

Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings

Julien Béguinot¹, Wei Cheng^{1,2}, Sylvain Guilley^{1,2}, Yi Liu¹, Loïc Masure^{3(⋈)}, Olivier Rioul¹, and François-Xavier Standaert³

¹ LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
² Secure-IC, Paris, France

Abstract. At Eurocrypt 2015, Duc et al. conjectured that the success rate of a side-channel attack targeting an intermediate computation encoded in a linear secret-sharing, a.k.a. masking with d+1 shares, could be inferred by measuring the mutual information between the leakage and each share separately. This way, security bounds can be derived without having to mount the complete attack. So far, the best proven bounds for masked encodings were nearly tight with the conjecture, up to a constant factor overhead equal to the field size, which may still give loose security guarantees compared to actual attacks. In this paper, we improve upon the state-of-the-art bounds by removing the field size loss, in the cases of Boolean masking and arithmetic masking modulo a power of two. As an example, when masking in the AES field, our new bound outperforms the former ones by a factor 256. Moreover, we provide theoretical hints that similar results could hold for masking in other fields as well.

1 Introduction

If Side-Chanel Analysis (SCA) may be considered as a critical threat against the security of cryptography on embedded devices, it is no longer a fatality. Over the past decades, the *masking* counter-measure [4,13] has gained more and more success among designers and developers, both from an implementation and from a theoretical point of view. Masking can be seen as a linear secret sharing applied on each intermediate computation in the implementation of a cryptographic primitive that depends on some secret. In a nutshell, masking increases the attack complexity of any SCA adversary exponentially fast with the number of shares — provided that the leakages are sufficiently *noisy* and *independent* — while increasing the runtime and memory overhead at most quadratically [14]. This makes masking a theoretically *sound* counter-measure.

The Evaluation Challenge. Despite these achievements, the evaluation of a protected implementation remains cluttered by various technical and even conceptual difficulties. One way for evaluators to assess the security level of an

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 86–104, 2023. https://doi.org/10.1007/978-3-031-29497-6_5

³ ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium loic.masure@uclouvain.be

implementation is to mount some known end-to-end attacks and to infer some security level based on the outcomes of these attacks. Nevertheless, this relies on the assumption that the attacks mounted by the evaluators could depict well the optimal attacks that any adversary could realize. As an example, if for masking with two shares, end-to-end attacks using Deep Learning (DL) depict well optimal attacks [2,19], it is no longer true when masking uses more shares [3,21]. This could result in a false sense of security, and leaves the developers in an uncomfortable situation where implementations become increasingly hard to evaluate as their security level increases.

The Paradigm of Worst-Case Attacks. One way to circumvent this issue is to consider attacks in a so-called *worst-case* evaluation setting [1]. The core idea is to apply Kerckhoff's principles to side-channel security, by granting all the knowledge of the target to the adversary, *e.g.*, the random nonces used during the encryption, except the knowledge of the secret to guess. This way, the evaluator can efficiently profile the target implementation in order to (more) easily mount online attacks that approach the optimal ones. She can also analyze the leakage of the shares independently, in order to take advantage of masking security proofs to bound the security level under some assumptions.

Indeed, a series of theoretical works on masking allow to bound the amount of information leaked by a masked secret, depending on the amount of information leaked by each share separately, under the assumption that the shares' leakages are independent. Such bounds can be expressed, e.g., in terms of the Mutual Information (MI), and then in turn be translated in terms of the Success Rate (SR) of any attack, as shown by Duc et al. at Eurocrypt 2015 [9]. Nevertheless, most of the current masking security proofs provide conservative bounds, possibly due to technical artifacts. In particular, they generally require more noise and more shares than expected by the best known attacks in order to reach a given security level [8,11,23,24].

Duc et al.'s Conjecture. Confronting this observation with empirical evidences, Duc et al. conjectured that the required number of queries to the target device needed to recover the target secret of a SCA is inversely proportional to the product of the MIs of each share [9]:

$$N_a({\rm SR}) pprox rac{f({\rm SR})}{\prod_{i=0}^d {\rm MI}({\rm Y}_i; {\rm L}_i)} \ ,$$

where d stands for the masking order, and f is a "small constant depending on the target SR" [10, p. 1279]. Later at CHES 2019, Chérisey $et\ al.$ bounded this constant based on the entropy of the target secret [7].

Due to its practical relevance, this conjecture recently gained attraction with two independent and simultaneous works by Ito *et al.* [16] at CCS 2022 and by Masure *et al.* [22] at CARDIS 2022. Using different approaches, both works

prove a nearly-tight version of Duc $et\ al.$'s conjecture for masked encodings, up to a constant factor equal to the field size M of the encoding.

This represents a significant improvement with respect to the previous proved bounds — e.g., $\mathcal{O}(M^d)$ in Duc et~al.'s proof [9], which additionally suffers from a reduced noise amplification rate. But it remains loose compared to empirical attacks performed against implementations of concrete ciphers like the Advanced Encryption Standard (AES). At a high level, Ito et~al. and Masure et~al.'s approaches used some back and forth between the MI and other metrics, such as the Total Variation (TV) [22] or the Euclidean Norm (EN) [16], in order to state noise amplification lemmata.² If these conversions taken separately are tight, their combination introduces an $\mathcal{O}(M)$ overhead, leading to the question whether tighter bounds could be proved, on which we focus.

Our Contribution. In this paper, we positively address the latter question, by removing this field size loss for masked encodings. At a high level, we do that by working directly with noisy leakages, without relying on reductions to more abstract (e.g., random probing) leakage models. Technically, our approach consists in stating the amplification lemma directly in terms of the MI, without any lossy conversion to other statistical distances. This idea is implemented using a result from Information Theory called Mrs. Gerber's Lemma (MGL) [5,17]. The MGL allows us to bound the MI between the secret and the whole leakage by a function of the MIs between each share and their corresponding leakage. Moreover, the bound given by the MGL is proved to be tight, in the sense that there exists some leakage distributions for which the inequality from the MGL is actually an equality. The only limitation compared to the previous works is that our bound only works for fields whose size is a power of 2. Thankfully, this limitation is not prohibitive, since our result covers, e.g., Boolean masking or arithmetic masking modulo 2^n . Nevertheless, we argue at the end of this paper that similar results could also be obtained in different fields, whose size is not necessarily a power of 2. More generally, and since our results are for now specialized to masked encodings, it remains a natural question whether they generalize to computation, as also conjectured by Duc. et al. 9.

