X ∈ A)| ≤ ∆ is small, type-I or type-II errors have total probabil-
ity p(X +∈ A)+q(X ∈ A) ≥ 1−∆. Thus in this sense the two hypotheses p and q
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are ∆-undistinguishable. For the case of independent observations we are faced
with the evaluation of the total variation distance for products of distributions.
In this situation, Pinsker’s inequality is particularly useful since it relates it to
the Kullback-Leibler divergence which nicely tensorizes, thus allowing a simple
evaluation.

Divergence. The Kullback-Leibler divergence [19], also known as statistical
divergence, or simply divergence, can similarly be defined in two different ways.
One can define

D(p‖q) !
∫

p log
p

q
dµ, (6)

where since x log x ≥ −(log e)/e, the negative part of the integral is finite8.
Therefore, this integral is always meaningful and can be finite, or infinite = +∞.
Again note that this definition does not depend on the choice of the dominating
measure µ. Indeed, if µ " µ′, with density dµ

dµ′ = f , then the densities w.r.t. µ′

become p′ = pf and q′ = qf so that
∫
p′ log p′

q′ dµ′ =
∫
p log p

q dµ.
By Jensen’s inequality applied to the convex function x log x, D(p‖q) is non-

negative and vanishes if only if the two distributions p and q coincide. For prod-
ucts of distributions p =

⊗
i pi, q =

⊗
i qi, it is easy to establish the useful

tensorization property D(p‖q) =
∑

i D(pi‖qi). The divergence between binary
distributions B(p) and B(q) is simply

d(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
. (7)

The double bar notation ‘‖’ (instead of a comma) is universally used but may
look exotic. Kullback and Leibler did not originate this notation in their seminal
paper [19]. They rather used I(1 : 2) for alternatives p1, p2 with a semi colon
to indicate non commutativity. Later the notation I(P |Q) was used but this
collides with the notation ‘|’ for conditional distributions. The first occurence of
the double bar notation I could find was by Rényi in the form I(P‖Q) in the
same paper that introduced Rényi entropies and divergences [27]. This notation
was soon adopted by researchers of the Hungarian school of information theory,
notably Csiszár (see, e.g., [5–7]).

The alternate definition of divergence is again to proceed from the discrete
case to the general case as follows. One can define

D(p‖q) ! sup
∑

i

p(Ai) log
p(Ai)
q(Ai)

(8)

where the supremum is again taken all partitions of Ω into a countable number
of (disjoint) Ai ∈ A. By the log-sum inequality, the sum

∑
i p(Ai) log p(Ai)

q(Ai)
in (8)

can only increase by subpartitioning, hence (8) can be seen as a limit for finer and
finer partitions. Also, when Ω ⊂ R or Rd, this supremum can simply be taken
8 The logarithm (log) is considered throughout this paper in any base.
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over partitions of intervals Ai (this is the content of Dobrushin’s theorem [24,
§ 2]). That the two definitions (6) and (8) coincide (in particular when (8) is
finite, which implies p " q) is the content of a theorem by Gel’fand & Yaglom [10]
and Perez [23].

Statistical Distance and Mutual Information. How does some observation
Y affect the probability distribution of some random variable X? This can be
measured as the distance or divergence of X from X given Y , averaged over
the observation Y . Using the total variation distance, one obtains the notion of
statistical distance between the two random variables:

∆(X;Y ) = Ey ∆(pX|y, pX) = ∆(pXY , pX ⊗ pY ), (9)

and using the statistical divergence, one obtains the celebrated mutual informa-
tion9:

I(X;Y ) = Ey D(pX|y‖pX) = D(pXY , ‖pX ⊗ pY ) (10)
introduced by Fano [8], based on Shannon’s works. From these definitions, it
follows that any Pinsker inequality (1) can also be interpreted as an inequality
relating statistical distance ∆ = ∆(X;Y ) to mutual information I = I(X;Y ):

I ≥ ϕ(∆) (11)

for any two random variablesX and Y , with the same ϕ as in (1). In particular, in
terms of sequences of random variables, I(Xn;Yn) → 0 implies ∆(Xn;Yn) → 0,
a fact first proved by Pinsker [24, §2.3].

