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Abstract
Side-channel attacks aim at extracting secret keys from cryptographic devices. Randomly masking the implementation is a
provable way to protect the secrets against this threat. Recently, various masking schemes have converged to the “code-based
masking” philosophy. In code-based masking, different codes allow for different levels of side-channel security. In practice,
for a given leakage function, it is important to select the codewhich enables the best resistance, i.e., which forces the attacker to
capture and analyze the largest number of side-channel traces. This paper is a first attempt to address the constructive selection
of the optimal codes in the context of side-channel countermeasures, in particular for code-based masking when the device
leaks information in the Hamming weight leakage model. We show that the problem is related to the weight enumeration of
the extended dual of the masking code. We first present mathematical tools to study those weight enumeration polynomials,
and then provide an efficient method to search for good codes, based on a lexicographic sorting of the weight enumeration
polynomial from the lowest to highest degrees.

Keywords Side-channel analysis · Masking scheme · Information-theoretic metric · Linear code · Security formalization ·
Weight distribution

1 Introduction

Cryptographic devices are prone to side-channel attacks.
These attacks consist in the analysis of unintentional leak-
ages, arising from within the computation of the cryp-
tographic algorithms. Leakages are captured as execution
traces by fast sampling apparatus, such as high bandwidth
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oscilloscopes. In a typical side-channel attack, numerous
traces are gathered into a dataset, referred to as an acqui-
sition campaign. In the recent years, strong efforts have been
deployed for devising techniques to extract as much infor-
mation as possible about the secret key. Up-to-date exploits
concern template attacks, including machine learning and
artificial intelligence empowered attacks.

It is thus extremely important to ensure some reliable
protection against those attacks. Countermeasures are opti-
mized accordingly, favoring thosewhose implementation has
mathematically provable security. For this reason, random
masking [16,28] has turned out to be the countermeasure of
reference.

Recently, the generalized code-based masking (GCM)
[9,33] has been promoted as a coding-theoretic way to unite
several masking schemes. The peculiarities of inner prod-
uct masking, direct sum masking, etc., can indeed be united
into the GCM framework. This framework is amenable to
encoding algorithms employing data units as bit strings of
� bits—where for instance, � = 8 for AES (a byte-oriented
block cipher) and � = 4 for PRESENT (a nibble-oriented
block cipher). Therefore, the corresponding linear codes in
GCM are naturally built with F2� as the base field.
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However, optimizing the linear codes which underlie the
GCM implementation is still an open question not fully
resolved. Indeed, as of today, two leakage models coexist:

• The probing leakage model (at word level, in F2� );
• The bounded moment leakage model (at bit level, in F2).

Accordingly, these two leakage models are concerned with
two different adversarial strategies, namely:

• The probing model considers an attacker who can place
a limited number of probes to acquire a linear dump of
the consecutive values taken on by the probed variables.
This model is an extension of the one proposed in the
seminal paper from Ishai, Sahai and Wagner [16] which
only considered bits. Current probing models encompass
probing of full-width registers [28].

• The bounded moment model [2] considers the realization
of a (high-order) correlation analysis, whereby different
signals are combined so as to weaken, or eventually can-
celed out completely, the effect of the masking. These
attacks exploit the signals arising from any bits manip-
ulated in the netlist, and the order of the attack is the
limiting complexity factor.

Now, in the context of the practical security evaluation of
a device, both models are to be considered at once. The com-
monality between both models is that the masking strength
relates to the dual distance of the masking code [6,24]. Also,
the bit-level security relates to the extension of the code into
the base field [6,10]. Putting everything together

• The probing model is limited by the number of probes
t : The masking code in F2� must have a dual distance
strictly greater than t .

• The bounded moment model requires that the subfield
extension of the masking code from F2� to F2 has a dual
distance as high as possible. It is of course at least as large
as that of the code on F2� , but can (and ideally should)
be strictly larger.

Essentially, two leakage models are connected with each
other. Indeed, given a linear code over F2� , it is always feasi-
ble to extend it into the subfield F2. However, this extension
depends on both the irreducible polynomial used in F2� and
the basis used for the extension. In this paper, we focus on
the latter since the finite field is fixed for a specific cryp-
tographic algorithm like AES or PRESENT. Furthermore,
another benefit of extending codes from F2� to F2 is that it
sets the same baseline for all linear codes over F2, resulting
that their coding-theoretic properties can be fairly compared.

Contributions In this paper, we show how to build codes
with length n = t + 1 which have a good bit-level secu-

rity order. We revisit the code extension from F2� to F2

by using subfield representation with trace-orthogonal bases
(TOBs), which brings the commutative relationship between
subfield representation and duality of the code. Next, we
connect the side-channel resistance of a code-based mask-
ing to the whole weight distribution of corresponding linear
codes. With the lexicographical order of weight distribution,
we show how to choose the best one among them, and val-
idate our approach by an information-theoretic assessment.
In summary, our findings empower the code-based masking
by providing optimal linear codes which can maximize the
side-channel resistance from an information-theoretic per-
spective.

2 Background

2.1 Preliminaries

We first introduce several definitions which will be used
throughout this paper.

Definition 1 (Linear code parameters [21]) A linear code C
is a set of vectors, called codewords, which form a vector
space over some finite field F2� . The parameters of the linear
code C is a triple [n, k, d], where n is the code length, k is its
dimension, and d is its minimum (Hamming) distance. They
are denoted by [n, k, d]2� to refer to the field on which the
code is defined.

Definition 2 (Complement of a linear code) Two linear codes
C1 and C2 are complementary to one another if C1 ∩ C2 =
{0}, where 0 is the all-zero codeword.

It is always possible to build a complement of a code C :
The generatingmatrixGC ofC can be complemented by vec-
tors (e.g., randomly, one by one) until it forms a basis of the
vector space. The complemented vectors form the generating
matrix of a complement code of C .

