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Abstract

Homomorphic encryption (HE) ensures provable secrecy of data processed in the ci-
phertext domain. However, it happens that FHE private-key algorithms can be broken by
side-channel attacks. We disclose a novel cache-timing attack on the SEAL open-source
HE library. It is triggered by a non-constant time Barrett modular multiplication, which
is one of the building blocks in SEAL. We both analyze the mathematical conditions upon
which the leakage occurs and show the experimental feasibility of the attack.

Keywords: Homomorphic encryption; Barrett modular multiplication; Extra-reduction; Side-
channel attack; Cache-timing attack; SEAL C++ library.

1 Introduction
No one can deny the massive increase in data over the years, leading to an increased need
for storage capacity. Thus, cloud computing becomes one of the most important Information
Technology (IT) services for industry to improve business. It allows not only the storage but
also also the processing of data.

Nevertheless, a significant security issue is raised with the remote manipulation of data in-
side the Cloud. Hence, a very challenging topic appears, which is to find a solution enabling
manipulating data while ensuring their protection, privacy, and anonymization. Homomor-
phic encryption responds to this challenge and enables computations, without decryption, on
encrypted data. Let E(a) and E(b) be the encryption of a and b using an homomorphic cryp-
tosystem, E(a) and E(b) verify the following properties:

• E(a)⊕ E(b) = E(a+ b) // Homomorphy in addition,

• E(a)⊗ E(b) = E(a× b) // Homomorphy in multiplication.

There are two variants of homomorphic encryption: Fully Homomorphic Encryption (FHE)
and Somewhat Homomorphic Encryption (SWHE). While FHE is a fully homomorphic en-
cryption that allows the evaluation of an arbitrary circuit, SWHE can only evaluate circuits of
constant depth. The circuit depth correspond to the number of multiplications that could be
performed within a given scheme. Beyond this depth, decryption is not possible because of the
noise that is produced during plaintext encryption. This noise increases after each multiplica-
tion of the ciphertexts until reaching a level where the decryption is not possible.

In 2009, Gentry [9] has invented the first FHE cryptosystem using a bootstrapping [9]
technique to transform a SWHE cryptosystem into a FHE cryptosystem. The security of
Gentry’s scheme is based on ideal lattices [13]. This procedure allows transforming a ciphertext
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resulting from a circuit to a fresh ciphertext including a noise similar to the one in a new
encrypted ciphertext.

Following Gentry’s cryptosystem, many schemes have been proposed as in [7, 10, 25], using
different security hardness assumptions. However, FHE schemes are still not practical due
to the time to turn on the bootstrapping technique. For this reason, many SWHE schemes
as [4, 5, 8] have been developed to allow using homomorphic encryption in practice. Most of
these schemes are based on LWE [20] (Learning with errors) and RLWE [12] (Ring Learning
with Errors) problems. FHE algorithms are typically being standardized at an international
level [23].

In this paper, we choose to study the case of Brakerski-Fan-Vercauteren (BFV) homomorphic
encryption scheme [5, 8], since it is one of the most known and practical SWHE schemes.
SEAL1 [21] is one of the existing libraries implementing this cryptosystem. It is an open source
library, developed in 2015, in C++ and C# by a team from Microsoft, without any dependency
on external libraries. In addition, SEAL has been tailed to SEAL-Embedded [16] with small
code and memory footprint for resource-constrained embedded devices, e.g., for ARM Cortex
M4 platform.

Contributions. We target Barrett modular multiplication implemented in SEAL library and
exhibit a timing leakage caused by the extra-reductions. The condition of occurring extra-
reductions is refined in SEAL case. We then exploit the timing leakage to launch a key-
recovery attack and demonstrate by simulation that the secret key can be extracted using a few
ciphertexts with extra-reductions.

Outline. The reminder of this paper is organized as follows. Sec. 2 introduces preliminaries,
followed by theoretical timing leakage analysis in Barrett multiplication in Sec. 3. The cache-
timing analysis is presented in Sec. 4 and finally Sec. 5 concludes the paper.