2 Statement of the Problem

We start the paper by stating the problem under consideration, before providing the solution in Sect. 3, and discussing some perspectives in Sect. 4.

2.1 Notations and Background

Side-Channel Attack. Let (\mathcal{Y}, \oplus) be a group of finite order, denoted by M. Let $K \in \mathcal{Y}$ be the secret key chunk to guess. To this end, we consider that

² e.g., Young-Minkowski's convolution inequality for the TV [22] or Plancherel's formula combined with the convolution theorem for the EN [16].

the adversary knows a sequence of N_a plaintexts $\{P\}_{N_a}$, and can observe the sequence of leakages $\{L\}_{N_a}$ associated to the corresponding intermediate computations $\{Y = \mathbf{C}(K,P)\}_{N_a}$. Based on this side-channel information, the adversary returns a key guess \widehat{K} . We define the Success Rate (SR) as $\mathsf{SR} = \Pr(K = \widehat{K})$. Since the SR increases when the number of observed traces N_a increases as well, we next define the quantity $N_a(\mathsf{SR},\mathcal{Y})$ as the minimal number of leakage traces required for any adversary to reach a success rate at least SR .

Masking. In order to protect cryptographic secrets against side-channel leakage, we consider the intermediate computation Y — assumed to be uniformly distributed — to be masked.³ Let Y_0, \ldots, Y_d be d+1 random variables out of which d are uniformly drawn from \mathcal{Y} , that we call the *shares*, and denote by $Y = Y_0 \oplus \ldots \oplus Y_d$ the random variable to protect, that we call the *secret*. Concretely, for each trace $\mathbf{L} = (L_0, \ldots, L_d)$, the adversary observes a *leakage* L_i , whose distribution conditionally to Y_i is independent of all the other random variables. In our setting, we assume that an evaluator has been able to characterize the amount of uncertainty about Y_i that has been removed by observing L_i , measured in terms of the MI, whose definition is recalled hereafter.

Definition 1 (Mutual Information). Let p, m be two Probability Mass Function (p.m.f.) over the finite set \mathcal{Y} . We denote by $D_{\mathsf{KL}}(p \parallel m)$ the Kullback - Leibler (KL) divergence between p and m:

$$\mathsf{D}_{\mathsf{KL}}(\mathsf{p} \parallel \mathsf{m}) = \sum_{y \in \mathcal{Y}} \mathsf{p}(y) \log_2 \left(\frac{\mathsf{p}(y)}{\mathsf{m}(y)} \right) \ . \tag{1}$$

Then, we define the Mutual Information (MI) between a discrete random variable Y and a continuous random vector \mathbf{L} as follows:

$$\mathsf{MI}(Y;\mathbf{L}) = \underset{\mathbf{L}}{\mathbb{E}} \left[\mathsf{D}_{\mathsf{KL}} \bigg(\mathsf{p}_{Y \mid \mathbf{L}} \ \Big\| \ \mathsf{p}_{Y} \bigg) \right] \ , \tag{2}$$

where p_Y and $p_{Y \mid L}$ respectively denote the Probability Mass Function (p.m.f.) of Y and the p.m.f. of Y given a realization 1 of the random vector \mathbf{L} , with the expectation taken over \mathbf{L} .

In the remaining of this paper, we will assume that for each share Y_i and its corresponding sub-leakage L_i , we have a bound $\mathsf{MI}(Y_i; L_i) \leq \delta_i$. Intuitively, the lower the δ_i , the less informative the leakages, and the lower the SR. Moreover, we do not focus on the potential implementation overhead of masking in this paper — that could grow quadratically in memory and runtime [15] — to only focus on the security aspect of the counter-measure.

³ For cryptographic reasons, the vast majority of the intermediate computations are uniformly distributed, including the inputs and outputs of Sbox — provided that the plaintext and the key are uniformly distributed as well. The only non-uniform intermediate computations of a block cipher may be the potential intermediate calculations of an Sbox.

 $^{^4}$ We assume without loss of generality that m has full support over $\mathcal{Y}.$

2.2 Problem and Conjecture

The problem that we consider here is to obtain upper bounds of the shape:

$$N_a(\mathsf{SR}, \mathcal{Y}) \ge \frac{f(\mathsf{SR}, \mathcal{Y})}{\prod_{i=0}^d (\delta_i/\tau)^r} \ ,$$
 (3)

where $f(\mathsf{SR},\mathcal{Y})$ is a constant, τ is the so-called *noise threshold*, *i.e.*, the maximum amount of leakage that can leak such that the masking counter-measure remains sound and r is the *amplification rate*. Duc *et al.* [9] conjectured that N_a satisfies an upper bound of the shape of Eq. 3, where $\tau \approx 1$ and r = 1.

A Reduction to Mutual Information Maximization. At CHES 2019, Chérisey et al. have shown that N_a can be linked to the MI as follows:

$$N_a(\mathsf{SR}, \mathcal{Y}) \ge \frac{f(\mathsf{SR}, \mathcal{Y})}{\mathsf{MI}(\mathsf{Y}; \mathbf{L})} \ ,$$
 (4)

where f is a known, computable function of SR that can be bounded based on the entropy of Y so that $f(SR, \mathcal{Y}) = \mathcal{O}(\log(M))$ [7]. In other words, it is possible to reduce the problem of bounding the security level of masked implementation to the problem of bounding the MI:

$$\max_{\Pr(\mathbf{L}_i \mid \mathbf{Y}_i), i \in [\![0,d]\!]} \quad \mathsf{MI}(\mathbf{Y}; \mathbf{L}) \\ \text{s.t.} \quad \mathsf{MI}(\mathbf{Y}_i; \mathbf{L}_i) \le \delta_i$$
 (5)

Following the previous conjecture, we expect that $\mathsf{MI}(Y;\mathbf{L}) \approx \prod_{i=0}^d (\delta_i/\tau)^r$ is a valid upper bound for this problem, where $\tau \approx 1$, and r=1, whereas it could so far only be proven that $\mathsf{MI}(Y;\mathbf{L}) \approx M \prod_{i=0}^d (\delta_i/\tau)$.