Definition 3 (Dual code [21] and dual distance) The dual
code of a code C is the linear code consisting of the set of all
vectors orthogonal to all codewords of C . The dual distance
d⊥
C = dC⊥ of the code C is the minimum distance of its dual
code C⊥.

Definition 4 (Weight distribution [21] and kissing number)
The (Hamming) weight distribution of a code C of length
n is the (n + 1)-tuple of integers Ai , 0 ≤ i ≤ n, such that
Ai = #{c ∈ C, wH (c) = i} (where wH is the Hamming
weight).

In particular, the kissing number Ad is the number of code-
words at minimum distance d to any codeword.
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Definition 5 (Subfield extension of a code [21]) The subfield
representation of x ∈ F2� is its vector of coordinates [x] ∈
F

�
2, which depends on the choice of the basis of F2� over F2.

For a vector c ∈ F
n
2� , we shall note [c] the broadcast extension

of every component, meaning [c] = ([c1], . . . , [cn]).
The subfield extension [C] is the set of all vectors obtained

from the codewords of C by taking the subfield representa-
tion, i.e., [C] = ([c], c ∈ C).

Considering a generator matrix of a linear code C of size
k × n in F2� , the generator matrix of the extended code [C]
has a size of k� × n� in F2.

As demonstrated in [9,10], a linear code is all the better (in
the sense of side-channel resistance of the code-based mask-
ing) that it has a larger dual distance, and also a lower kissing
number for the same dual distance. Therefore, we introduce
an ordering of different codes relying on their weight distri-
butions as follows that integrates both the minimum distance
and the kissing numbers.

Definition 6 (Prefix-based lexicographical order of
sequences) Let (Ai ) and (A′

i ) (0 ≤ i ≤ n) be two sequences
of integers of length n. The sequence (Ai ) is (strictly) smaller
than the sequence (A′

i ) if there exists 1 ≤ j ≤ n, such that
Ai = A′

i for all 0 ≤ i < j , and A j < A′
j .

Definition 7 (Best weight distribution) A linear code C is
said to be better than a linear codeC ′ if its weight distribution
is (prefix-based) smaller than that of C ′. A code has the best
weight distribution if it is better than any other linear code
with the same code parameters n and k.

Thus, to obtain the best weight distribution, we apply the
following three principles:

1. Maximize the minimum distance d (recall that d =
min{i �= 0, Ai > 0})

2. (in case of a tie) minimize the kissing number Ad

3. (in case of a tie) minimize the following coefficients Ai ,
i > d in lexicographical order.

Regarding the first principle, it is feasible to construct a
maximum distance separable (MDS) code which maximizes
the minimum distance. We have the following Delsarte’s
lemma for the dual of an MDS code.

Lemma 1 (Dual of an MDS code [14]) The dual of an MDS
code is also an MDS code.

Corollary 1 The dual distance of a linear MDS code of
parameters [n, k]2� is d = k + 1.

Proof of the corollary. The dual distance of a linear MDS
code is equal to the minimum distance of the dual of the
code which has parameters [n, n − k]2� . By Lemma 1, it is
MDS. Therefore, the Singleton bound [31] is tight, and we
have that n − (n − k) + 1 = d. Hence, d = k + 1. �	

We finally introduce the optimal linear codes over F2�

given parameters n and k as follows.

Definition 8 ((d, Ad)-Optimal linear code) A linear code C
of parameter [n, k] over F2� is said to be (d, Ad)-optimal if
its subfield extension [C] has the largest minimum distance
d and the lowest kissing number Ad .

The important case is that of a (d, Ad)-optimal binary
linear code over the binary fieldF2. For instance, two optimal
binary linear codes are: [8, 4, 4]2, that is (4, 14)-optimal, and
[16, 8, 5]2 that is (5, 24)-optimal, respectively. While there
are constructions of MDS codes over F2� under condition
n < 2�, the determination of (d, Ad)-optimal linear codes is
still an open problem except for trivial cases like repetition
codes or parity check codes (both of them being trivial MDS
codes).

In this paper,we focus on the binary extensions overF2 for
two reasons. First, the side-channel leakage originates from
bits (e.g., wires, registers, memory elements, etc.) of running
devices. Secondly, as demonstrated by information-theoretic
evaluations [10] and attack-based evaluations [11], the two
ingredients of (d, Ad)-optimal linear codes indeed indicate
the side-channel resistance of code-based protections.

Remark 1 A linear code with the best weight distribution is
also a (d, Ad)-optimal code, but the converse is not always
true in the sense that not all binary linear codes can bemapped
into a linear code over F2� .

Remark 2 The kissing number in Definition 8 should be
replaced by the adjusted kissing number [9] when the two
linear codes C and D in code-based masking are not com-
plementary.

2.2 State-of-the-art results

Recall the communication channel-based setting of side-
channel analysis [7,12] shown in Fig. 1, with the following
notations.

• K , K̂ denote the secret and guessed key, respectively.
• T denotes the plaintext/ciphertext that can be accessed
by an adversary.

• U is the sensitive variable which is encoded as V after
code-based masking using an independent random mask
M .

• The device leaks under leakage function f (typically
Hamming weight leakage model f = wH ) so that
X = f ([V ]), where [V ] denotes element-wise subfield
representation when V is a vector.

• The side-channel leakage is modeled as Y = X + N
where typically N ∼ N (0, σ 2) is an additivewhiteGaus-
sian noise (AWGN). In addition, N shall be amultivariate
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Fig. 1 Side-channel leakage
setup and subsequent analysis
modelization (modified from
[7])

Gaussian variable, e.g., in the presence of masking, when
V is a vector.