2 Preliminaries

2.1 Notation
Let Zq the integers modulo q. The algebraic structure used in BFV scheme is the polynomial
ring Rq = Zq[X]/φ(X), with φ(X) = Xn + 1. We note R = Z[X]/f(X) where Z[X] is the
polynomial ring with coefficients in Z and φ(X) is a cyclotomic polynomial. Elements of R
are polynomials of degree less than n and coefficients in Z. Elements of Rq = Zq[X]/φ(X) are
polynomials of degree less than n and coefficients modulo q, where Zq[X] is the polynomial
ring with coefficients modulo q. Elements of the ring Rq are noted in lowercase (a ∈ Rq), we
denote by [a]q the elements in R obtained by computing all its coefficients modulo q, a + b
(resp. a · b) is the addition (resp. multiplication) of two polynomials a and b in Rq. In the
case where a and b are two vectors in Rl

q with elements ai and bi in Rq, the addition of a and
b is a + b is a vector of l elements ai + bi in Rq and the canonical scalar product is used for
the multiplication a · b which is a vector of l elements aibi in Rq. For x ∈ R, we denote by bxe
rounding to the nearest integer, dxe, and bxc rounding up and down, and then the fractional
part of x is denoted as {x}, that is {x} = x− bxc. At last, let ` be the bit-length of a word or
a variable, e.g., `q = blog2(q)c+ 1.

1Available at https://www.microsoft.com/en-us/research/project/microsoft-seal/.
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In the following, we recall the Learning With Errors (LWE) and Ring-LWE (RLWE) prob-
lems, and then the BFV scheme.

2.2 LWE/R-LWE Problems

In 2005, Regev [20] introduced the LWE problem, which consists in finding a secret in the
middle of noisy linear equations. Regev demonstrates that solving the LWE problem in the
average case by a quantum algorithm involves solving the SIVP [1] and gapSVP [6] problems
in the worst case. RLWE [12] is the polynomial ring version of LWE problem.

2.3 BFV Scheme

The cryptosystem of BFV is a somewhat homomorphic encryption scheme, developed in 2012,
its security is based on the hardness of the RLWE problem [20].

The problem is described in the mathematical ring formed by degree d polynomials over a
finite field such as the integers modulo a prime number q. Let φ(x) be a cyclotomic polynomial
of degree d, and q ≥ 2 a modulus depending on a security level λ. For a random s ∈ Rq and
a distribution χ = χ(x) over R, the problem consists in distinguishing (a, [a · e + s]q) from a
random pair sampled uniformly from Rq ∗Rq, where a is a random element of Rq and e a noise
term from χ.

2.3.1 Key Generation

As BFV is a public key cryptosystem, the key generation returns a public key pk and a secret
key sk as described in Alg. 1.

Algorithm 1: Key Generation
Input: params = (R, d, q, t, χerr, χkey)
Output: sk, pk, rlk

1 Pick a random sk uniformly sk ← χkey.

2 Pick a random a
$← Rq.

3 Sample a random error e← χerr.
4 Compute pk = ([−(a · sk + e)]q, a).
5 return sk, pk and rlk.

2.3.2 Encryption

The encryption of a message m ∈ Rt is computed using the public key pk and returns a
ciphertext of two polynomials defined in Alg. 2.

2.3.3 Decryption

The decryption of a ciphertext C = (c[0], c[1]) is computed using the secret key sk. The following
Alg. 3 describes in details the decryption procedure.

The private key sk is used in the decryption algorithm. At line 1 it is multiplied by a
ciphertext limb c[1]. This operation is sensitive. Of course, the result of the (modular) mul-
tiplication is not disclosed to the attacker. But, as we shall see in the next section, it reveals

3



Cache-Timing Attack on the SEAL Homomorphic Encryption Library Cheng et al.

Algorithm 2: Encryption
Input: m ∈ Rt and pk
Output: E(m) = (c[0], c[1])

1 Compute δ = b qt c
2 Sample u← χkey

3 Sample an error e1 ← χerr

4 Sample an error e2 ← χerr

5 Compute c[0] = [p0 · u]q
6 Compute r0 = [c[0] + e1]q
7 Compute c[0] = [r0 + δ ·m]q
8 Compute r0 = [p1 · u]q
9 Compute c[1] = [r0 + e2]q

10 E(m) = (c[0], c[1])
11 return E(m)

Algorithm 3: Decryption
Input: C = (c[0], c[1]) and sk
Output: D(C)

1 r0 = c[1] · sk // Target modular multiplication
2 D(C) = [c[0] + r0]q
3 r0 = t ·D(C)
4 D(C) = [b r0q e]t
5 return D(C)

a side-channel, in that this modular multiplication operates in non-constant time. Therefore,
although the decryption operation is benign per se (it returns information to be disclosed), the
analysis of its side-channel can lead to a complete break of the cryptosystem; indeed, an attacker
who possesses sk can basically decrypt (illegitimately) all the homomorphically encrypted data
— confidentiality is not longer warrantied.

