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Point-to-Point Communication Channel
With Perfect Feedback

Encoder Channel Decoder
W

Yj

X Y Ŵ

feedback

(n,M) block code

M-ary information source W

memoryless channel X = (X1, . . . ,Xn) → Y = (Y1, . . . , Yn)

Xj = f(W, Y1, . . . , Yj) at each time instant j.

probability of decoding error Pe = 1 − Ps = P(Ŵ ̸= W)

Shannon capacity C = max
pX

I(X; Y) (not increased by feedback)
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Non-Asymptotic Converse Theorems

lower bounds on Pe vs. coding rate R = log2 M
n or vs. SNR

for any (n,M) code (without requiring n → +∞)

using α-information theory:

• α-divergence Dα(p∥q)
• α-information Iα(X; Y)
• α-capacity Cα

illustration: binary-input symmetric channels:
AWGN with or without output quantization
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Basic Notations

all probability distributions are dominated by some σ-finite measure µ

any random variable X admits a probability density pX w.r.t. µ

α-quantities defined below are independent of the choice of µ

discrete or continuous:
• µ = Lebesgue measure; pX = p.d.f.;

∫
x pX(x) = 1

• µ = counting measure: pX = p.m.f.;
∑

pX(x)dx = 1

• unifying notation
∑∫
x
pX(x) = 1.

order α > 0 (either α < 1 or α > 1); limiting case α = 1 (Shannon)

α-product: Hellinger integral or Bhattacharyya coefficient of two distributions p,q:

(p∥q)α ≜
(∑∫

pαq1−α
)1/α
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(Rényi) α-Divergence [Rényi’61]

Dα(p∥q) ≜
1

α− 1
log

∑∫
pαq1−α =

α

α− 1
log(p∥q)α

Dα(p∥q) ⩾ 0 with equality Dα(p∥q) = 0 ⇐⇒ p ≡ q
binary case:

dα(p∥q) ≜ 1
α−1 log

(
(1 − p)α(1 − q)1−α + pαq1−α

)
.

Dα(p,q) is nondecreasing in α. Limits α → 0, 1, ∞:

• D0(p∥q) = − log
∑∫
p>0

q

• D1(p∥q) = D(p∥q) = ∑∫
p log

p

q
(Kullback-Leibler )

• D∞(p∥q) = log supq
p

q
Dα(p,q) is lower semi-continuous in (p,q)

4 / 20 Sept. 28th, 2022 Olivier Rioul α-Capacity



(Rényi) α-Divergence [Rényi’61]

Dα(p∥q) ≜
1

α− 1
log

∑∫
pαq1−α =

α

α− 1
log(p∥q)α

Dα(p∥q) ⩾ 0 with equality Dα(p∥q) = 0 ⇐⇒ p ≡ q
binary case:

dα(p∥q) ≜ 1
α−1 log

(
(1 − p)α(1 − q)1−α + pαq1−α

)
.

Dα(p,q) is nondecreasing in α. Limits α → 0, 1, ∞:

• D0(p∥q) = − log
∑∫
p>0

q

• D1(p∥q) = D(p∥q) = ∑∫
p log

p

q
(Kullback-Leibler )

• D∞(p∥q) = log supq
p

q
Dα(p,q) is lower semi-continuous in (p,q)

4 / 20 Sept. 28th, 2022 Olivier Rioul α-Capacity



(Sibson) α-information [Sibson’69]

Iα(X; Y) ≜
α

α− 1
logEY(pX|Y∥pX)α.

it’s Dα(pX|y∥pX) = α
α−1 log(pX|y∥pX)α averaged over Y inside the logarithm

Iα(X; Y) ⩾ 0 with equality Iα(X; Y) = 0 if and only if X and Y are independent

alternative expression Iα(X; Y) =
α

α− 1
log

∑∫
y

(∑∫
x
pXp

α
Y|X

)1/α

φ-concave in pX for fixed channel pY|X (for some increasing φ).
Iα(X; Y) is non decreasing in α. Limits α → 0, 1, ∞:

• I0(X; Y) = − log supy
∑∫
py|X>0

pX

• I1(X; Y) = I(X; Y) (Shannon’s mutual information)