Figure 1 makes use of the symbol “⊕” to denote finite
field addition, and “+” for addition of reals. In the sequel, we
focus on finite field operations; there is therefore no possible
confusion. Hence, we simply use “+” even in finite fields.

We consider the code-based masking of Fig. 1 for which

V = UGC + MGD (1)

whereU and M are the sensitive variable and random mask,
respectively. Two linear codes C and D with respective gen-
erator matrices GC and GD encode U and M into V .

It follows that from the perspective of side-channel
resistance, the word-level security is only captured by the
minimum distance of D⊥ [6,24]. By contrast, the bit-level
security of a code-based masking is related to both the min-
imum distance and the kissing number of D⊥ [9,10] under
the Hamming weight leakage model.

Rather than searching from all possible candidates as in
[9], we aim at constructing optimal linear codes for GCM by
an efficient algorithm. To the best of our knowledge, this is
an open problem. It is known that a good code (for masking
countermeasure) has a large minimum distance and a low
kissing number [10]. However, we recall from Definition 4
that such kissing number is only one coefficient of the weight
distribution polynomial. As we demonstrate in the sequel,
the entire weight distribution is to be considered to assess
the side-channel resistance of a code-based masking. As a
consequence, we found that the best masking code for GCM
is determined by Algorithm 1. In particular, the difference
comparingwith [9,10] lies in line 4,which indicates the better
code in case of a tie in Ai for d ≤ i ≤ n.

3 Orthogonal bases and subfield
representations

In a code-based masking scheme, the side-channel security
order at bit-level is related to the weight distribution of the
codes in the subfield representation [9,10]. Particularly, given
a code D in (1) defined over F2� , we wish to evaluate the
weight distribution of the dual extended code [D]⊥, and the
natural question is to assess whether this is equivalent to
evaluate the weight distribution of extended dual code [D⊥].

Algorithm 1: Conceptual process for finding the best masking

code for GCM.
Input : Masking order t (at word-level over F2� )
Output : Codes for GCM over F2�

1 Construct an MDS code D: [n, n − k]2� with d⊥
D = t + 1 // Use

Corollary 1, d⊥
D = n − k + 1

2 Apply subfield extension on D to get [D] // Use Def. 5

3 Compute the dual code [D]⊥ // Use Def. 3

4 if [D]⊥ has the best weight distribution then // Use Def. 7

5 return D
6 else
7 goto Line 1
8 end

Fig. 2 Commutative connection between sub-field representation and
duality

However, as shown in Fig. 2, the commutative relationship
does not hold in general because depending on the choice of
basis of F2� over F2, the two codes [D]⊥ and [D⊥] are not
always equivalent to each other.

As it turns out, the commutative relationship will hold
true if the basis used in subfield representation is a trace-
orthogonal basis. Therefore, we first show how to construct
trace-orthogonal bases and then investigate the subfield
extension of the code.

3.1 Construction of trace-orthogonal bases

Let � > 1 and F2� be the extension field of F2. By the
Frobenius conjugacy property, the trace function tr : F2� →
F2, defined as tr(x) = ∑�−1

i=0 x
2i , is linear. The (trace-)

orthogonality and orthonormality are defined as follows.

Definition 9 Elementsa1, a2 inF2� areorthogonal if tr(a1a2)
= 0. A basis {a1, a2, . . . , a�} of F2� over F2 is orthonormal
if tr(a2i ) = tr(ai ) = 1 and tr(aia j ) = 0 for all i �= j .

Notice that as mentioned in [30], we have the following
result:
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Lemma 2 A (trace-)orthogonal basis in F2� is always orthon
ormal.

Proof Let ai be elements in a basis, where i ∈ {1, . . . , �}.
We need to show that it satisfies tr(ai ) = 1.

The trace takes values in F2, which consists in two ele-
ments, namely 0 and 1. Therefore, it must be proven that
tr(ai ) �= 0. This means that ai is not self-orthogonal, since
tr(a2i ) = tr(ai )2 = tr(ai ) in F2.

Assume on the contrary that ai is self-orthogonal. Then,
not only ai is orthogonal to all vectors a j ( j �= i), but also to
itself. Therefore, it belongs to the dual of the space vector E
generated by the basis {a1, a2, . . . , a�} (the universe code),
whose dual is the singleton {0}. Consequently, ai = 0, which
contradicts the fact that ai is a basis vector. �	
Remark 3 Incidentally, we notice that the condition (36) in
[19, Chap 5, p. 182] is superfluous, since already implied by
condition (37).

By [20, Note 3, p. 75] (which points to the original paper
[19]), we know that an orthonormal basis always exists.
Although [19] gives a formal construction meant to provide
the existence result, the resulting implementation is double-
exponential in 2�, which is far too complex to implement in
practice.

In this paper, we consider instead a fast, but probabilistic,
trace-orthogonal basis construction given by Algorithm 2.
For � = 8, it works most of the time in one iteration (e.g.,
about 70.20% over 2000 times of randomly running Algo-
rithm 2). Examples are provided below.

Remark 4 Strictly speaking, Algorithm 2 does not necessar-
ily converge with a basis of full rank. We observed that
depending on the scanning order of field elements at line 3,
the algorithm can succeed or fail to return a basis. Therefore,
we introduced a randomization at this line, and repeated the
algorithm until it returns a (full rank) basis.

In viewing of Definition 9, the elements in a basis must
satisfy tr(ai ) �= 0. Therefore, we can improve Algorithm 2
by removing zero-trace elements with a preliminary check
of all traces. The new procedure is shown in Algorithm 3.

Table 1 presents the comparison on efficiency between
Algorithms 2 and 3. The performance metric is the execution
time, measured on a server which runs the Magma system.
This clearly shows the advantage of using Algorithm 3 when
the order of the finite field is large. For instance,when � = 16,
Algorithm 3 have a speedup by a factor of 5 compared to
Algorithm 2.