Binary Reduction of Pinsker’s Inequality. A straightforward observation,
that greatly simplifies the derivation of Pinsker inequalities, follows from the
alternative definitions (4) and (8). We have seen that the supremum in (4) is
attained for binary partitions of the form {A,A!}. On the other hand, the supre-
mum in (8) is obviously greater then that for such binary partitions. Therefore,
any Pinsker inequality (1) is equivalent to the inequality expressed in term of
binary distributions (3), (7):

d ≥ ϕ(δ) (12)
relating binary divergence d = d(p‖q) to binary distance δ = |p− q| and holding
for any parameters p, q ∈ [0, 1]. Thus, the binary case, which writes

p log
p

q
+ (1 − p) log

1 − p

1 − q
≥ ϕ(|p − q|) (13)

is equivalent to the general case, but is naturally easier to prove. This binary
reduction principle was first used by Csiszár [6] but as a consequence of a more
general data processing inequality for any transition probability kernel (whose
full generality is not needed here).
9 Here, the semicolon “;” is often used to separate the variables. The comma “,” rather
denotes joint variables and has higher precedence than “;” as in I(X;Y,Z) which
denotes the mutual information between X and (Y,Z).
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Comparison of Pinsker Inequalities. The following is sometimes useful to
compare two different Pinsker inequalities (1) of the form D ≥ ϕ1(∆) and
D ≥ ϕ2(∆) where both ϕ1 and ϕ2 are nonnegative differentiable functions such
that ϕ1(0) = ϕ2(0) = 0. By comparison of derivatives, ϕ′

1 ≥ ϕ′
2 implies that

D ≥ ϕ1(∆) ≥ ϕ2(∆). This comparison principle can be stated as follows: lower
derivative ϕ′ implies weaker Pinsker inequality.

3 Pinsker and Other Authors in the 1960s

It is generally said that Pinsker, in his 1960 book [24], proved the classical Pinsker
inequality in the form

D ≥ c · log e · ∆2 (14)

with a suboptimal constant c, and that the optimal (maximal) constant c = 2
was later found independently by Kullback [20], Csiszár [6] and Kemperman [16],
hence the alternative name Kullback-Csiszár-Kemperman inequality.

In fact, Pinsker did not explicitly state Pinsker’s inequality in this form,
not even in the general form (1) for some other function ϕ. First of all, he
only investigated mutual information vs. statistical distance with p = pX,Y and
q = pX ⊗pY —yet his results do easily carry over to the general case of arbitrary
distributions p and q. More important, he actually showed two separate inequal-
ities10 ∆ ≤

∫
p| log p

q |dµ ≤ D+10
√
D with a quite involved proof for the second

inequality11 [24, pp. 14–15]. As noticed by Verdú [34], since one can always
assume ∆ ≤ D + 10

√
D ≤ 1 (otherwise the inequality is vacuous), then two

Pinsker inequalities imply ∆2 ≤ (D+10
√
D)2 = D(D+20

√
D)+100D ≤ 102D

which indeed gives (14) with the suboptimal constant c = 1
102 . But this was

nowhere mentioned in Pinsker’s book [24].
The first explicit occurrence of a Pinsker inequality of the general form (1)

occurs even before the publication of Pinsker’s book, by Volkonskii and
Rozanov [35, Eq. (V)] in 1959. They gave a simple proof of the following inequal-
ity:

D ≥ 2 log e · ∆ − log(1 + 2∆). (15)

It is easily checked, from the second-order Taylor expansion of ϕ(x) = 2 log e ·
x− log(1 + 2x), that this inequality is strictly weaker than the classical Pinsker
inequality (14) with the optimal constant c = 2, although both are asymptoti-
cally optimal near D = ∆ = 0.

The first explicit occurrence of a Pinsker inequality of the classical form (14)
appeared as an exercise in Sakaguchi’s 1964 book [28, pp. 32–33]. He proved
D ≥ H2 log e ≥ ∆2 log e where H is the Hellinger distance, which gives (14)
with the suboptimal constant c = 1. Unfortunately, Sakaguchi’s book remained
unpublished.
10 In nats (natural units), that is, when the logarithm is taken to base e.
11 Decades later, Barron [2, Cor. p. 339] proved this second inequality (with the better

constant
√
2 instead of 10) as an easy consequence of Pinsker’s inequality itself with

the optimal constant c = 2.
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The first published occurence of a Pinsker inequality of the classical form (14)
was by McKean [22, § 9a)] in 1966, who was motivated by a problem in physics
related to Boltzmann’s H-theorem. He proved (14) with the suboptimal constant
c = 1

e (worse than Sakaguchi’s) under the (unnecessary) assumption that q is
Gaussian.