• I∞(X; Y) = log
∑∫
y

sup
pX(x)>0

pY|x
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α-Response

For any pX, define its α-response of the channel X → Y by

qY,pX ≜
(pX|Y∥pX)α pY
EY(pX|Y∥pX)α

=

(
Σ
∫
x pXp

α
Y|X

)1/α

Σ
∫
y

(
Σ
∫
x pXp

α
Y|X

)1/α
.

by chain rule for α-product : (pXY∥qXY)α =
(
(pX|Y∥qX|Y)α pY∥qY

)
α
,

(pXY∥pXqY)α =
(
(pX|Y∥pX)α pY∥qY

)
α
= (qY,pX∥qY)α · EY(pX|Y∥pX)α gives:

Sibson’s identity: For any qY ,

Dα(pXY∥pXqY) = Dα(qY,pX∥qY) + Iα(X; Y).

in particular
Iα(X; Y) = min

qY
Dα(pXY∥pXqY) = Dα(pXY∥pXqY,pX)

where the α-response qY,pX is the unique distribution achieving the minimum.
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α-Capacity

By analogy with Shannon’s formula C = max
pX

I(X; Y),

Cα ≜ max
pX

Iα(X; Y) .

Theorem (Characterization of α-Capacity [Csiszar’95,CaiVerdu’19])

For discrete X,
Cα = min

qY
max
x

Dα(pY|x∥qY) = max
x

Dα(pY|x∥qY,p∗X)

where qY,p∗X is the α-response of the distribution p∗X achieving the maximum of Iα(X; Y).

Proof.

Simple proof in [RioulNguyen’22] (ICCE’22).
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Illustration: Binary-Input Symmetric Channels
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-1

1 − p− ϵ

ϵ

1 − p− ϵ

ϵ
p

p
1

-1

1

0

-1

BSC BEC BSEC
binary-input symmetric channels: arise from AWGN with or without output quantization

(energy per bit Eb = 1 for input X ∈ {±1} and noise variance σ2 = N0/2)

binary symmetric channel BSC(p), p = Q(
√

2Eb
N0

) = Q( 1
σ )

binary erasure channel BEC(ϵ), ϵ = Q( 1
2σ )

binary symmetric erasure and error channel BSEC(p, ϵ) p = Q( 3
2σ ) and p+ ϵ = Q( 1

2σ )
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Binary-Input Symmetric Channel (General Case)

Theorem (α-Capacity of a binary-input symmetric channel)

Cα = 1 − α

1 − α
log

∑∫ 1
2

(
pαY|1 + pα−Y|1

)1/α
.

Cα ⩽ 1 bit

Cα is nondecreasing in α

α 7→ Cα is continuous in α. Limits α → 0, 1/2, 1, ∞:
• C0 = feedback zero-error capacity
• C1/2 = R0 = 1 − log

(
1 + Σ

∫ √
pY|1 pY|−1

)
cut-off rate [Massey’74]

• C1 = C = Shannon capacity

• C∞ = 1 + log
∑∫ 1

2
max(pY|1,pY|−1) = log

Ps(X|Y)
Ps(X)

(MAP)
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Some α-Capacities of Binary-Input Memoryless Channels

Cα cut-off C1/2 usual capacity C = C1 C∞
BSC 1 − 1

1−α log(pα + (1 − p)α) 1 − log(1 + 2
√
p(1 − p)) 1 − h(p) 1 − log 1

1−p

BEC 1 − α
1−α log(1 − ϵ+ 2

1−α
α ϵ) 1 − log(1 + ϵ) 1 − ϵ 1 − log 1

1−ϵ/2

BSEC 1 − α
1−α log

(
(pα + (1 − p− ϵ)α)

1
α + 2

1−α
α ϵ

)
1 − log(1 + ϵ+ 2

√
p(1 − p− ϵ)) (1 − ϵ)(1 − h( p

1−ϵ)) 1 − log 1
1−p−ϵ/2

AWGN 1 − α
1−α log

∫ ∞

−∞

e−(y2+1)/2σ2

√
2πσ2

1 − log(1 + e−1/2σ2
) 1−

∫ ∞

−∞

e−(y−1)2/2σ2

√
2πσ2

1 − log 1
1−Q(1/σ)

×1
2(e

yα/σ2
+ e−yα/σ2

)1/α dy × log(1 + e−2y/σ2
)dy

where h(p) = −p log p− (1 − p) log(1 − p) is the binary entropy function.
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α-capacities: BSC, BSEC, and AWGN

TABLE I
SOME ↵-CAPACITIES OF BINARY-INPUT MEMORYLESS CHANNELS. h(p) = �p log p � (1 � p) log(1 � p) IS THE BINARY ENTROPY FUNCTION.