We shall use the following two examples of trace-
orthogonal bases throughout the rest of this paper:

• B0 = {α252, α156, α122, α203, α5, α126, α71, α65},
• B1 = {α121, α252, α202, α20, α242, α15, α126, α44}.

Algorithm2:Randomized construction of an orthonormal basis

in F2� .

Input : � ≥ 1, the extension order of F2
Output : An orthonormal basis of F2�

1 (b1, . . . , b�) ← (0, . . . , 0) // Basis, initialized with 0s

2 for i ∈ {1, . . . , �} do // Find the ith element of the orthonormal basis

3 for a ∈ (F2� )∗ do // Candidate next vector in the basis (chosen

randomly)

4 if tr(a) = 1 then // Test for tr(a2) = tr(a)2 �= 0 (only element

�= 0 is 1 in F2)

5 is_orthogonal ← true
6 for j ∈ {1, . . . , i − 1} do
7 if tr(ab j ) �= 0 then // Test whether a and b j are

orthogonal

8 is_orthogonal ← false
9 end

10 end
11 if is_orthogonal then
12 bi ← a
13 end
14 end
15 end
16 end
17 return (b1, . . . , b�)

where α is the first primitive element in the finite field F28 .
Note that the irreducible polynomial used in this paper is:
g(X) = X8+X4+X3+X2+1. Moreover, we also investigate
the default basis used in Magma, which is a non-orthogonal
basis:

• B2 = {1, α1, α2, α3, α4, α5, α6, α7}.

3.2 Subfield representation and duality of codes

We therefore specify the representation in Definition 5 by
showing how to transform an element over F2� into F2. The
subfield representation [a] of a field element a is defined as
follows.

Definition 10 Let b = (b1, . . . , b�) an orthonormal basis
of F2� . The subfield representation of a ∈ F2� is [a] =
(tr(ab1), . . . , tr(ab�)).

The subfield representation code [D] can be seen a con-
catenated code (as per Forney [15]) with D of parameters
[n, k]2� as the outer code, and the universal [�, �, 1]2 as
the inner code. As a consequence, the side-channel secu-
rity at bit-level and word (�-bit string) level are related by
the subfield representation as follows: The security order at
word-level is the dual distance of the code inF2� , whereas the
security order at bit-level is the dual distance of the subfield
representation in F2.

A nice feature of trace-orthonormal bases is that duality
and subfield representation commute:
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Table 1 Comparison on
efficiency of two algorithms for
constructing trace-orthogonal
bases

� 4 8 12 16 20 24

Run time (s) Algorithm 2 0.0001 0.0038 0.1150 1.5034 36.0350 1146.1685

Algorithm 3 0.0001 0.0019 0.0334 0.3065 4.7267 267.7467

Note that with our Magma server is with Intel Xeon CPU@2.0 GHz, 4 processors (only one is used), and
with 16 GB Memory

Algorithm 3: The improved construction of orthonormal bases

in F2� .

Input : �, the extension order, and α, a primitive element of
F2�

Output : An orthonormal basis of F2�

1 list ← {} // Create an empty list

2 for i ∈ {1, . . . , 2� − 1} do // Check the trace of elements in F
∗
2�

3 if tr(αi ) = 1 then
4 list ← list ∪ {i} // Put the power in list if trace equals 1

5 end
6 end
7 B ← {αlist[1]} // Create a set with one element

8 start ← 2 // Set the start position of searching (can be changed)

9 while #B �= � do
10 n ← start //

11 for k ∈ {2, . . . , �} do // Find the kth element of the orthonormal

basis

12 for s ∈ {n + 1, . . . , #list} do
13 is_orthogonal ← true
14 for j ∈ {1, . . . , k − 1} do // Test whether the candidate is

orthogonal with elements in B

15 a ← B[ j] · αlist[s]
16 if tr(a) �= 0 then
17 is_orthogonal ← false
18 end
19 end
20 if is_orthogonal then
21 B ← B ∪ a
22 n ← s
23 end
24 end
25 if #B < k then // Start again if we cannot find next base

26 break
27 end
28 end
29 start ← start + 1 // Change a start position (if we do not get

enough basis)

30 end
31 return B

Theorem 1 Let D be a linear code. Then, under a trace-
orthogonal basis, we have:

[D]⊥ = [D⊥]. (2)

Said equivalently, the duality and the sub-field representation
form a commutative diagram:

Proof Given x, y ∈ F
n
2� and their subfield representations

are [x], [y] ∈ F
n�
2 , respectively. Then, the inner product

〈x |y〉 = 0 implies that 0 = tr(〈x |y〉) = ∑
i tr(xi yi ) =∑

i
∑

j [xi ] j [yi ] j = 〈[x]|[y]〉 where the third equality holds
because of the property of the trace-orthogonal basis. There-
fore, we obtain [D⊥] ⊆ [D]⊥.

Inversely, two linear codes [D⊥] and [D]⊥ are subspaces
of Fn�

2 that have the same length 2n� and dimension 2(n−k)�,
implying the same number of codewords in both codes. As a
consequence, we have [D⊥] = [D]⊥. �	

As a straightforward consequence of Theorem1, the order
of two transformations in lines 2 and 3 of Algorithm 1 is
interchangeable. Therefore, the selection of the best codes
can be achieved from the code D to the dual code D⊥ and
then to the subfield extension [D⊥]. Section 3.3 illustrates
the gain in terms of speed of this method.

Remark 5 We notice that the resulting distances are not the
same depending on:

• which basis is used,
• the code itself.

We provide several examples of properties of codes D⊥
of parameters [5, 3]256 (for � = 8). The Magma scripts are
given in Appendix 1). The difference between the tables are
the bases:

• B0 is used in Table 2,
• B1 is used in Table 3.