3 Timing Leakage Analysis on Barrett Modular Multipli-
cation

Modular operations can be sped up with some algorithmic techniques. Paul Barrett introduced
at the CRYPTO’86 conference a fast algorithm to compute modular operations [3]. This algo-
rithm, as shown in Alg. 4, was taylored for RSA (and happens to work well for Elliptic Curve
Cryptography as well)2. In such algorithm, the modulus size is aligned with some limbs of
machine words.

In the rest of this section, we will analyze a variant of Barrett’s algorithm whereby the
modulus size `q = blog2(q)c + 1 can be less than a strict multiple of the machine integer
bitwidth ` (say ` = 64 bits).

2The handbook of applies cryptography [14] also provides the same algorithm, in particular the reduction
part only, as Alg. 14.42 at page 604 of chapter 14.
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Algorithm 4: Barrett Modular Multiplication [3]
Input: Modulus q ∈ N≥2, a, b ∈ Zq

Output: ab mod q

1 Precompute `q = blog2 qc+ 1, µ = b 22`q

q c
2 z = ab

3 m̃ = bbz/2`q−1cµ/2`q+1c
4 r = z − m̃q
5 while r ≥ q do
6 r = r − q // There might be 0, 1 or 2 extra-reductions

7 return r

Remark 1. Note that in the original Barrett modular multiplication as shown in Alg. 4, there
might be 0, 1 or 2 extra-reductions as demonstrated in [3,15]. However, in SEAL library, a new
variant is implemented. In particular, by aligning with the machine word, ` = 64 or 32 bits,
that is greater than `q, it results in only 0 or 1 extra-reductions as demonstrated below.

3.1 Barrett Modular Multiplication in SEAL: Principles

The goal is to compute a modular product

ab mod q

where a and b are positive integers, 0 < a, b < q, and where q > 2 is a fixed (and known)
modulus. For that one needs to compute the product z = ab and then the integer division:

m =
⌊z
q

⌋
so that the result is

z mod q = z −mq.

We assume that
q < 2`

i.e., q fits at most on ` bits (typically ` = 64 in SEAL library and ` = 32 in its embedded
version [16]).

The goal is to replace the integer division m =
⌊
z
q

⌋
by the fast binary shift corresponding

to the integer division by 2`. Let us write

z

q
=

z

2`
·
(22`

q

)
2`

where by the assumption q < 2`, the number 2`

q < 1 with ` most significant bits given by

µ =
⌊
2` · 2`

q

⌋
=
⌊22`

q

⌋
≥ 2`

5
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a number (at most 2` bits) which can precomputed once and for all in the algorithm. Therefore,
in the expression

z

q
=

z

2`
·
(22`

q

)
2`

,

we replace the integer division m =
⌊
z
q

⌋
by a lower bound:

m̃ =

⌊⌊ z
2`

⌊22`

q

⌋⌋
2`

⌋
=

⌊⌊z · µ
2`

⌋
2`

⌋
(1)

which requires only two binary shifts ` bits and a multiplication (by µ) instead of the long
division by q.

Remark 2. As we mentioned in Remark 1, the new variant implemented in SEAL library
takes Eqn. (1), that is different from line 3 in Alg. 4. We will show that there shall be at most
one extra-reduction, instead of (at most) two extra-reductions in the original Barrett modular
multiplication (Alg. 4).

3.2 Number of Extra-Reductions
The number of extra reductions (subtractions by q) one has to make on z−m̃q to obtain z−mq
equals the error made on the quotient m− m̃ ≥ 0. That error is of the form

m− m̃ =
⌊ab
c

⌋
−
⌊babbcc

c

⌋
where we have noted a = z

2` , b = 22`

q , and c = 2`. Now excluding the external floor brackets
for the moment, we can compute

∆ =
ab

c
− babbcc

c
=
a(bbc+ {b})− babbcc

c
=
a{b}+ {abbc}

c
=
a{b}+ {{a}bbc}

c

since in the last equality the difference {bacbbc} = 0. That is,

∆ =
z

22`
·
{22`

q

}
+

{{
z
2`

}
·µ
}

2`
. (2)