We note that the optimization defined in Eq. 5 is convex, with convex constraints, as stated hereafter.⁵

Proposition 1. The optimization problem defined in Eq. 5 is convex.

Proof. Let I be fixed. The mapping

$$\Pr(\mathbf{Y}_0 \mid \mathbf{L}_0 = l_0), \dots, \Pr(\mathbf{Y}_d \mid \mathbf{L}_d = l_d) \mapsto \Pr(\mathbf{Y} \mid \mathbf{L} = \mathbf{l})$$

is a convolution product [21, Prop. 1] so it is (d+1)-linear, and thereby convex. Hence, since the mapping $\Pr(Y \mid \mathbf{L} = \mathbf{l}) \mapsto -\mathsf{H}(Y \mid \mathbf{L} = \mathbf{l})$ is also convex, the composition of both mappings remains convex. Since $\Pr(Y \mid \mathbf{L}) \mapsto -\mathsf{H}(Y \mid \mathbf{L})$ is the expectation of the latter composed mappings, it remains convex. Adding $\mathsf{H}(Y) = \log_2(M)$ keeps the convexity property unchanged.

As a result of this convexity, the optimal solution to the optimization of Eq. 5 is necessarily such that for each $i \in [0, d]$, we have $\mathsf{MI}(Y_i; L_i) = \delta_i$.

⁵ The interested reader may find a similar convexity result, stated in terms of statistical distance, in the works of Dziembowski et al. [12, Cor. 2].

Serial vs. Parallel Leakages. In this section, we have implicitly assumed that the leakages occurred in serial, which mostly depicts what could happen in a software implementation. We stress that our results may also extend without loss of generality to leakages occurring in parallel, e.g., leakages of the form $\mathbf{L} = \mathbf{L}_0 + \ldots + \mathbf{L}_d$, provided that the independence assumption remains verified. It suffices to reduce to the serial case, thanks to the Data Processing Inequality (DPI):

$$MI(Y; L_0 + \ldots + L_d) \leq MI(Y; L_0, \ldots, L_d)$$
.

3 A Proof Without Field Size Loss

We now provide our main result, namely we give a solution to the optimization problem stated in Eq. 5. Compared to previous works, we introduce a mild additional assumption on the group \mathcal{Y} , namely that its order is a power of two. Nevertheless, this assumption covers Boolean masking and arithmetic masking modulo 2^n . To this end, we need to introduce some definitions.

3.1 Introducing Mrs. Gerber's Lemma

We first recall the definition of the entropy for a binary random variable.

Definition 2 (Binary Entropy). Let

$$H_b: \begin{vmatrix} [0,1] \longrightarrow [0,1] \\ p \longmapsto -p \log_2(p) - (1-p) \log_2(1-p) \end{vmatrix}$$

be the binary entropy function.Let $H_b^{-1}:[0,1]\mapsto \left[0,\frac{1}{2}\right]$ be the inverse of H_b restricted to $\left[0,\frac{1}{2}\right]$.

Likewise, we introduce the convolution for a binary random variable.

Definition 3 (Binary Convolution \star). Let

$$\star: \begin{vmatrix} [0,1]^2 \longrightarrow [0,1] \\ x,y \longmapsto (1-x)y + x(1-y). \end{vmatrix}$$

Note that when \star is iterated, it can be replaced by a product, as stated next.

Proposition 2 (Iterated Star for Bias). For $x_0, \ldots, x_d \in [0, 1]$, the \star operations can be mapped into a product for operands in the form of a bias as follows

$$\underset{i=0}{\overset{d}{\star}} \left(\frac{1}{2} - x_i \right) = \frac{1}{2} - 2^d \prod_{i=0}^{d} x_i.$$

Proof. This is proved by induction on d.

Definition 4 (Mrs. Gerber's functions). For any positive integers n, p, let $f_{H,2^n}: [0,1]^{p+1} \to [0,1]$ be the function defined by

$$f_{H,2^n}(x_0,\ldots,x_p) = H_b \begin{pmatrix} p \\ \star \\ i=0 \end{pmatrix} H_b^{-1}(x_i)$$
.

Moreover, we also define the function $f_{\mathsf{MI},2^n}:[0,1]^{p+1}\to [0,1]$ as

$$f_{\mathsf{MI},2^n}(\delta_0,\ldots,\delta_p) = 1 - f_{\mathsf{H},2^n}(1-\delta_0,\ldots,1-\delta_p)$$
.

Remark 1. The function f_{MI} is decreasing with respect to each of its inputs, and is equal to 0 when every $\delta_i = 0$.

We are now equipped to introduce the technical lemma that will set the ground for our result, namely the so-called MGL. MGL has been first established by Wyner and Ziv [30] for a two-element group \mathcal{Y} , but it has been extended to any Abelian group whose order is a power of two by Jog and Anantharam [17].

Theorem 1 (Mrs. Gerber's Lemma [17, **Thm. V.1, Claim V.1]).** Let (\mathcal{Y}, \oplus) be any Abelian group of order $M = 2^n$. Let Y_0, \ldots, Y_d be d+1 independent \mathcal{Y} -valued random variables with side information L_0, \ldots, L_d . We assume that conditionally to Y_i , L_i is independent of any other random variable. Define $x_i = \mathsf{H}(Y_i \mid L_i)$, and without loss of generality assume that $x_0 \geq \ldots \geq x_d$. Let $k = |x_0|$ and $p = \max\{i \mid |x_i| \geq k\}$, then

$$k + f_{\mathsf{H},2^n}(x_0 - k, \dots, x_p - k) \le \mathsf{H}(Y_0 \oplus \dots \oplus Y_d \mid L_0, \dots, L_d).$$
 (6)

Proof. Let us denote $Y = Y_0 \oplus \ldots \oplus Y_d$ for short, and for any $i \in [0, d]$, let $X_i(l) = H(Y_i \mid L_i = l)$, such that $\underset{L_i}{\mathbb{E}}[X_i(L_i)] = x_i$. Moreover, notice that by assumption, all the $X_i(L_i)$ are mutually independent.