Therefore, the main takeaway point is that the bases have
significant impact on the coding-theoretic properties of the
extended codes.

3.3 Optimized searchingmethod

We notice that the subfield extension operation is “one-way.”
Namely, it is easy to extend a code from F2� to F

�
2 (see
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Table 2 Dual distances for two seeds when drawing 10 random codes
D, using B0 of F256

SetSeed(0) SetSeed(1)

dD⊥ d[D]⊥ dD⊥ d[D]⊥

4 8 4 6

3 6 4 7

4 8 4 6

4 6 4 6

4 8 4 8

4 7 4 8

4 7 4 8

4 7 4 8

4 8 4 7

4 7 4 8

Table 3 Dual distances for two seeds when drawing 10 random codes
D, using B1 of F256

SetSeed(0) SetSeed(1)

dD⊥ d[D]⊥ dD⊥ d[D]⊥

4 8 4 7

3 6 4 7

4 7 4 7

4 7 4 8

4 8 4 7

4 7 4 7

4 7 4 8

4 6 4 7

4 7 4 7

4 7 4 8

Magma SubfieldRepresentationCode command),
but the inverse operation is not trivial.Moreover, not all codes
of parameters [n�, k�]2 can be interpreted as codes [n, k]2� .
On the contrary, taking the dual of a linear code is invertible,
and even involutive, as (C⊥)⊥ = C .

Thus, leveraging trace-orthogonal bases, one can simplify
the search for good codes by trading Algorithm 4 (which is
a realization of Algorithm 1) by Algorithm 5, in particular,
saving the computation of the dual codes.

4 Characterizing side-channel security by
weight distribution

Mutual information (MI) is commonly used in tasks related to
measuring side-channel leakage as an information-theoretic
metric. Essentially, MI measures the statistical dependencies
between the key-dependent variables and the leakage, which
considers the full distributions of corresponding variables.

Algorithm 4: Bounded search for an efficient code

Input : Number of iterations N
Output : Best found GCM code over F2�

1 w ← (2n, 0, . . . , 0) // Worst case for a weight enumeration polynomial

2 Dbest ← RandomCode [n, k]2�

3 for i ∈ {1, . . . , N } do
4 Select a random code D
5 if enumerationPolynomial ([D]⊥) is better than w then
6 w ← enumerationPolynomial ([D]⊥)

7 Dbest ← D
8 end
9 end

10 return Dbest

Algorithm 5: Optimized (compared to Algorithm 4) bounded

search for an efficient code
Input : Number of iterations N
Output : Best found GCM code over F2�

1 w ← (2n, 0, . . . , 0) // Worst case for a weight enumeration polynomial

2 Dbest ← RandomCode[n, k]2�

3 for i ∈ {1, . . . , N } do
4 Select a random code D′
5 if enumerationPolynomial ([D′]) is better than w then // No

computation of dual code for all candidates

6 w ← enumerationPolynomial ([D′])
7 Dbest ← D⊥ // This operation has been procrastinated

8 end
9 end

10 return Dbest

Consider a linear leakage model including the Hamming
weight model. Since the weight distribution determines how
weights of codewords in a linear code are distributed, it
therefore determines the leakage distribution of the masked
variable from a coding-theoretic perspective [10].

In view of the above reasoning, we have the following
conjecture.

Conjecture 1 MI between the sensitive variable and side-
channel leakage under linear leakagemodels (e.g., Hamming
weight model or weighted sum of bits model) depends on the
weight distributions of the corresponding codes in the code-
based masking.1

It is well-known that for a code of dual distance d, any
tuple of d−1 coordinates is uniformly distributed, and some
tuples of d coordinates are linearly dependent [21, Theo-
rem 10]. Therefore, the side-channel security order under
probing model is t = d − 1, and an attack of order d, corre-
sponding to codewords ofHammingweight equal tod, brings
some mutual information that depends on σ−2d , where σ 2

1 It is worth noting that, in theory,MI is not restricted to rely on specific
assumption on the leakage model. However, we focus on the linear
leakage model in this paper.
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is the variance of the AWGN channel that characterized the
leakage model [10]. Moreover, since not all codewords have
the same Hamming weight d, other codewords of weights
> d should bringmore informationwhen consideringmutual
information as an information-theoretic metric.

Said differently, as inspired by [10, Theorem 4]2, the
mutual information is related to

∑n�
i=0

Ai
σ 2i , or more precisely

(removing the useless 1 constant arising from i = 0), it is
related to:

n�∑

i=d

Ai

σ 2i , (3)

where n� is the length of the extended code over F2 and Ai

is the number of codewords of weight i (in the dual of the
code employed to mask the information). Hence, the lexico-
graphical order of the Ai to compare the amount of leakage
is indeed associated with the masking code.

4.1 Illustrating the impact of weight distributions

An illustration of the terms Ai/σ
2i for 0 ≤ i ≤ 16

(recall (3)), in the case two masking schemes correspond-
ing to � = 8 and n = 2, is provided in Fig. 3. The two
represented codes are:

• Boolean masking and
• Masking using the first code in Table 4.

The valueswhich are represented are Ai/σ
2i ; the value for

which i is equal to the minimum distance is an approxima-
tion of the mutual information. Such dominating coefficient
is shown in Fig. 3 with larger symbol × or +. The figure
shows the values in logarithmic scale; the null values are not
represented. (For the Boolean masking case, weight coeffi-
cient is equal to zero for even values of i). It is recalled from
[10] how the code impacts the security. Consider the largest
symbol:

• Its abscissa corresponds to the leakage order (e.g., with
different weights), whereas

• Its ordinate corresponds to the leakage amplitude
(approximate information leakage) for that leakage order.

It is clear from Fig. 3 that code-based masking performs
better than Boolean masking on both metrics.