The fractional parts {·} are evidently < 1, so that

∆ ≤ z

22`
+

1

2`
≤ (2` − 1)2 + 2`

22`
= 1− 1

2`
+

1

22`
< 1

always. Now back to
m− m̃ =

⌊z
q

⌋
−
⌊z
q
−∆

⌋
,

it is easily seen that, as a general rule if u < v, bvc − buc is equal to the number of whole
integers ∈ (u, v). Thus we have shown:

Theorem 1. The number m− m̃ of extra reductions in Barrett’s modular multiplication algo-
rithm equals the number of whole integers lying strictly between z

q −∆ and z
q where 0 < ∆ < 1

is given by (2).

In particular, 0 ≤ m − m̃ ≤ 1 since there can be at most 1 whole integer in an interval of
length < 1.
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3.3 `-Bit Implementation
Since q can be any modulus < 2`, z = ab ≤ (q−1)2 lies on 2` bits at most. Whenever a number
x is 22` we break it on two-bit limbs and write x = x12k + x0 (in particular x1 = b x

2` c. Then µ
is a constant precomputed as µ = µ12` + µ0 and we have

zµ = (z12` + z0)(µ12` + µ0) = z1µ122` + (z1µ0 + z0µ1)2` + z0µ0

so that ⌊z · µ
2`

⌋
= z1µ12` + (z1µ0 + z0µ1) + (z0µ0)1

and ⌊⌊z · µ
2`

⌋
2`

⌋
= z1µ1 + (z1µ0)1 + (z0µ1)1 +

⌊ (z1µ0)0 + (z0µ1)0 + (z0µ0)1

2`

⌋
︸ ︷︷ ︸

≤2

where the addition (z1µ0)0 + (z0µ1)0 + (z0µ0)1 (a sum of three `-bit numbers) carries at most
1 + 1 = 2 at the `-th bit position.

Remark 3. By Theorem 1, z − m̃q is either z mod q < q or (z mod q) + q < 2q. Therefore, if
q < 2`−1, then z − m̃q < 2` can be computed as

z − m̃q = z0 − (m̃q)0.

In a C implementation of unsigned `-bit type (e.g. ` = 64 unsigned long long), what overflows
2` in the product m̃q is automatically discarded so that one can then write z0 − m̃q in place of
z0 − (m̃q)0.

3.4 Timing Leakage Analysis
Assuming that u = z

q can be “any” arbitrary number in the acceptable range, the probability
that one extra-reduction occurs is the probability P∆ that the arbitrary interval ( z

q −∆, zq ) of
length ∆ contains exactly one whole integer. It is “obviously” equal to ∆ (see following detailed
proof).

Proof. For fixed ∆ ∈ (0, 1), the interval (u − ∆, u) contains the whole integer n (which is
necessarily = buc) if and only if u −∆ < n < u, that is, n < u < n + ∆. This probability is
independent of n and we may assume that n = 0 so that u is uniformly distributed in [0, 1).
Therefore, the probability of one extra-reduction given ∆ is the probability that u < ∆, which
is P∆ = ∆.

Now the fractional part of 22`

q :

ν =
{22`

q

}
in (2) is known, however the term

{{
z
2`

}
·µ
}

is difficult to locate between 0 and 1. It follows
that

ν

22`
z < ∆ = P∆ <

ν

22`
z +

1

2`

In particular

P∆ <
ν(q − 1)2

22`
+

1

2`
(3)

7
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Since in practice q is chosen quite small w.r.t. 2`, P∆ is very very small as the following examples
show:

Example 1 (Case of long online measurement, fast cryptanalysis). Consider q = 132120577
(so (q − 1)2 = 17455846602571776), ` = 64 (so 2−` ≈ 5.42 · 10−20):

ν =
{22`

q

}
=

42396112

132120577
≈ 0.32

and
ν(q − 1)2

22`
≈ 1.65 · 10−23

so essentially
P∆ . 5.42 · 10−20

It can be seen that the probability of an extra-reduction is very small, though nonzero.
Therefore, a fair amount of time is required to find a multiplication which creates an extra-
reduction. However, as we shall see in Sec. 4.3, the offline cryptanalysis will be fast and
conclusive with the knowledge of a few such ciphertexts c[1] (as few as one).