The first mention of the classical Pinsker inequality (14) with the optimal
constant c = 2 was by Csiszár [5], in a 1966 manuscript received just one month
after McKean’s. In his 1966 paper, however, Csiszár only proved (14) with the
suboptimal constant c = 1

4 [5, Eq. 13], which is worse than McKean’s. But he also
acknowledged the preceding result of Sakaguchi (with the better constant c = 1)
and stated (without proof) that the best constant is c = 2. He also mentioned
the possible generalization to f -divergences. On this occasion he credited Pinsker
for having found an inequality of the type (14) (which as we have seen was only
implicit).

The first published proof of the classical Pinsker inequality (14) with the opti-
mal constant c = 2 was again by Csiszár one year later [6, Thm. 4.1] using binary
reduction. His proof can be written as a one-line proof as follows:

d(p‖q) = d(p‖p)︸ ︷︷ ︸
=0

+
∫ q

p

∂d(p‖r)
∂r

dr =
∫ q

p

r − p

r(1 − r)
dr ≥ 4

∫ q

p
(r − p) dr = 2(p − q)2,

(16)
where we used natural logarithms and the inequality r(1 − r) ≤ 1

4 for r ∈ [0, 1].
That c = 2 is not improvable follows from the expansion d(p‖q) = 2(p − q)2 +
o((p − q)2), which also shows that this inequality (like the Volkonskii-Rozanov
inequality (15)) is asymptotically optimal near D = ∆ = 0.

In a note added in proof, however, Csiszár mentions an earlier independent
derivation of Kullback, published in the same year 1967 in [20], with an improved
inequality of the form D ≥ 2 log e · ∆2 + 4

3 log e · ∆4. In his correspondance,
Kullback acknowledged the preceding result of Volkonskii and Rozanov. Unfor-
tunately, as Vajda noticed [33] in 1970, the constant 4

3 is wrong and should be
corrected as 4

9 [21] (see explanation in the next section).
Finally, in an 1968 Canadian symposium presentation [15]—later published

as a journal paper [16] in 1969, Kemperman, apparently unaware of the 1967
papers by Csiszár and Kullback, again derived the classical Pinsker inequality
with optimal constant c = 2. His ad-hoc proof (repeated in the renowned text-
book [32]) is based in the inequality 4+2x

3 (x log x − x + 1) ≥ (x − 1)2, which is
much less satisfying than the one-line proof (16).

To acknowledge all the above contributions, it is perhaps permissible
to rename Pinsker’s inequality as the Volkonskii-Rozanov-Sakaguchi-McKean-
Csiszár-Kullback-Kemperman inequality. However, this would unfairly obliterate
the pioneer contribution of Schützenberger, as we now show.

4 Schützenberger’s Contribution (1953)

Seven years before the publication of Pinsker’s book, the French medical doctor,
geneticist, epidemiologist, and mathematician Marcel-Paul (Marco) Schützen-
berger, in his 1953 doctoral thesis [29] (see Fig. 3), proved:
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D ≥ 2 log e · ∆2 +
4
9
log e · ∆4 (17)

Not only does this contain the classical Pinsker inequality (14) with the opti-
mal constant c = 2, but also the second-order improvement, with the (correct)
optimal constant 4

9 for the second-order term, seventeen years before Kullback!
Admittedly, Schützenberger only considered the binary case, but due to the
binary reduction principle, this does not entail any loss of generality.

Fig. 1. Left: Pinsker before Pinsker: In Schützenberger’s notation, W is for Wald’s
information, which is Kullback-Leibler divergence, and D = p − q. There is a typo at
the end: minimizing x2 + 2xy + 3y2 for fixed 2D = y − x is said to give D2

3 instead of
the correct 4D2

3 . Right: Marcel-Paul (Marco) Schützenberger at his first marriage, in
London, Aug. 30th, 1948.

In fact, leaving aside the use of binary reduction, Kullback’s derivation [20] is
just a mention of Schützenberger’s inequality with the wrong constant 4

3 instead
of 4

9 . However, Vajda [33] asserts that the wrong constant comes from Schützen-
berger’s manuscript itself, and that it was corrected in 1969 by Krafft [17]. In
fact, Krafft does not refer to Schützenberger’s thesis but rather to a 1966 paper
by Kambo and Kotz [14] which contains a verbatim copy of Schützenberger’s
derivation (with the wrong constant and without citing the initial reference).
While the correct constant 4

9 does appear in the publicly available manuscript
of Schützenberger (Fig. 3), it is apparent from the zooming in of Fig. 2 that the
denominator was in fact carefully corrected by hand from a “3” to a “9”. It is
likely that the correction in Schützenberger’s manuscript was made after 1970,
when the error was discovered.
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Fig. 2. Schützenberger’s correction from “3” to “9”: the correction clearly follows the
shape of a “3” in the original manuscript.