The impact of nonlinear masking, such as (6), is to intro-
duce combination(s) of bits before the attacker tries himself
to further combine bits in his high-order attack.Therefore, the

2 Note that Theorem 4 in [10] only focuses on the first Ai for nonzero
codewords.

attacker needs to combine less bits (since some are already
combined) to perform a successful attack.

Now, the Leakage Function box in Fig. 1 may consist in
two physical phenomena:

1. Upfront (at its inputs): the design features cross-talks
for instance, bits are combined. The combination is
often nonlinear (e.g., the concrete example discussed in
Sect. 4.5), in that for instance the leakage of one bit is
strengthened when another (nearby) bit is having a given
value or experiencing a given transition. Hence, a nonlin-
ear leakage model, even before any “noisy leakage” has
occurred.

2. Downstream (at its outputs): the side-channel antenna
is large, some aggregation (under the form of a linear
combination) is performed and turns Boolean values into
a real number.

The probing model operates at the input of the Leakage
Function box, whereas the bounded moments leakage model
operates at the output of the Channel box. Both models
should be considered simultaneously in evaluating practical
security of cryptographic implementations, since the attacker
has the choice of its weapon.

4.2 Connecting with attacks

When evaluating with side-channel attacks, particularly in
the optimal multivariate attacks (using higher-order optimal
distinguishers) [5], theweight distribution also plays a signif-
icant role. More precisely, we have the following conjecture.

Conjecture 2 The success rate of optimal multivariate attack
under linear leakage models is determined by the weight
distributions of the corresponding codes in the code-based
masking.

Informally, as shown inFig. 1, given the sameU ,wH ([V ])
is distributed as wH ([V ′]), where M and M ′ are uniformly
drawn from two equivalent codes (because of the Hamming
weight, which is coordinate-wise independent). Therefore,
side-channel distinguishers should perform similarly when
extracting key-dependent information from leakages under
the Hamming weight model.

4.3 Numerical results

In the following, we consider a typical case of GCM by set-
ting the generator matrices of the two codes C and D as
follows:

GC = (
1 0

)
, (4)

GD = (
α1 α2

) = (
αi α j

)
. (5)
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Fig. 3 Value of Ai/σ
2i per weight (or equivalently, per attack order). Largest symbol indicates leading term

Table 4 Classifying linear codes under different bases

Subfield Number of linear codes with different d Best weight distribution Optimal codes

#{d = 1} #{d = 2} #{d = 3} #{d = 4} #{d = 5}
B0 F28 → F2 0 52 (0.2047) 154 (0.6063) 48 (0.1890) 0 [1, 0, 0, 0, 2, 22, 40, 44,

45, 40, 32, 20, 8, 2, 0,
0, 0]

(4, 2)-optimal

B1 F28 → F2 0 52 (0.2047) 174 (0.6850) 28 (0.1102) 0 [1, 0, 0, 0, 3, 21, 38, 46,
45, 40, 34, 18, 7, 3, 0,
0, 0]

(4, 3)-optimal

B2 F28 → F2 0 36 (0.1417) 152 (0.5984) 66 (0.2598) 0 [1, 0, 0, 0, 4, 22, 35, 42,
47, 46, 36, 14, 4, 4, 1,
0, 0]

(4, 4)-optimal

Random codes F2 60688
(0.0607)

357539
(0.3575)

528070
(0.5281)

53703
(0.0537)

0 [1, 0, 0, 0, 1, 23, 42, 42,
45, 40, 30, 22, 9, 1, 0,
0, 0]

(4, 1)-optimal

BKLC F2 0 0 0 0 1 [1, 0, 0, 0, 0, 24, 44, 40,
45, 40, 28, 24, 10, 0, 0,
0, 0]

(5, 24)-optimal

Note that the float number in parenthesis is the ratio between the number of codes in a class and the total number of candidates

Clearly, the code D is an MDS code of parameters
[2, 1, 2]. Considering equivalent linear codes over F28 , we
can fix α j = 1 in GD . Hence, there are only 254 candidates
for the second element in GD , corresponding to 254 linear
codes.

As a common setting in side-channel analysis, we take the
Hamming weight leakage model with the Gaussian noise.
The setup is shown in Fig. 1 in a communication chan-
nel viewpoint. Considering different bases, we launch an
information-theoretic evaluation on all linear codes under
different noise levels. The results are shown in Figs. 4, 5
and 6 for the three bases, respectively. In particular, we add
Fig. 4a for the purpose of comparison, which illustrates the
effectiveness of our lexicographical order-based sorting of
all codes.

Note that the two vertical red dashed lines are for indicat-
ing the different dual distances d⊥

D ∈ {2, 3, 4}. For instance
in Fig. 4b, the first vertical line marked 48means there are 48
linear codes with d⊥

D = 4, and 202 − 48 = 154 linear codes
with d⊥

D = 3, and remaining 52 linear codes with d⊥
D = 2.

An interesting observation from Figs. 4, 5 and 6 is the
bases have a significant impact on the distribution of lin-
ear codes. The mutual information increases (in most cases,
except for some local minima) with the code lexicographic
order on their weight enumeration polynomial. This justi-
fies Conjecture 1. However, the number of exceptions (local
minima) decreases when the noise increases, and the curves
become indeed strictly increasing. Particularly, the first basis
B0 gives the best weight distribution among the three bases,
which will be investigated further in the next subsection.