Jog and Anantharam claim [17, Thm. V.1] that for a fixed leakage $\mathbf{l} = (l_0, \dots, l_d)$, we have

$$\varphi(X_0(l_0)\dots,X_d(l_d)) \le \mathsf{H}(Y \mid \mathbf{L} = \mathbf{l})$$
,

for some function φ that is convex with respect to each variable, when the remaining are kept fixed [17, Cor. V.1]. Combining this property with the independence of the $X_i(L_i)$, we may apply Jensen's inequality d+1 times:

$$\varphi(x_0,\ldots,x_d) \leq \underset{1}{\mathbb{E}} \left[\varphi(X_0(\mathbf{l}_0)\ldots,X_d(\mathbf{l}_d)) \right] \leq \underset{1}{\mathbb{E}} \left[\mathsf{H}(Y \mid \mathbf{L} = \mathbf{l}) \right] = \mathsf{H}(Y \mid \mathbf{L}) \ .$$

Finally, replacing φ by its expression from [17, Thm. 5.1] results in Eq. 6. \square

Remark 2. In this paper, for better readability, all the logarithms are taken in base 2, but all the results we rely on have been established with logarithms in natural base. Thankfully, the proof of the MGL for M=2 can be straightforwardly extended to logarithms in any base [5, Thm. 1]. Likewise, all the technical results used in Jog and Anantharam's proof remain insensitive to the base, as they essentially involve computing ratios of logarithms [17, Sec. 2].

3.2 Application of Mrs. Gerber's Lemma to Masking

Using the MGL, we prove the following upper bound on the side-channel information leaked by a masked encoding.

Corollary 1 (Security of Masking). Let $M = 2^n$ and d be a positive integer. Let Y_0, \ldots, Y_d be a (d+1)-sharing of the uniform random variable Y and $L = (L_0, \ldots, L_d)$ be such that, conditionally to Y_i , the variable L_i is independent of the others. For all $i \in [0, d]$, define $MI(Y_i; L_i) = \delta_i$, and assume without loss of generality that there is a positive integer p such that for all $i \leq p$, $\delta_i \leq 1$ and for all i > p, $\delta_i \geq 1$. Then

$$MI(Y; \mathbf{L}) \le f_{MI,2^n}(\delta_0, \dots, \delta_p) \quad . \tag{7}$$

Proof. We upper-bound $\mathsf{MI}(Y; \mathbf{L}) = \mathsf{H}(Y) - \mathsf{H}(Y \mid \mathbf{L}) = n - \mathsf{H}(Y \mid \mathbf{L})$ by lower-bounding $\mathsf{H}(Y \mid \mathbf{L})$, using Theorem 1.

$$\begin{split} \mathsf{H}(Y \mid \mathbf{L}) &= \mathsf{H}(Y_0 \oplus \ldots \oplus Y_d \mid \mathbf{L}) \\ &\geq n - 1 + f_{\mathsf{H},2^n}(\mathsf{H}(Y_0 \mid L_0) - (n-1), \ldots, \mathsf{H}(Y_p \mid L_p) - (n-1)) \\ &= n - 1 + f_{\mathsf{H},2^n}(1 - \mathsf{MI}(Y_0; L_0), \ldots, 1 - \mathsf{MI}(Y_p; L_p)) \\ &= n - f_{\mathsf{MI},2^n}(\mathsf{MI}(Y_0; L_0), \ldots, \mathsf{MI}(Y_p; L_p)) \end{split}$$

3.3 Comparison with Former Upper Bounds

The removal of the field size loss in Theorem 1 is illustrated by Fig. 1. The graph depicts the upper bounds on MI(Y; L) (in bits) with respect to the noise parameter δ — assuming that the δ_i are all equal. The dotted curves correspond to the bounds given by Masure et al. [22]⁶ for different masking orders, whereas the dashed curves are obtained with our new bound. It can for example be noticed that for d=1 and $\delta_i=2^{-7}$, the bound from Ito et al. and Masure et al. [22] is roughly equal to 2^{-5} , whereas our upper bound is less than 2^{-12} , meaning that the gain is roughly 2^{12-5} which corresponds to half the field size. A similar factor is observed for larger d values.

We also add the following proposition (proven in Appendix) that gives a more intuitive view of our results and makes the removal of the field size loss explicit.

Proposition 3 (Approximation in 0). The Taylor expansion of the MGL function is the following:

$$f_{\mathsf{MI},2^n}(\delta_0,\ldots,\delta_d) = \eta \prod_{i=0}^d \frac{\delta_i}{\eta} + o\left(\prod_{i=0}^d \delta_i\right) , \qquad (8)$$

where $\eta = (2 \ln 2)^{-1} \approx 0.72$.

⁶ We have afterwards noticed that the proof of Masure *et al.*'s bound [22, Prop. 2, Thm. 3] was suboptimal, so the bound of Masure *et al.* is actually slightly better than Ito *et al.*'s one by a factor $\frac{1}{2}$. That is why in the remaining of this paper, we mainly compare against the bound of Masure *et al.*.

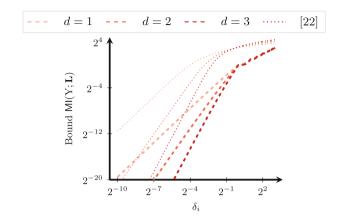


Fig. 1. Illustration of Eq. 1 for M = 256 (e.g., the AES S-box).

We note that the η parameter does not exactly correspond to the noise rate τ of Subsect. 2.2, since it depends on the noise level. But for high noise levels, where the first-order Taylor expansion is accurate, its value of 0.72 corresponds to the noise threshold in the CCS 2022 and the CARDIS 2022 papers.⁷

3.4 The MGL: Tighter or Tight?

We have shown in Subsect. 3.3 that our upper bound obtained from the MGL is tighter than the one achieved by Ito et al. [16] and Masure et al. [22]. We may therefore wonder to what extent the new MI upper bound is tight. In other words, are there some leakage models such that the MI between the secret and the leakage of all shares equals the MGL function. In this respect, Jog and Anantharam's results could be interpreted as the fact that the bound given by the MGL is at least locally tight, as stated hereafter.