Nevertheless, Schützenberger’s derivation is correct and gives the best con-
stants 2 and 4/9 in (17) as an easy consequence of his identity

d =
∑

k≥1

x2k − 2kxy2k−1 + (2k − 1)y2k

2k(2k − 1)
= 2δ2

∑

k≥1

x2k−2 + 2x2k−3y + · · ·+ (2k − 1)y2k−2

k(2k − 1)

(18)
where x = 1 − 2p and y = 1 − 2q (see Fig. 1). In 1969, Krafft and Schmitz [18]
extended Schützenberger’s derivation by one additional term in 2

9 log e·∆
6, which

was converted into a Pinsker inequality in 1975 by Toussaint [31]. But, in fact,
the constant 2

9 is not optimal; the optimal constant 32
135 was found in 2001 by

Topsøe [30]. Topsøe also derived the optimal constant for the additional term
7072
42525 log e ·∆

8, whose proof is given in [9]. It is quite remarkable that all of such
derivations are crucially based on the original Schützenberger’s identity (18).

5 More Recent Improvements (1970s to 2000s)

So far, all derived Schützenberger-Pinsker inequalities are only useful when D
and ∆ are small, and become uninteresting as D or ∆ increases. For example,
the classical Pinsker inequality (14) with optimal constant c = 2 become vacuous
as soon as D > 2 log e (since ∆ ≤ 1). Any improved Pinsker inequality of the
form (1) should be such that ϕ(1) = +∞ because ∆(p, q) = 1 (non overlapping
supports) implies D(p‖q) = +∞.

The first Pinsker inequality of this kind is due to Vajda in his 1970 paper [33].
He explicitly stated the problem of finding the optimal Pinsker inequality and
proved

D ≥ log
1 + ∆

1 − ∆
− 2 log e · ∆

1 + ∆
. (19)

where the lower bound becomes infinite as ∆ approaches 1, as it should. This
inequality is asymptotically optimal near D = ∆ = 0 since log 1+∆

1−∆ − 2 log e ·
∆

1+∆ = 2 log e · ∆2 + o(∆2).
In a 1978 French seminar, Bretagnolle and Huber [3,4] derived yet another

Pinsker inequality similar to Vajda’s (where the lower bound becomes infinite
for ∆ = 1) but with a simpler expression:

D ≥ log
1

1 − ∆2
. (20)
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By the comparison principle, for natural logarithms and 0 < ∆ < 1,
d
d∆ log 1

1−∆2 = 2∆
1−∆2 < 4∆

(1+∆)(1−∆2) = d
d∆

(
log 1+∆

1−∆ − 2∆
1+∆

)
always, since

1 + ∆ < 2. Therefore, the Bretagnolle-Huber inequality (20) is strictly weaker
than Vajda’s inequality (19). Moreover, it is not asymptotically optimal near
D = ∆ = 0 since log 1

1−∆2 ∼ log e · ∆2 is worse than the asymptotically opti-
mal 2 log e · ∆2. However, a nice property of the Bretagnolle-Huber inequality
is that it can be inverted in closed form. In fact the authors expressed it as12
∆ ≤

√
1 − exp(−D).

The Bretagnolle-Huber inequality was popularized by Tsybakov in his 2009
book on nonparametric estimation [32, Eq. (2.25)], but with a different form
∆ ≤ 1 − 1

2 exp(−D), or D ≥ log 1
2(1−∆) , which is strictly weaker than the

original, since 1 − ∆2 = (1 − ∆)(1 + ∆) < 2(1 − ∆) for 0 < ∆ < 1.
Today and to my knowledge, the best known explicit Pinsker inequality of

this kind is
D ≥ log

1
1 − ∆

− (1 − ∆) log(1 + ∆). (21)

derived by Gilardoni in 2008 [11] (see also [12]). Gilardoni’s proof is based on
considerations on symmetrized f -divergences. A simple proof is as follows:

Proof. One can always assume that δ = p − q > 0, where δ ≤ p ≤ 1 and 0 ≤ q ≤
1− δ. Then d(p‖q) = (q+ δ) log q+δ

q +(1−q−δ) log 1−q−δ
1−q =

[
−q log q+δ

q − (1−q−
δ) log 1−q

1−q−δ

]
+ (2q + δ) log q+δ

q . Since q + (1−q−δ) = 1−δ and − log is convex,
the first term inside brackets is ≥ −(1 − δ) log( q+δ