4.4 Classifying linear codes

In order to find the best weight distributions under different
bases, we classify linear codes as in Table 4. Specifically, in
Table 4, we first show the distribution of the minimum dis-
tance of all 254 linear codes under the three bases, and then
present the best weight distribution in the last column. The
takeaway point for the three bases is that the basis has a sig-
nificant impact on the distribution of the minimum distances.
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(b)

(a)

Fig. 4 Information-theoretic evaluation of all 254 candidates under the trace-orthogonal basis B0

Fig. 5 Information-theoretic evaluation of all 254 candidates under the trace-orthogonal basis B1 sorted in the lexicographical order

Under condition of the prefix-based lexicographical order of
weight distribution (Definition 6), we focus on the number of
codeswith theminimumdistance equal to 4, resulting thatB2

gives more codes with d = 4 (among the three cases). On the
contrary, the first basis B0 gives the best weight distribution
among all three bases where A4 = 2.

Secondly, we randomly generate 1,000,000 linear codes
over F2 by fixing n = 16 and k = 8 for comparison. The
distribution of the minimum distances are listed in the fourth
row of Table 4. One interesting observation is that this ran-

dom approach gives a better weight distribution than all three
bases over F28 .

However, all above cases do not recover the best known
linear code (referred to as BKLC in Magma) given n =
16 and k = 8. We know that there is a unique linear code
with parameters [16, 8, 5], which has the minimum distance
equal to 5 [10]. Among all linear codes over F2, this BKLC
code gives us the best weight distribution according to our
lexicographical sorting, since it has A4 = 0, while A4 > 0
for other cases. From a perspective of side-channel analysis,
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Fig. 6 Information-theoretic evaluation of all 254 candidates under the default basis B2 sorted in the lexicographical order

this BKLCcode provides us amasking codewith the bit-level
security order t = d⊥

D − 1 = 4 that is higher than all other
linear codes. Unfortunately, this code cannot be constructed
by the subfield extension approach from F28 to F2 (e.g., by
using bases like Bi for i ∈ {0, 1, 2}). This is also the reason
why the direct sum masking can be better than the inner
product masking in the sense of side-channel resistance [6,
10].
Evaluation of the best weight distributions under different
bases. In Table 4, we present five best cases of the weight
distribution. In order to have a fair comparison, we launch
an information-theoretic evaluation by using mutual infor-
mation. The results are shown in Fig. 7. As shown in Fig. 7,
the main observation is that our lexicographical order-based
sorting still works when comparing linear codes extended by
using different bases. Note that for the best weight distribu-
tion under B1 and B2, the curve for B1 is slightly higher
than that of B2. The reason is that other elements (e.g.,
Ad+1, Ad+2, etc) in the weight distribution under B1 have
more impact on mutual information.

The generator matrices of the optimal codes in Table 4 are
listed in “Appendix 1.”

4.5 On another leakagemodel

Although we mainly focus on the linear leakage models in
this work, our analysis on using good linear codes can also
be applied to other leakage models like the Hamming dis-
tance (HD) model. Let V = (V1, V2) be the two shares in
2-share masking. Consider that V1 and V2 are manipulated
consecutively, e.g., loaded in one register, we shall have the
following HD leakage:

dH (V1, V2) = wH (V1 ⊕ V2)

= wH (V1) + wH (V2) − 2wH (V1 ∧ V2) (6)

where dH is the Hamming distance function, and ∧ is the
bit-wise AND operator.

Therefore, the HD leakage as in (6) is a kind of second-
order leakages, resulting in a decreased (effective) security
order of the corresponding masking. For instance, a first-
order (2-share) Boolean masking can be compromised under
this HD leakage because the dual distance of the correspond-
ing linear codes is only 2.

Fortunately, the code-based masking with the best linear
codes can still work. Specifically, taking those linear codes
with the dual distance equal to 3 or 4 in Table 4 can very
well-resist to the above HD leakage since HD leakage is a
kind of second-order leakages [10]. Another similar scenario
can happen with the transitional leakage caused by physical
defaults like couplings [1,13]. More general leakage models
shall also be included and characterized as in [10, Theo-
rem 1].

From an evaluation perspective, practical attack-based
investigations in [35] demonstrate the advantages of utiliz-
ing the best linear codes, against both the template attack
and higher-order correlation attacks. Moreover, this work
also shows that code-based masking with good linear codes
can resist transitional leakages in practice. To summarize,
even with different leakage models, our approach can pro-
vide better choices in enhancing the side-channel resistance
of masked cryptographic implementations.

5 Discussion: related works

In this section, we first review the selection of optimal linear
codes in code-based masking and then give some examples
of optimal codes in the literature, particularly with one upper
bound on the minimum distance of the extend binary linear
codes.

5.1 Linear codes in code-basedmasking

The problem of selecting optimal linear codes originates
from [22] when choosing good codes for leakage squeez-
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Fig. 7 Information-theoretic
evaluation of the best weight
distributions (WD) under
different bases as shown in
Table 4

ing (LS) scheme. It is latter considered in other schemes like
low-entropy masking scheme (LEMS) [23] and direct sum
masking (DSM) [4]. The problem also emerges in choosing
good public parameters in IPM [1], since different parame-
ters play a significant role in the side-channel resistance of
IPM. Note that LS, IPM and DSM schemes are special cases
of GCM as shown in [9]. Therefore, it is preferable to seek
a solution to the problem in GCM as it is the most general
case.

From the perspective of solution, using the dual dis-
tance as an indicator to choose good codes (in the sense of
side-channel resistance) is proposed firstly in [4,6,23,24].
In particular, DSM and IPM are connected to each other
over F2� and F2 in [6,24]. Then, the kissing number pro-
posed as the second indicator along with the dual distance
is investigated in [9,10]. In viewing of the state-of-the-art
results, this paper further extends the idea by using the full
weight distribution and illustrate the exact conversion from
F2� to F2 by giving the best weight distribution. In particu-
lar, we show how to use trace-orthogonal bases to obtain the
extend codes over F2 irrespective to the order of two trans-
formations, namely applying subfield representation first or
computing dual codes first.