C↵ cut-off C1/2 usual capacity C = C1 C1

BSC 1 � 1
1�↵

log(p↵ + (1 � p)↵) 1 � log(1 + 2
p

p(1 � p)) 1 � h(p) 1 � log 1
1�p

BEC 1 � ↵
1�↵

log(1 � ✏ + 2
1�↵
↵ ✏) 1 � log(1 + ✏) 1 � ✏ 1 � log 1

1�✏/2

BSEC 1 � ↵
1�↵

log
�
(p↵ + (1 � p � ✏)↵)

1
↵ + 2

1�↵
↵ ✏

�
1 � log(1 + ✏ + 2

p
p(1 � p � ✏)) (1 � ✏)(1 � h( p

1�✏
)) 1 � log 1

1�p�✏/2

AWGN 1 � ↵
1�↵

log

Z 1

�1

e�(y2+1)/2�2

p
2⇡�2

1 � log(1 + e�1/2�2
) 1�

Z 1

�1

e�(y�1)2/2�2

p
2⇡�2

1 � log 1
1�Q(1/�)

⇥ 1
2
(ey↵/�2

+ e�y↵/�2
)1/↵ dy ⇥ log(1 + e�2y/�2

) dy

C↵

SNR (dB)

↵ = 1 ↵ = 0.1↵ = 10

Fig. 3. ↵-capacities of binary-input BSC (black), BSEC (red) and AWGN
channel (blue) as a function of SNR= 1/(2�2) per transmitted bit.

VI. ↵-CONVERSE THEOREM

The following Theorem provides infinitely many non-
asymptotic upper bounds on Ps (lower bounds on Pe).
Theorem 8 (↵-Converse Theorem): For any ↵ 2 [0, +1] and
any block code (n, M) with rate R = log M

n and decoding
error probability Pe = 1�Ps on a memoryless channel (with
or without perfect feedback) of ↵-capacity C↵,

d↵(PskP0
s)  n · C↵ (25)

where P0
s = maxw pW (w)  Ps; in particular, P0

s = 1
M for

equiprobable messages W .
Proof: Combine Theorems 4 and 6. (The values ↵ = 0,

1, +1 are obtained by taking limits.)
For varying ↵ 2 [0, +1], (25) provides non-asymptotic

lower bounds on Pe (upper bounds on Ps) for any particular
choice of block code parameters (n, M)—or for any choice
of code length n with varying coding rate R = log M

n . An
illustration is given in Fig. 4 for increasing code lengths.

A. Application to the Zero-Error Problem
If one requires strictly zero error [14], that is, Pe = 0 and

Ps = 1, then (25) applies with equiprobable messages, where
d↵(1k 1

M ) = log M . Thus (25) takes the form of a coding rate
bound R = log M

n  C↵. By [C2] inf C↵ = C0, so this all
boils down to the inequality

R  C0 = max
pX

I0(X; Y ) = max
pX

inf
y

log 1P
py|X >0

pX
(26)

(see [I4]). As noticed in [17], this is exactly Shannon’s
expression of the zero-error capacity with feedback in the case
where this capacity is > 0 (when not all inputs pairs can cause
the same output [14]).

Pe

RC

acceptable
region

forbidden
region

Fig. 4. Lower bounds on error probability Pe vs. coding rate R on a BSC(.25)
for n = 8 (magenta), 16 (black), 32 (cyan), 64 (red), 128 (blue) for ↵ 2
[0, +1] with stepsize = 0.1. The dashed vertical line shows the capacity C.

B. Application: Strong Converse

For ↵ > 1, (25) readily implies the strong converse theorem
(for equiprobable messages):
Theorem 9 (Strong Converse): If R > C, then Pe tends
exponentially to 1 as n ! +1.
As shown in [10], Arimoto’s converse bound [2] can be
recovered from this result.