Proposition 4 ([17, Thm. 5.1]). For all $(x_0, ..., x_d) \in [0, n]^{d+1}$, there exists a leakage distribution (L | Y) such that:

```
1. For all i \in [0, d], we have H(Y_i \mid L_i = l_i) = \delta_i and 2. H(Y \mid L = (l_0, \dots, l_d)) = k + f_{H,2^n}(x_0 - k, \dots, x_p - k),
```

where k and p are the parameters defined in Theorem 1.

In other words, without further assumption on the leakage model, the bound given by the MGL is the best possible. We next investigate whether it is actually tight for practically-relevant leakage functions by confronting the bounds from

⁷ For low noise levels, it gets gradually closer to one, but this gain has limited practical relevance since masking only provides high security with sufficient noise.

the MGL to the direct computation of the MI for a shared secret. For this purpose, we assume that each share leaks a deterministic function of its value with an additive Gaussian noise, similarly to the experiments conducted by Ito et al. [16, Sect. 7.1] and Masure et al. [22, Sect. 3.1]. In particular, we consider two deterministic leakages, namely the Least Significant Bit (l.s.b.) of the share, or its Hamming weight. The MI is estimated with Monte-Carlo methods by sampling $N_v = 10,000$ leakages. Then, for each simulated leakage, the conditional p.m.f. can be exactly computed using a Soft-Analytical SCA (SASCA) [28].⁸

The results are depicted in Fig. 2, for Boolean sharings with 2 shares and 3 shares, and for l.s.b. (Figs. 2a, 2b) and Hamming weight leakages (Figs. 2a, 2b). Each plot depicts the MI of the secret, depending on the variance σ^2 of the additive Gaussian noise. As one can observe on Fig. 2a and Fig. 2b, the bounds obtained by the MGL, depicted in dashed curves, are tight with the plain curves computed from the SASCA for the l.s.b. leakage model. However, for the Hamming weight leakage model, we observe a gap between our upper bound and the ground truth. Moreover, the gap between the dashed curve and the plain curve in Fig. 2d seems wider than the one in Fig. 2c. This shows that the Hamming weight leakage model does not verify Proposition 4. The combination of these observations confirms that no significant improvements of the bound can be obtained without making additional assumptions on the leakage function.

3.5 Linking the MI with the Success Rate

Having upper bounded the MI between the secret and *one* side-channel trace, we may then lower bound the required number of queries for any SCA adversary, by leveraging Chérisey *et al.*'s $f(SR, \mathcal{Y})$ function, as stated hereafter.

Corollary 2. In the same setting as in Corollary 1,

$$N_a(\mathsf{SR}) \ge \frac{f(\mathsf{SR}, \mathcal{Y})}{f_{\mathsf{ML}} 2^n(\delta_0, \dots, \delta_n)}$$
 (9)

Proof. Combining Corollary 1 with Eq. 4.

We compare this approach with a simulated SASCA attack on Fig. 3, for the two leakage models investigated in Subsect. 3.4. The plain curves denote the attack complexity obtained from a key recovery. There, the success rate is estimated with re-sampling from a validation set of $N_v = 10,000$ traces. More precisely, the N_v validations traces are re-shuffled between 100 and 1,000 times to emulate different attack sets. While this method is prone to be biased when N_a is close to N_v , the method remains sound if the success rate converged towards 1 within N_v traces, as it cancels the bias. The dotted green curves correspond to Eq. 4 where the direct estimation of the MI between the shared secret and the leakage of the shares (from Fig. 2) is used. The dashed red curves correspond to the bound

⁸ https://scalib.readthedocs.io/en/latest/index.html.

⁹ This condition is verified retrospectively on Fig. 3.

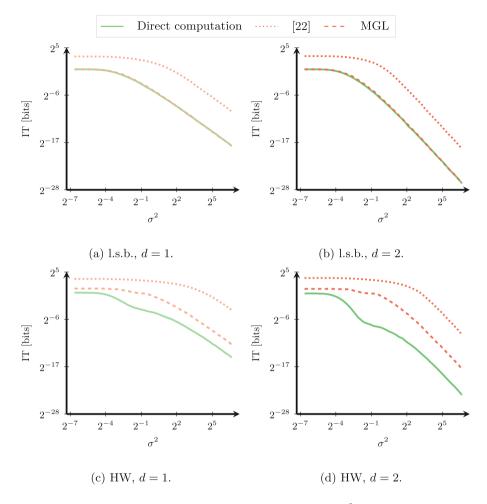


Fig. 2. MI in function of the Gaussian noise variance σ^2 , for n=8 bits.

given by Eq. 9. One can notice that the plain curves and the dotted curves are always close to each other, meaning that Chérisey *et al.*'s function is reasonably tight in our context. Moreover, similarly to what was noticed in Subsect. 3.4, the bound provided by Eq. 9 is tight for the l.s.b. leakage model, but remains non-tight for the HW leakage model.

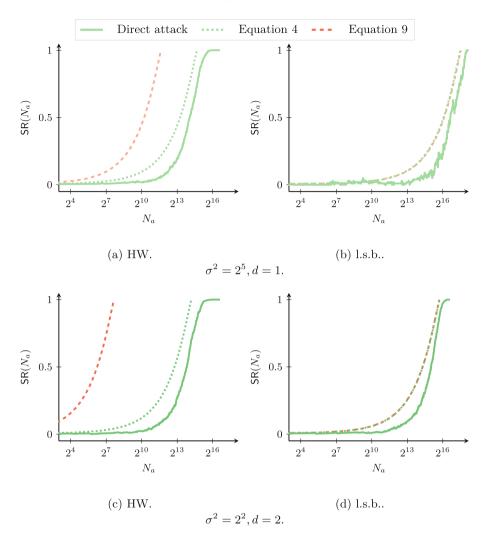


Fig. 3. Extending MI bounds to concrete security bounds.