More generally, when the code-based masking is redun-
dant [9], our approach also works in selecting optimal
weight distribution. Considering the polynomial masking
[25], which is based on Shamir’s Secret Sharing (SSS)
scheme, the kissing number should be replaced by the
adjusted one (defined in [9], depending on both codes C
and D in GCM). As a consequence, the selection of optimal
linear codes should also use the adjusted weight distribution
of C and D, rather than the weight distribution of D only in
non-redundant cases like in IPM, etc.

5.2 An upper bound on theminimum distance

The investigation of coding-theoretic properties of the
extended linear codes over the subfield has been the topic of
several works [3,17,18,26,27,29,34]. The subfield extension
of a linear code over F2 is usually called its binary image.
As we show in this paper, the coding-theoretic properties
(e.g., the minimum distance, weight distribution, etc.) usu-
ally depend on both the code itself and the bases that used for
subfield extension [18,26,27], while under certain conditions
[3], the minimum Hamming weight shall be independent of
the bases.

As our aim is the selection of optimal linear codes, one
natural question that raises is how to (upper) bound the mini-
mum distance of the binary images. Interestingly, Rabizzoni
[26, Theorem 1] propose both the upper and lower bounds in
this respect (applied to F2� ):

d ≤ d ′ ≤
⌈
d · � · 2�−1

2� − 1

⌉

, (7)

where d and d ′ denote the minimum distances of the linear
code and its binary image, �x� is the greatest integer less than
or equal to x . In particular, r.h.s of (7) is smaller than d · �

when � > 1, where the latter is a trivial upper bound on d ′.
In Table 5, we present several examples of the optimal

linear codes with � = {4, 8} for F24 and F28 , respectively.
Note that dBKLC denotes the minimum distances of the best
known linear codes overF2 given byMagma database; dup is
for the upper bound from r.h.s of (7). From Table 5, one can
observe that the upper bound (by r.h.s) will be looser when �

gets larger, while interestingly, when � = 4, the upper bound
is very close, or even exact when n = 3 and k = 2.

However, the upper bound by (7) is only related to d and
the degree of the finite field F2� , while it is independent of
code parameters n and k. Intuitively, it shall be tighter by
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Table 5 Validation of the upper bound on the minimum distance of
binary images

Code parameters F2� d d ′ dBKLC dup by (7)

n = 2, k = 1 � = 4 2 3 4 4

� = 8 2 4 5 8

n = 3, k = 2 � = 4 3 6 6 6

� = 8 3 8 8 12

The detailed constructions of those codes can be found in [10,11]

considering these parameters. We leave this problem open
for further investigations.

5.3 Impacts of linear codes on efficiency

One main disadvantage of code-based masking is its higher
overhead comparedwith the simplest Booleanmasking since
more operations like finite field multiplication are involved
in code-based masking. Taking real-world implementation-
based evaluations on an embedded AVR microcontroller [1]
and an ARM Cortex M4 board [35], the number of clock
cycles of IPM is about 1.2 to 1.5 times to the Boolean coun-
terpart with the same number of shares.

However, the different choices of linear codes in IPMhave
no significant impact on the efficiency, except the trivial case
of Boolean masking is considered. For instance, setting the
four linear codes in IPM [35] leads to the same clock cycle
counts since this software implementation is designed to be
constant time. Similarly, taking the best linear codes as we
proposed in this work should have no significant impact on
software-based implementations. Still, the hardware-based
implementation shall be improved by carrying out opera-
tions over F2, and we leave this problem open for future
investigation.

6 Conclusion and perspective

In this work, we built a link between weight distribution of
a linear code and the side-channel resistance of the corre-
sponding code-based masking scheme. We first revisited the
subfield extension of a linear code from word to bit-level,
which is related toword- andbit-level probing security.Using
trace-orthonormal bases allowed us to have a commutative
relationship of subfield representation and duality of a code.
We then connected the side-channel resistance of the code-
based masking to the weight distribution of corresponding
linear codes. We have shown that the lexicographical order-
ing of the weight distribution can be used to find the best
codes.More precisely, the lexicographic order onweight enu-
merators coincides with the information the corresponding
codes leak as additive white Gaussian noise increases. Thus,

the information-theoretic evaluation confirms the interest of
the lexicographic sorting on weight distributions, which can
be readily used to construct optimally resistant linear codes
to side-channel attacks in our framework. As a perspective,
we intend to consider practical applications in designing effi-
cient masked cryptographic implementations of high-order
security.
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Appendix A: Magma scripts

TheMagma script used to generate results in Tables 2 and 3
is given in Listing 1.

Listing 1 Obtaining random linear codes, in Magma [32] language.

1 l := 8; // In this example , we
consider the finite field GF
(2,8)

2 n := 5;
3 k := 3;
4 Nc := 10; // Obtain 10 random

linear codes
5 SetSeed (0);
6 [{ MinimumDistance(D),

MinimumDistance(
SubFieldRepresentationCode(D))}:

7 D in [Dual(RandomLinearCode(GF(2,l)
,n,k)): i in {1..Nc}]];

8 SetSeed (1);
9 [{ MinimumDistance(D),

MinimumDistance(
SubFieldRepresentationCode(D))}:

10 D in [Dual(RandomLinearCode(GF(2,l)
,n,k)): i in {1..Nc}]];

Appendix B: Generator matrices of optimal
codes

The generator matrices of five instances optimal linear codes
are detailed as follows.

123



Journal of Cryptographic Engineering

• The (4, 2)-optimal codes with TOB B0:

GD1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• The (4, 3)-optimal codes with TOB B1:

GD2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1
0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• The (4, 4)-optimal codes with the basis B2:

GD3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1
0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• The (4, 1)-optimal binary codes by random draws over
F2:

GD4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• The (5, 24)-optimal binary codes from Magma BKLC
database:

GD5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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