Proof: For ↵ > 1, 1
↵�1 log(P↵

s
1

M1�↵ ) < d↵(Psk 1
M ) 

nC↵. Simplifying gives Ps < 2�n(R�C↵)↵�1
↵ . If R > C,

since C↵ & C as ↵ & 1, one has R > C↵ + ✏ for some
↵ > 1 and ✏ > 0, and Ps < 2�n✏↵�1

↵ ! 0 exponentially.
Fig. 4 illustrates Theorem 9 by showing lower bounds on Pe

for increasing lengths. The “hard limit” at Shannon’s capacity
C is only attainted for immeasurably large n.

C. Application: Lower Bound on the SNR

In our channel models, letting Eb/N0 be the SNR per (in-
formation) bit, C↵ is expressed as functions of 1

�2 = 2R·SNR
per coded bit sent on the channel. Since C↵ is increasing in
SNR (as illustrated in Fig. 3), (25) gives a lower bound on
the feasible SNR for a given performance level (Pe, R) over
a given channel.

In particular for n ! +1 and R ! 0 we recover the
well-known Shannon limits �1.59 dB and 0.37 dB for binary-
input AWGN and BSC, respectively. What is more interesting,
however, is the non-asymptotic regions for a given choice of
code parameters as illustrated in Fig. 5, 6 and 7.

α-capacities of binary-input BSC (black), BSEC (red) and AWGN channel (blue)
as a function of SNR= 1/(2σ2) per transmitted bit.

10 / 20 Sept. 28th, 2022 Olivier Rioul α-Capacity



Outline

Introduction

Ingredients

Inequalities

Main Result

10 / 20 Sept. 28th, 2022 Olivier Rioul α-Capacity



α-Data Processing Inequality (DPI)

Theorem (DPI for α-Divergence)

When a given channel pY|X responds to two different inputs:

pX → pY|X → pY

qX → pY|X → qY ,
then

Dα(pY∥qY) ⩽ Dα(pX∥qX) .

Theorem (DPI for α-Information)

If W − Y − Ŵ forms a Markov chain: Encoder Channel Decoder
W

Yj

X Y Ŵ

feedback

then Iα(W; Y) ⩾ Iα(W; Ŵ) .
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α-Fano Inequality

Theorem (Fano Inequality for α-Information [Rioul-GSI’21])

Iα(W; Y) ⩾ dα
(
Ps(W|Y)

∥∥Ps(W)
)

where dα(p∥q) is the binary α-divergence and
Ps(W|Y) ≜ max

W−Y−Ŵ
P(Ŵ = W) = EY

(
maxw pW|Y(w|Y)

)
Ps(W) ≜ max

w
pW(w)

achieved by the MAP rule yielding minimum probability of error Pe upon observing
channel output Y or not.

for equiprobable M-ary source W: Iα(W; Y) ⩾ dα
(
Ps
∥∥ 1
M

)
.

α → 1 one recovers the classical Fano inequality [Fano’52]
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Memoryless Channel With (or Without) Perfect Feedback

In this case

pY|W =
n∏
j=1

pYj|W,Y1,...,Yj−1
=

n∏
j=1

pYj|Xj

where Xj = f(W, Y1, . . . , Yj−1) for j = 1, . . . ,n.

Theorem ([PolyanskiyVerdu10])

Iα(W, Y) ⩽ n · Cα

Proof.

Simple proof in [RioulNguyen’22] with the inequality

Dα(pXY∥qXqY) ⩽ Dα(pX∥qX) + max
x

Dα(pY|x∥qY).

13 / 20 Sept. 28th, 2022 Olivier Rioul α-Capacity



Memoryless Channel With (or Without) Perfect Feedback

In this case

pY|W =
n∏
j=1

pYj|W,Y1,...,Yj−1
=

n∏
j=1

pYj|Xj

where Xj = f(W, Y1, . . . , Yj−1) for j = 1, . . . ,n.

Theorem ([PolyanskiyVerdu10])

Iα(W, Y) ⩽ n · Cα

Proof.

Simple proof in [RioulNguyen’22] with the inequality

Dα(pXY∥qXqY) ⩽ Dα(pX∥qX) + max
x

Dα(pY|x∥qY).