4 On the Dependence of the Group Structure

In our previous derivations, we assume that the field in which masking is applied is a power of two. Since this is the only limitation compared to the results of Ito et al. [16] and Masure et al. [22], we finally discuss whether this additional assumption is crucial. To this end, we show that Masure et al.'s approach using Pinsker [6, Lemma 11.6.1] and reverse Pinsker [26, Theorem 1] inequalities can be improved using the theory of majorization [20].

In a nutshell, majorization can be seen as a partial order relationship on p.m.f.'s quantifying "how spread out" a p.m.f. is, compared to another. The

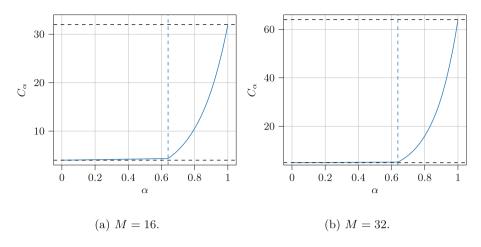


Fig. 4. C_{α} for M=16,32. The two black dashed horizontal lines are at $C_{\alpha}=\log M$ and $C_{\alpha}=2M$. The dashed vertical line is at $\alpha=\frac{\log(M\log M)}{2\log(M-1)}$ and distinguishes two regimes for C_{α} , a logarithmic one and a polynomial one.

most spread out p.m.f. is the uniform distribution, so it can be used to assess how close to uniform a given p.m.f. is. Hereupon, Rioul recently characterized optimal Pinsker-like and reversed Pinsker-like inequalities [25]. While the optimal Pinsker inequality does not improve upon Pinsker's inequality, the optimal reverse Pinsker does improve it. Leveraging this improvement, the results of Masure et al. [22] are refined for arbitrary field size, as stated hereafter.

Theorem 2 (Informal). Let \mathcal{Y} be a group of order M, and Y, \mathbf{L} denote the joint distribution of a d+1-shared secret and its corresponding leakage. Let $\tau = (2\log(2))^{-1} \approx 0.72$, and let $P = \frac{1}{4} \prod_{i=0}^{d} \mathsf{MI}(Y_i; \mathbf{L}_i) \tau^{-1}$. Then, for any $\alpha \in [0,1]$, there exists a constant $C_{\alpha} \in [\log_2(M), 2M]$ such that

$$\mathsf{MI}(Y; \mathbf{L}) \le C_{\alpha} P^{\alpha} . \tag{10}$$

In particular, for $\alpha = \frac{1}{2}$, we have

$$\mathsf{MI}(Y; \mathbf{L}) \le \log(M) \left(1 + \frac{1}{M} \right) P^{1/2} . \tag{11}$$

The bounds in Theorem 2 — whose formal statement is given and proven in Appendix — are not as tight as the ones from Corollary 1 but hold for any field size M, which makes them interesting when M is not a power of two.

Figure 4 depicts the range of C_{α} depending on α . It illustrates that there is a trade-off between the constant factor overhead C_{α} and the effective number of shares $\alpha \cdot (d+1)$. Overall, this provides good hints towards the conjectured absence of constant factor overhead in non-binary fields, and opens some perspectives towards a formal proof of the masked encoding bound in this context.

5 Conclusion and Perspectives

From a practical perspective, our work contributes to formalizing the soundness of so-called shortcut evaluations, where the security level of an implementation protected with higher-order masking is assessed based on the security of its individual shares. By performing our proofs directly with noisy leakages, we show that such shortcuts are actually tight for masked encodings.

As mentioned in introduction, a natural extension of this work is to explore the tightness of bounds for masked computations (e.g., multiplications) and not only encodings. Besides, our results of Subsect. 3.4 show that while the bound we provide is locally tight (i.e., tight for some leakage functions), it is not tight for other practically-relevant leakage functions like the Hamming weight one (and, in general, for leakage functions having preimages of different sizes). It could therefore be interesting to study whether a mild characterization of the leakages could be used to improve the shortcut evaluation of masking for these functions. Another possible track of research is to study whether improved connections between the mutual information and the success rate can be obtained: despite the bounds of Subsect. 3.5 already give good evaluations, there remains a small gap that could possibly be removed (e.g., taking advantage of other information theoretic metrics like the Alpha-Information [18]). Eventually, yet another question is whether these bounds, for now studied in a known (random) plaintext context cover adaptive chosen-plaintext side-channel attacks [29]?

Acknowledgments. François-Xavier Standaert is a Senior Research Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in part by the ERC project number 724725 (acronym SWORD). This work has also partly benefited from the bilateral MESRI-BMBF project "APRIORI" from the ANR cybersecurity 2020 call. The authors also acknowledge financial support from the French national Bank (BPI) under Securyzr-V grant (Contract DOS0144216/00), a RISC-V centric platform integrating security co-processors.

A Proof of Proposition 3

$$\begin{aligned} \mathsf{MI}(Y; \mathbf{L}) &\leq 1 - H_b \left(\frac{1}{2} - 2^d \prod_{i=0}^d \left(\frac{1}{2} - H_b^{-1} \left(1 - \mathsf{MI}(Y_i; \mathbf{L}) \right) \right) \right) \\ &= \frac{2 \log(e)}{4} \prod_{i=0}^d 4 \left(\frac{1}{2} - H_b^{-1} (1 - \mathsf{MI}(L_i; Y_i)) \right)^2 \\ &+ o \left(\prod_{i=0}^d 4 \left(\frac{1}{2} - H_b^{-1} (1 - \mathsf{MI}(L_i; Y_i)) \right)^2 \right) \\ &= \frac{2 \log(e)}{4} \prod_{i=0}^d 4 \frac{\mathsf{MI}(L_i; Y_i)}{2 \log e} + o \left(\prod_{i=0}^d 4 \frac{\mathsf{MI}(L_i; Y_i)}{2 \log e} \right) \end{aligned}$$

That it under normalized form

$$\begin{split} \mathsf{MI}(Y;\mathbf{L}) & \leq \frac{\log(e)}{2} \prod_{i=0}^d \mathsf{MI}(L_i;Y_i) \, \frac{2}{\log e} + o\bigg(\prod_{i=0}^d \mathsf{MI}(L_i;Y_i) \, \bigg) \\ & = \eta \prod_{i=0}^d \frac{\mathsf{MI}(L_i;Y_i)}{\eta} + o\bigg(\prod_{i=0}^d \mathsf{MI}(L_i;Y_i) \, \bigg). \end{split}$$

B Technical Statements and Proofs from Sect. 4

Proposition 5 (Optimal Reversed Pinsker). Let f_{opt} be the optimal reverse Pinsker inequality, i.e.,

$$f_{\text{opt}} : \begin{vmatrix} [0, \frac{1}{M}] & \longrightarrow \mathbb{R}_{+} \\ \Delta & \longmapsto \frac{1}{M} ((1 + M\Delta) \log(1 + M\Delta) \\ & + ((1 - \Delta)M - L) \log((1 - \Delta)M - L)) \end{vmatrix}$$
(12)

where $L = \lfloor M(1 - \Delta) \rfloor$. For all p.m.f. P we have $\mathsf{D}_{\mathsf{KL}}(P \parallel U) \leq f_{opt}(\Delta(P, U))$.