1−δ + 1−q
1−δ ) = (1 − δ) log 1−δ

1+δ .
The second term writes δ (2+x) log(1+x)

x where x = δ
q . Now (2 + x) log(1 + x)

is convex for x ≥ 0 and vanishes for x = 0, hence the slope (2+x) log(1+x)
x is

minimal for minimal x, that is, for maximal q = 1 − δ. Therefore, the second
term is ≥ (2−2δ+δ) log 1

1−δ = (2−δ) log 1
1−δ . Summing the two lower bounds

gives the inequality. 12

Note that Gilardoni’s inequality adds the term ∆ log(1 + ∆) to the
Bretagnolle-Huber lower bound. In fact it uniformly improves Vajda’s inequal-
ity [11]. In particular, it is also asymptotically optimal near D = ∆ = 0, which
can easily be checked directly: log 1

1−∆ − (1 − ∆) log(1 + ∆) = 2 log e · ∆2 +
o(∆2). Also by the comparison principle, for natural logarithms and ∆ > 0,
d
d∆

(
log 1

1−∆ − (1 − ∆) log(1 + ∆)
)
= ∆ 3−∆

1−∆2 + log(1 + ∆) < 3∆ + ∆ = 4∆ =
d
d∆ (2∆2) as soon as ∆ ≥ 3∆2, i.e., ∆ ≤ 1

3 . Therefore, Gilardoni’s inequality (21)
is strictly weaker than the classical Pinsker inequality at least for 0 < ∆ < 1/3
(in fact for 0 < ∆ < 0.569 . . .). For ∆ close to 1, however, Gilardoni’s inequality
is better (see below).

12 Here the exponential is relative to the base considered, e.g., ∆ ≤
√
1 − e−D when

D is expressed in nats (with natural logarithms) and ∆ ≤
√
1 − 2−D when D is

expressed in bits (with logarithms to base 2).
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6 The Optimal Pinsker Inequality

The problem of finding the optimal Pinsker inequality (best possible lower bound
in (1)) was opened by Vajda [33] in 1970. It was found in 2003 in implicit form,
using the Legendre-Fenchel transformation, by Fedotov, Harremoës, and Topsøe
in [9], as a curve parametrized by hyperbolic trigonometric functions. We give
the following equivalent but simpler parametrization with the following proof
that is arguably simpler as it only relies of the well-known Lagrange multiplier
method.

Theorem 1 (Optimal Pinsker Inequality). The optimal Pinsker inequality
D ≥ ϕ∗(∆) is given in parametric form as

{
∆ = λ(1 − q)q
D = log(1 − λq) + λq(1 + λ(1 − q)) log e

(22)

where λ ≥ 0 is the parameter and q = q(λ) ! 1
λ − 1

eλ−1 ∈ [0, 1
2 ]..

Proof. Using binary reduction, d(p‖q) = p log p
q + (1 − p) log 1−p

1−q is to be min-
imized under the linear constraint p − q = δ ∈ [−1, 1]. It is well known that
divergence d(p‖q) is strictly convex in (p, q). Given that the objective function
is convex and the constraint is linear, the solution can be given by the Lagrange
multiplier method. The Lagrangian is L(p, q) = d(p‖q)−λ(p−q) and the solution
is obtained as global minimum of L, which by convexity is obtained by setting
the gradient w.r.t. p and q to zero. Assuming nats (natural logarithms), this
gives

{
∂L
∂p = log p

q − log 1−p
1−q − λ = 0

∂L
∂q = −p

q + 1−p
1−q + λ = 0

or

{
λ = p

q − 1−p
1−q

eλ = p
q

/
1−p
1−q

. (23)

Therefore, p
q = λ + 1−p

1−q = eλ 1−p
1−q , and we have 1−p

1−q = λ
eλ−1 and p

q = λeλ

eλ−1 .
Solving for q, then for p, one obtains 1 = 1 − p + p = (1 − q) λ

eλ−1 + q λeλ

eλ−1 ,
which gives q = q(λ) = 1

λ − 1
eλ−1 as announced above and p = qλ(1 + 1

eλ−1 ) =
qλ(1+ 1

λ −q) = q(1+λ(1−q)). Therefore, we obtain the desired parametrization
δ = p−q = λ(1−q)q and d(p‖q) = log 1−p