13 / 20 Sept. 28th, 2022 Olivier Rioul α-Capacity



Outline

Introduction

Ingredients

Inequalities

Main Result

13 / 20 Sept. 28th, 2022 Olivier Rioul α-Capacity



Main (α-Converse) Theorem

By combining the above inequalities:

Theorem

For any α ∈ [0,+∞] and any block code (n,M) with rate R = logM
n and decoding error

probability Pe = 1 − Ps on a memoryless channel (with or without perfect feedback) of
α-capacity Cα,

dα(Ps∥P′
s) ⩽ n · Cα

where P′
s = maxw pW(w) ⩽ Ps

In particular, P′
s =

1
M for equiprobable messages W.

For varying α ∈ [0,+∞], gives non-asymptotic lower bounds on Pe (upper bounds
on Ps) for

• any particular choice of block code parameters (n,M)
• any choice of code length n with varying coding rate R = logM

n
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Lower bounds on error probability Pe vs. coding rate R

TABLE I
SOME ↵-CAPACITIES OF BINARY-INPUT MEMORYLESS CHANNELS. h(p) = �p log p � (1 � p) log(1 � p) IS THE BINARY ENTROPY FUNCTION.

C↵ cut-off C1/2 usual capacity C = C1 C1

BSC 1 � 1
1�↵

log(p↵ + (1 � p)↵) 1 � log(1 + 2
p

p(1 � p)) 1 � h(p) 1 � log 1
1�p

BEC 1 � ↵
1�↵

log(1 � ✏ + 2
1�↵
↵ ✏) 1 � log(1 + ✏) 1 � ✏ 1 � log 1

1�✏/2

BSEC 1 � ↵
1�↵

log
�
(p↵ + (1 � p � ✏)↵)

1
↵ + 2

1�↵
↵ ✏

�
1 � log(1 + ✏ + 2

p
p(1 � p � ✏)) (1 � ✏)(1 � h( p

1�✏
)) 1 � log 1

1�p�✏/2

AWGN 1 � ↵
1�↵

log

Z 1

�1

e�(y2+1)/2�2

p
2⇡�2

1 � log(1 + e�1/2�2
) 1�

Z 1

�1

e�(y�1)2/2�2

p
2⇡�2

1 � log 1
1�Q(1/�)

⇥ 1
2
(ey↵/�2

+ e�y↵/�2
)1/↵ dy ⇥ log(1 + e�2y/�2

) dy

C↵

SNR (dB)

↵ = 1 ↵ = 0.1↵ = 10

Fig. 3. ↵-capacities of binary-input BSC (black), BSEC (red) and AWGN
channel (blue) as a function of SNR= 1/(2�2) per transmitted bit.

VI. ↵-CONVERSE THEOREM

The following Theorem provides infinitely many non-
asymptotic upper bounds on Ps (lower bounds on Pe).
Theorem 8 (↵-Converse Theorem): For any ↵ 2 [0, +1] and
any block code (n, M) with rate R = log M

n and decoding
error probability Pe = 1�Ps on a memoryless channel (with
or without perfect feedback) of ↵-capacity C↵,

d↵(PskP0
s)  n · C↵ (25)

where P0
s = maxw pW (w)  Ps; in particular, P0

s = 1
M for

equiprobable messages W .
Proof: Combine Theorems 4 and 6. (The values ↵ = 0,

1, +1 are obtained by taking limits.)
For varying ↵ 2 [0, +1], (25) provides non-asymptotic

lower bounds on Pe (upper bounds on Ps) for any particular
choice of block code parameters (n, M)—or for any choice
of code length n with varying coding rate R = log M

n . An
illustration is given in Fig. 4 for increasing code lengths.

A. Application to the Zero-Error Problem
If one requires strictly zero error [14], that is, Pe = 0 and

Ps = 1, then (25) applies with equiprobable messages, where
d↵(1k 1

M ) = log M . Thus (25) takes the form of a coding rate
bound R = log M

n  C↵. By [C2] inf C↵ = C0, so this all
boils down to the inequality

R  C0 = max
pX

I0(X; Y ) = max
pX

inf
y

log 1P
py|X >0

pX
(26)

(see [I4]). As noticed in [17], this is exactly Shannon’s
expression of the zero-error capacity with feedback in the case
where this capacity is > 0 (when not all inputs pairs can cause
the same output [14]).

Pe

RC

acceptable
region

forbidden
region

Fig. 4. Lower bounds on error probability Pe vs. coding rate R on a BSC(.25)
for n = 8 (magenta), 16 (black), 32 (cyan), 64 (red), 128 (blue) for ↵ 2
[0, +1] with stepsize = 0.1. The dashed vertical line shows the capacity C.