Proof. By applying the entropy which is Schur-concave to Eqn. 51 in [25]. We factor $-\log M$ in each term of the inequality to obtain Prop. 5.

Theorem 3 (Formal version of Theorem 2). Let \mathcal{H} be the class of function that is lower bounded by f_{opt} , concave when composed with a square root and increasing. Let $P = \frac{1}{4} \prod_{i=0}^{d} C \operatorname{MI}(Y_i; L_i)$, we have

$$\mathsf{MI}(Y; \mathbf{L}) \le \inf_{f \in \mathcal{H}} (f \circ \sqrt{})(P). \tag{13}$$

Let $C_{\alpha} = \sup_{\Delta \in]0,1-\frac{1}{M}]} f^*(\Delta) \Delta^{-2\alpha} = \max_{\Delta = k/M, k \in \{1,\dots M-1\}} f^*(\Delta) \Delta^{-2\alpha}$. We have

$$\mathsf{MI}(Y; \mathbf{L}) \le \min \left(\log(1 + M^2(4^{\frac{1}{M}} - 1)P), (\frac{1}{M} + \sqrt{P}) \log(1 + M\sqrt{P}) \right)$$
 (14)

$$\leq \inf_{\alpha \in [0,1]} C_{\alpha} \cdot P^{\alpha} \tag{15}$$

$$\leq \log(M)(1 + \frac{1}{M}) \cdot P^{\frac{1}{2}}.$$
 (16)

Remark 3. The infinum in Eqn. 13 can be computed with the Legendre-Fenchel transform $f \mapsto f^*$ (i.e. $f^*(p) = \sup_x \{px - f(x)\}$). Indeed, it is given by $\Delta \mapsto -(-f_{\text{opt}} \circ \sqrt{\cdot})^{**}(\Delta^2)$ by applying Thm. 10 in [27].

The different inequalities are shown in Fig. 5. f_1 is the best for $\Delta \leq 1/M$ and else f_2 is the best. Eqn. 16 shows that if we reduce the security exponent to $\frac{1}{2}$ we can obtain a mild (logarithmic) dependency in the field size.

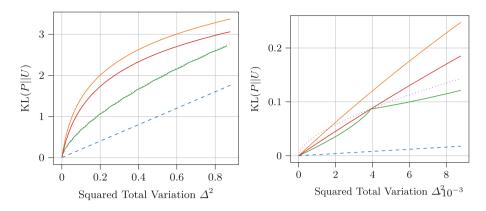


Fig. 5. Illustration of the inequalities for M=16. Pinsker is the dashed blue line. The classical reverse Pinsker is the orange line. The optimal reverse Pinsker f_{opt} is the green curve. The dotted curve is f_2 and the red curve f_1 . (Color figure online)

Proof. All derivations of [22] hold for $f \in \mathcal{H}$ which shows Eqn. 13. Indeed,

$$\begin{split} \operatorname{KL}(Y|\mathbf{L}||U) & \leq f_{\operatorname{opt}}(\Delta) & Prop. \ 5 \\ & \leq f(\Delta) & f_{\operatorname{opt}} \leq f \\ \\ & \leq f(\frac{1}{2} \prod_{i=0}^{d} 2\Delta((Y_i|L_i);U)) & \operatorname{XOR\ Lemma} \\ & = (f \circ \sqrt{\cdot})(\frac{1}{4} \prod_{i=0}^{d} 4\Delta((Y_i|L_i);U))^2 \\ & \leq (f \circ \sqrt{\cdot})(\frac{1}{4} \prod_{i=0}^{d} C \operatorname{KL}(Y_i|L_i||U)) & \operatorname{Pinsker} \end{split}$$

Since $(f \circ \sqrt{\cdot})$ is concave, we apply Jensen inequality and take the expectation to obtain the desired inequality. The expectation of the product is simplified to the product of the expectations by independence of the terms. Let $f_1: \Delta \mapsto \log(1+M^2(4^{\frac{1}{M}}-1)\Delta^2) \approx MC\Delta^2$ and $f_2: \Delta \mapsto (\Delta+\frac{1}{M})\log(1+M\Delta)$. We show that f_1 and f_2 are in \mathcal{H} . For f_2 it is clear since f_2 is f^* where we removed the negative 1/M periodic term. f_1 is clearly concave in Δ^2 and increasing. To ensure that $f_1 \geq f_{\mathrm{opt}}$ we consider the case of equality in $\frac{1}{M}$. This imposes $\log(1+\beta_M M^{-2})=\frac{2}{M}$ where $\beta_M=M^2(4^{\frac{1}{M}}-1)$. For $\Delta\leq\frac{1}{M}$, $Mf_{\mathrm{opt}}(\Delta)=(1+M\Delta)\log(1+M\Delta)+(1-M\Delta)\log(1-M\Delta)\leq\frac{2}{M}\log(1+M^2\Delta^2)$ by Jensen in equality. This upper bound of f_{opt} is a lower bound of f_1 . Since log is increasing the inequality holds if and only if $1+\beta_M\Delta^2\geq(1+M^2\Delta^2)^{\frac{2}{M}}$. Equality holds in 0 and 1/M and we show that the derivative of the difference is increasing then decreasing. The derivative is given by $2\Delta(\beta_M-2M(1+M^2\Delta^2)^{\frac{2}{M}-1})$ and its sign is given by $\beta_M-2M(1+M^2\Delta^2)^{\frac{2}{M}-1}$. This quantity is positive in 0 and