Besides, it is also possible to make a tradeoff. As shown in the example below, the probability
is less, hence more values of c[1] leading to an extra-reduction in the Barrett algorithm can be
found. The downside is that the cryptanalysis will take longer (from a computational complexity
standpoint).

Example 2 (Case of faster online measurement, slower cryptanalysis). In this case, we take
q = 18014398492704769 (so (q − 1)2 = 324518553053963817257316409933824), ` = 64 (so
2−` ≈ 5.42 · 10−20): {22`

q

}
=

17979488999555073

18014398492704769
≈ 0.998

and
ν(q − 1)2

22`
≈ 9.52 · 10−7

so essentially
P∆ . 9.52 · 10−7.

On one hand, since P∆ is very small, so it is difficult to exploit one extra-reduction since
that is not happening most of the time. On the other hand, also since P∆ is very small, having
one extra-reduction means that z

q is (greater but) very close to an integer, i.e., { zq } is very
small, e.g., z = m′q + ε where ε = 1, 2, . . . is small w.r.t. q. This leaves a proportion ∼ 1/q of
the possibilities (i.e., large gain of log2 q bits of information).

However, we can leverage the probability P∆ by taking a smaller `, e.g., ` = 32 bits when
deploying SEAL-Embedded in embedded devices. The next example shows the case with mod-
erate online measurement and cryptanalysis.

Example 3 (Case of moderate online measurement and cryptanalysis). Taking q = 1062535169
of 30 bits and then (q − 1)2 = 1128980983236788224, ` = 32, so that 2−` ≈ 2.33 · 10−10:{22`

q

}
=

787883191

1062535169
≈ 0.742,

8
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therefore,
ν(q − 1)2

22`
≈ 4.54 · 10−2

which resulting in

P∆ . 4.54 · 10−2.

As we will demonstrate in the next section, this probability P∆ is easy to achieve in practice
and the corresponding attack shall be very efficient.

4 Cache-Timing Attacks

4.1 Principle

Cache-timing attack is a well-known class of side-channel attacks that attempt to gain infor-
mation about which memory locations certain victim programs access. The response time of
cache hit and cache miss are different. Attackers can infer the information in the cache through
the difference of access time, so as to obtain secret data. Common cache-timing attacks can be
divided into three categories: Prime+Probe, Flush+Reload, and Evict+Time.

Prime+Probe [19] is the oldest and most common cache attack. This attack targets a single
cache set and detects any access to any address in that cache set by victim program. The
initialization phase of its active portion is called "prime". In this phase, the attacker accesses
enough cache lines from the cache set to completely fill the cache set with their own data.
Then, during the measurement phase, named "probe", the attacker reloads the same data that
was primed before and calculates the time cost of this operation. If the victim does not have
access to the data in the target cache set, this operation will proceed quickly. Conversely, if
the victim accesses data in the target cache set, that access will evict a portion of the primed
data, resulting in slower reload due to additional cache misses. Therefore, a slow measurement
phase means that the victim accessed data in the target cache set.

Flush+Reload [26] relies on shared memory. It targets the specific cache line and detects
any other program’s access to that cache line. This makes Flush+Reload a more precise attack
than Prime+Probe. Due to the shared L3 cache, Flush+Reload also works naturally across
cores. As with all L3 cache attacks, Flush+Reload can detect accesses to instructions or data.
An improved variant of Flush+Reload, Flush+Flush [11], is based on the fact that CLFLUSH
instructions execute differently in different cache states. If the target of CLFLUSH exists in the
cache, it needs to be evicted from the multi-level cache during the execution of the CLFLUSH
instruction, so the execution time is longer. Otherwise, the execution time will be shortened.
The difference between the execution times of the instruction allows the attacker to determine
whether the cache line has been accessed by the victim program. Note that Flush+Flush utilizes
instruction execution time rather than memory access, so it is prone to false positives and false
negatives.

In Evict+Time [18], the attacker first lets the victim program run normally, and records the
time to establish the baseline. Next, the attacker will evict some cache lines and let the victim
program run again. By comparing the victim program’s time to the baseline, an attacker can
tell if the victim program is using an evicted cache line. It should be noted that Evict+Time
needs to be executed multiple times. If the victim program is launched only once, accurate
results cannot be obtained.