B. Application: Strong Converse

For ↵ > 1, (25) readily implies the strong converse theorem
(for equiprobable messages):
Theorem 9 (Strong Converse): If R > C, then Pe tends
exponentially to 1 as n ! +1.
As shown in [10], Arimoto’s converse bound [2] can be
recovered from this result.

Proof: For ↵ > 1, 1
↵�1 log(P↵

s
1

M1�↵ ) < d↵(Psk 1
M ) 

nC↵. Simplifying gives Ps < 2�n(R�C↵)↵�1
↵ . If R > C,

since C↵ & C as ↵ & 1, one has R > C↵ + ✏ for some
↵ > 1 and ✏ > 0, and Ps < 2�n✏↵�1

↵ ! 0 exponentially.
Fig. 4 illustrates Theorem 9 by showing lower bounds on Pe

for increasing lengths. The “hard limit” at Shannon’s capacity
C is only attainted for immeasurably large n.

C. Application: Lower Bound on the SNR

In our channel models, letting Eb/N0 be the SNR per (in-
formation) bit, C↵ is expressed as functions of 1

�2 = 2R·SNR
per coded bit sent on the channel. Since C↵ is increasing in
SNR (as illustrated in Fig. 3), (25) gives a lower bound on
the feasible SNR for a given performance level (Pe, R) over
a given channel.

In particular for n ! +1 and R ! 0 we recover the
well-known Shannon limits �1.59 dB and 0.37 dB for binary-
input AWGN and BSC, respectively. What is more interesting,
however, is the non-asymptotic regions for a given choice of
code parameters as illustrated in Fig. 5, 6 and 7.

Lower bounds on error probability Pe vs. coding rate R
on a BSC(.25) for n = 8 (magenta), 16 (black), 32 (cyan), 64 (red), 128 (blue).
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Theoretical Applications of the Main Theorem

Zero-Error Problem If one requires strictly Pe = 0, the α-converse is optimal for α → 0,
which gives

R ⩽ C0 = max
pX

I0(X; Y) = max
pX

inf
y
log 1∑

py|X>0
pX

C0 is the zero-error capacity with feedback (when not all inputs pairs can
cause the same output [Shannon’56]).

Strong Converse For α > 1, 1
α−1 log(Pα

s
1

M1−α ) < dα(Ps∥ 1
M) ⩽ nCα. Simplifying gives

Ps < 2−n(R−Cα)
α−1
α . R > C implies R > Cα + ϵ for some α > 1 and ϵ > 0, and

Ps < 2−nϵα−1
α → 0 exponentially.

R > C =⇒ Pe tends exponentially to 1 as n → +∞.

Arimoto’s converse bound [Arimoto’75] can be recovered from this result.
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Application: Lower Bound on the SNR

Cα is expressed in terms of 1
σ2 = 2R·SNR per coded bit sent on the channel where

Eb/N0 = SNR per (information) bit

since Cα is increasing in SNR, the α-converse theorem gives a lower bound on the
feasible SNR for a given performance level (Pe,R) over a given channel.

for n → +∞ and R → 0 we recover the well-known Shannon limits −1.59 dB
(binary-input AWGN) and 0.37 dB (BSC)

non-asymptotic regions for a given choice of code parameters as illustrated below
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Lower bounds on error probability Pe vs. SNR
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Fig. 5. Lower bounds on error probability Pe vs. SNR for a [128, 64] code
(n = 128, R = 1/2) on a BSEC. The thick curve is for ↵ = 1.
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Fig. 6. Lower bounds on SNR vs. coding rate for n = 1024 on a BSEC.
The thick curve is for ↵ = 1.
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Fig. 7. Lower bounds (maximized over ↵) on SNR vs. coding rate for n =
4, 8, 16, . . . , 32768 on a BSEC.

VII. CONCLUSION AND PERSPECTIVES

We have presented some results of ↵-information theory
in order to derive simple non-asymptotic lower bounds on
the probability of error for any binary block code used on
symmetric memoryless channels with or without feedback.
Such bounds can be rewritten as lower bounds on the SNR
for any given code parameters.

Since I↵(X; Y ) 6= I↵(Y, X), one can also define a “reverse”
↵-capacity C 0

↵ = maxpX
I↵(Y ; X). Since [1] C↵  C 0

↵, the
resulting bounds (at least without feedback) cannot be tighter
than the bounds in this paper.