monotonically decreasing hence the result. It remains to prove the inequality for $\Delta \geq \frac{1}{M}$. To do so, we show that $f_1(\Delta) \geq \log(1 + M\Delta) \geq \frac{1+M\Delta}{M} \log(1 + M\Delta)$. Since log is increasing it is enough to have $1 + \beta_M \Delta^2 \geq 1 + M\Delta$ that is $\Delta \geq M/\beta_M$ i.e., $4^{\frac{1}{M}} - 1 \geq \frac{1}{M}$. This holds since $e^x - 1 \geq x$ by convexity of the exponential. This shows that $f_1 \in \mathcal{H}$ and Eqn. 14 is proved. Let $\mathcal{H}_{\text{poly}} = \{f_\alpha : \Delta \mapsto C_\alpha \Delta^{2\alpha} | \alpha \in [0,1] \}$, we show that $\mathcal{H}_{\text{poly}} \subset \mathcal{H}$. Functions $\mathcal{H}_{\text{poly}}$ are concave when composed with a square root since $\alpha \leq 1$, increasing since $\alpha \geq 0$ and lower bounded by f_{opt} by definition of C_α . This proves Eqn. 15. To prove Eqn. 16 we observe that $C_0 = \log(M)$, C_α is continuous and increasing in α . Consider the values of Δ for which the sup in the definition of C_α is reached. Since f_{opt} is square-root convex in the intervals [k/M, (k+1)/M] and $\Delta \mapsto C_\alpha \Delta^{2\alpha}$ is square-root concave we can only have equality in $\frac{k+1}{M}$. This shows that $C_\alpha = \max_{\Delta = k/M, k \in \{1, \dots M-1\}} f^*(\Delta) \Delta^{-2\alpha}$. We verify that the maximum is reached in 1 - 1/M when $\alpha = \frac{1}{2}$. The ratio of the sequence $f^*(k/M)(\frac{k}{M})^{-2\alpha}$ is larger than 1 which proves Eqn. 16.

References

- Azouaoui, M., et al.: A systematic appraisal of side channel evaluation strategies. In: van der Merwe, T., Mitchell, C., Mehrnezhad, M. (eds.) SSR 2020. LNCS, vol. 12529, pp. 46–66. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64357-7 3
- Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel analysis and introduction to ASCAD database. J. Crypt. Eng. 10(2), 163–188 (2019). https://doi.org/10.1007/s13389-019-00220-8
- Bronchain, O., Standaert, F.X.: Side-channel countermeasures' dissection. IACR Transactions on Cryptographic Hardware and Embedded Systems 2020(2), 1– 25 (2020). https://doi.org/10.13154/tches.v2020.i2.1-25, https://tches.iacr.org/index.php/TCHES/article/view/8542
- Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 26
- Cheng, F.: Generalization of Mrs. Gerber's lemma. Commun. Inf. Syst. 14(2), 79–86 (2014). https://doi.org/10.4310/cis.2014.v14.n2.a1
- 6. Cover, T.M., Thomas, J.A.: Elements of information theory (2 ed.). Wiley (2006)
- 7. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most successful. IACR Transactions on Cryptographic Hardware and Embedded Systems **2019**(2), 49–79 (2019). https://doi.org/10.13154/tches.v2019.i2.49-79, https://tches.iacr.org/index.php/TCHES/article/view/7385
- Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 24
- Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

- Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete (or how to evaluate the security of any leaking device), extended version. J. Crypt. 32(4), 1263–1297 (2018). https://doi.org/10.1007/s00145-018-9277-0
- 11. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_6
- 12. Dziembowski, S., Faust, S., Skórski, M.: Optimal amplification of noisy leakages. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 291–318. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_11
- Goubin, L., Patarin, J.: DES and differential power analysis the "duplication" method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5
- Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
 Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27
- Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
 Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27
- Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on masked implementations: information-theoretical bounds and their practical usage. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7–11, 2022. pp. 1521–1535. ACM (2022). https:// doi.org/10.1145/3548606.3560579
- 17. Jog, V.S.: The entropy power inequality and Mrs. gerber's lemma for groups of order 2^n . IEEE Trans. Inf. Theory $\bf 60(7)$, 3773-3786 (2014). https://doi.org/10. 1109/TIT.2014.2317692
- 18. Liu, Y., Cheng, W., Guilley, S., Rioul, O.: On conditional alpha-information and its application to side-channel analysis. In: ITW, pp. 1–6. IEEE (2021)
- Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/ 10.1007/978-3-319-49445-6
- 20. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications. Springer Series in Statistics (1980)
- Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don't learn what you already know scheme-aware modeling for profiling side-channel analysis against masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 32–59 (2023). https://doi. org/10.46586/tches.v2023.i1.32-59
- Masure, L., Rioul, O., Standaert, F.X.: A nearly tight proof of Duc et al'.s conjectured security bound for masked implementations. In: Buhan, I., Schneider, T. (eds.) Smart Card Research and Advanced Applications, pp. 69–81. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-25319-5
- Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models on a rényi day. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 683–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 24
- 24. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 9

- 25. Rioul, O.: What is randomness? The interplay between alpha entropies, total variation and guessing. Phys. Sci. Forum **5**(1) (2022). https://doi.org/10.3390/psf2022005030, https://www.mdpi.com/2673-9984/5/1/30
- 26. Sason, I., Verdú, S.: Upper bounds on the relative entropy and Rényi divergence as a function of total variation distance for finite alphabets. In: 2015 IEEE Information Theory Workshop Fall (ITW), Jeju Island, South Korea, October 11–15, 2015, pp. 214–218. IEEE (2015). https://doi.org/10.1109/ITWF.2015.7360766
- 27. Touchette, H.: Legendre-Fenchel transforms in a nutshell (2005). https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2019/01/or706-LF-transform-1.pdf
- Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 15
- 29. Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2 12
- 30. Wyner, A.D., Ziv, J.: A theorem on the entropy of certain binary sequences and applications-I. IEEE Trans. Inf. Theory 19, 769–772 (1973)