1−q +pλ = log(1−λq)+λq(1+λ(1−q)).
Finally, observe that the transformation (p, q) 3→ (1− p, 1− q) leaves d = d(p‖q)
unchanged but changes δ 3→ −δ. In the parametrization, this changes λ 3→ −λ
and q(λ) 3→ q(−λ) = 1 − q(λ). Accordingly, this change of parametrization
changes (δ, d) 3→ (−δ, d) as can be easily checked. Therefore, the resulting optimal
ϕ∗ is even. Restricting to δ = |p − q| = p − q ≥ 0 amounts to p ≥ q ⇐⇒ λ ≥
0 ⇐⇒ q ∈ [0, 1/2]. 12

In 2009, Reid and Williamson [25,26], using a particularly lengthy proof
mixing learning theory, 0-1 Bayesian risks, and integral representations of f -
divergences, claimed the following “explicit form” of the optimal Pinsker inequal-
ity: D ≥ min|β|≤1−∆

1+∆−β
2 log 1+∆−β

1−∆−β + 1−∆+β
2 log 1−∆+β

1+∆−β . This formula, how-
ever, is just a tautological definition of the optimal Pinsker lower bound: Indeed,
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by binary reduction, d(p‖q) = p log p
q + (1− p) log 1−p

1−q is to be minimized under
the constraint δ = p − q, hence δ ≤ p ≤ 1 and q ≤ 1 − δ. Letting β = 1 − p − q,
this amounts to minimizing over β in the interval [δ−1, 1−δ] for fixed δ = p−q.
Since p = 1+δ−β

2 and q = p − v = 1−δ−β
2 , this minimization boils down to the

above expression for the lower bound.
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Fig. 3. Pinsker lower bounds of divergence D vs. total variation ∆. Red: Optimal (The-
orem 1). Blue: Pinsker (P, Eq. 14 with c = 2) with optimal constant and Schützenberger
(S, Eq. 17). Black: Bretagnolle-Huber (BH, Eq. 20), Vajda (V, Eq. 19) and Gilardoni
(G, Eq. 21). (Color figure online)

7 Conclusion

Figure 3 illustrates the main Pinsker inequalities seen in this paper. As a tem-
porary conclusion, from the implicit form using the exact parametrization of
Theorem 1, it is likely that the optimal Pinsker inequality cannot be written
as a closed-form expression with standard operations and functions. Also, the
problem of finding an explicit Pinsker inequality which uniformly improve all
the preceding ones (in particular, the classical Pinsker inequality with optimal
constant and Gilardoni’s inequality) is still open.
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Interestingly, asymptotic optimality near the two extremes (V = D = 0
as λ → 0 or V = 1, D = +∞ as λ → ∞) can easily be obtained from the
parametrization of Theorem 1:

– As λ → 0, by Taylor expansion one obtains q = 1
2 − λ

12 + o(λ), ∆ = λ
4 +

o(λ), and (in nats) D = λ2

8 + o(λ2). Thus, one recovers that D ∼ 2∆2 near
D = ∆ = 0. In particular, the classical Pinsker inequality (with optimal
constant) and its improvements, as well as Vajda’s and Gilardoni’s inequality,
are asymptotically optimal near D = ∆ = 0.

– As λ → +∞, q = 1
λ + o( 1λ ), exp d = λ

eλ−1e
λ+o(1) ∼ λ ∼ 1

1−∆ . Thus it follows
that expD ∼ 1

1−∆ near ∆ = 1 and D = +∞. Vajda’s and the Bretagnolle-
Huber inequalities are such that expD ∼ c

1−∆ there, with suboptimal con-
stants c = 2

e = 0.7357 . . . < 1 and c = 1
2 < 1, respectively. Only Gilardoni’s

inequality is optimal in this region with c = 1.

As a perspective, one may envision that the exact parametrization of Theo-
rem 1 can be exploited to find new explicit bounds. Indeed, since λ = ϕ∗′(∆) in
the parametrization of Theorem 1, from the comparison principle, any inequal-
ity of the form ϕ′(∆) ≤ λ = ϕ∗′(∆) is equivalent to a corresponding Pinsker
inequality (1) associated to ϕ. For example, since 4∆ = 4λ(1 − q)q ≤ λ always
in the parametrization, one recovers the classical Pinsker inequality (14) with
optimal constant c = 2. Thus, the search of new Pinsker inequality amounts to
solving the inequality in λ > 0: ϕ′(λ

(
1 − q(λ)

)
q(λ)

)
≤ λ for ϕ.
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