As a perspective, the obtained converse bounds can be
compared to other known finite-length bounds, applied to
more general types of channels and perhaps other types of
problems—in fact, data processing and Fano’s inequalities
were recently applied to side-channel analysis in [7].

APPENDIX: A TECHNICAL LEMMA

Lemma 3: Let P be a probability space and let f(p, q) be
defined for p, q 2 P such that

• f(p, q) is linear in p for fixed q;
• f(p, q) is lower semi-continous in q for fixed p;
• 8 p 2 P , there exists a unique q = qp achieving

minq f(p, q) = f(p, qp), where qp in continuous in p.
Further assume p⇤ achieves maxp f(p, qp) = f(p⇤, qp⇤) = C.
Then C = maxp f(p, qp⇤) = minq maxp f(p, q).

Proof: Let p 2 P and " > 0 and consider the perturbation
p⇤" = (1 � ")p⇤ + "p so that p = "�1p⇤" + (1 � "�1)p⇤. Then
by lower semi-continuity for small enough " > 0, f(p, qp⇤) 
f(p, qp⇤" ); by linearity in p, f(p, qp⇤" ) = "�1f(p⇤", qp⇤" ) +
(1 � "�1)f(p⇤, qp⇤" ), where f(p⇤, qp⇤" ) � f(p⇤, qp⇤) = C
by definition of qp⇤ and f(p⇤", qp⇤" )  f(p⇤, qp⇤) = C by
definition of p⇤. Combining we obtain f(p, qp⇤)  "�1C+(1�
"�1)C = C (8p) which proves C = maxp f(p, qp⇤). There-
fore, C � minq maxp f(p, q). Now C  maxp f(p, q) (8q)
hence C  minq maxp f(p, q), which proves the Lemma.
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p⇤" = (1 � ")p⇤ + "p so that p = "�1p⇤" + (1 � "�1)p⇤. Then
by lower semi-continuity for small enough " > 0, f(p, qp⇤) 
f(p, qp⇤" ); by linearity in p, f(p, qp⇤" ) = "�1f(p⇤", qp⇤" ) +
(1 � "�1)f(p⇤, qp⇤" ), where f(p⇤, qp⇤" ) � f(p⇤, qp⇤) = C
by definition of qp⇤ and f(p⇤", qp⇤" )  f(p⇤, qp⇤) = C by
definition of p⇤. Combining we obtain f(p, qp⇤)  "�1C+(1�
"�1)C = C (8p) which proves C = maxp f(p, qp⇤). There-
fore, C � minq maxp f(p, q). Now C  maxp f(p, q) (8q)
hence C  minq maxp f(p, q), which proves the Lemma.
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VII. CONCLUSION AND PERSPECTIVES

We have presented some results of ↵-information theory
in order to derive simple non-asymptotic lower bounds on
the probability of error for any binary block code used on
symmetric memoryless channels with or without feedback.
Such bounds can be rewritten as lower bounds on the SNR
for any given code parameters.

Since I↵(X; Y ) 6= I↵(Y, X), one can also define a “reverse”
↵-capacity C 0

↵ = maxpX
I↵(Y ; X). Since [1] C↵  C 0

↵, the
resulting bounds (at least without feedback) cannot be tighter
than the bounds in this paper.

As a perspective, the obtained converse bounds can be
compared to other known finite-length bounds, applied to
more general types of channels and perhaps other types of
problems—in fact, data processing and Fano’s inequalities
were recently applied to side-channel analysis in [7].
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Lower bounds (maximized over α) on SNR vs. coding rate
for n = 4,8,16, . . . ,32768 on a BSEC.
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Conclusions & Perspectives

α-information theory allows to derive simple non-asymptotic lower bounds on the
probability of error for any binary block code used on symmetric memoryless
channels with or without feedback [RioulNguyen’22]

bounds can be rewritten as lower bounds on the SNR for any given code
parameters

since Iα(X; Y) ̸= Iα(Y,X), one can also define a “reverse” α-capacity
C′
α = maxpX Iα(Y;X), but [AishwaryaMadiman’20] Cα ⩽ C′

α without feedback.

compare to other known (finite-length) bounds — sphere packing bounds

more general types of channels

other types of problems: α-DPI and α-Fano were recently applied to side-channel
analysis [LiuChengGuilleyRioul’21].
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