9
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4.2 Cache-timing attack on SEAL

Side-channel analyses on FHE have already been published (see e.g., [2]). Typically, such attack
must be carried out locally with a side-channel probe. We propose an attack which can be
executed remotely. In fact, regarding SEAL library, the attack aims to find the secret key used
in the function of dyadic_product_coeffmod (line 226 in polyarithsmallmod.cpp), where
the Barrett reduction is performed (line 259) to compute the modular product c ∗ sk mod q. It
corresponds to line 1 of Alg. 3.

In this work, we focus on a cache-timing attack which can be realized from the remote,
as explained in Sec. 4.1. We target the function barrett_reduce_128 implemented at line
166 in SEAL/native/src/seal/util/uintarithsmallmod.h in SEAL library. This function
implements the conditional extra-reduction in a non-constant manner. Indeed, it leverages the
ternary operator ?: in the macro SEAL_COND_SELECT below:

Listing 1: Exemplary code segment for Barrett algorithm in SEAL.
[ . . . ]

//Barre t t s u b t r a c t i on
tmp3 = input [ 0 ] − tmp1 ∗ modulus . va lue ( ) ;

//One more extra−reduc t ion ( su b t r a c t i on ) i s enough
return SEAL_COND_SELECT(tmp3 >= modulus . va lue ( ) , tmp3 − modulus . va lue ( ) , tmp3 ) ;

This timing leakage has been detected “manually”, by code reading, because the state-of-
the-art automated detection tools require C code [22] or machine code [17]. Here, the code
of SEAL is implementing inline template functions, whose mapping with compiled code is not
easy.

4.3 Key-Recovery Results

The statistics and exploitation of cache-timing attacks on Barrett multiplication has already
been studied by Mittmann & Schindler in [15], albeit on the variant of Barrett algorithm shown
in Alg. 4. The behavior in terms of existence of an extra-reduction is different for the variant
of Barrett multiplication implemented in SEAL. We conduct thereafter the analysis of the way
the extra-reduction does relate to the secret key sk.

Let us assume that we know a pair (c, red) ∈ {1, . . . , q} × {0, 1}, such that:

∀1 ≤ i ≤ Q,

⌊
ci × sk
q

⌋
−

⌊⌊ci × sk
2`

⌊22`

q

⌋⌋
2`

⌋
= redi

where sk ∈ {1, . . . , q − 1} is the unknown.

Let us keep only the cases where there is an extra-reduction (described in Sec. 3.4). When,
we know that: z/q is close to an integer (at distance max ∆). Then, for a subset of indices
i ∈ {1, . . . , Q}, we have

(ci × sk mod q) ∈ {1, . . . , εq},

where ε (= ∆) is small. That is, we have, for some mi ∈ Z:

ci × sk +mi × q = ri, where ri ∈ {1, . . . , εq}. (4)

10
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For each ri, we can solve the Diophantine equation (4) for sk and mi (because ci and q are
coprime). Namely, since ci and q are coprime, we can determine (u, v) such that:

ci × u+ q × v = 1. (Bézout theorem)

Thus one solution is sk0 = uri and mi0 = vri. We know that all the solutions are:

sk = sk0 − λq and mi = mi0 + λci,

where λ is an arbitrary integer. Since sk lives in Zq, we only keep sk0 − bsk0/qcq as a solution
(hence λ = bsk0/qc).

The process is captured in Alg. 5. If the algorithm returns multiple key candidates (list SK
is not a singleton), then the algorithm is re-executed on another pair (c, red), and the new list
of key candidates is the intersection of the two key lists. This pruning strategy is repeated until
only one single key remains.

Algorithm 5: Key-Recovery Cryptanalysis
Input: c ∈ {1, . . . , q − 1} such that there is an extra-reduction in the Barrett

multiplication with a constant sk.
Output: List SK of possible secret keys value sk.

1 SK ← ∅ // Empty list
2 (u, v) ∈ Z2 ← Bézout(c, q), based on extended Euclid algorithm // uc+ vq = 1
3 for r ∈ {1, . . . ,∆q} do // For ∆, use the upper bound given in (3)
4 sk0 ← r × u; m0 ← r × v // c× sk0 + q ×m0 = r

// All solutions are sk = sk0 − λq and we know that 0 < sk < q, so
λ = bsk0/qc

5 λ← bsk0/qc
6 SK ← SK ∪ {sk0 − λq}
7 return SK

Namely, the set of possible secret keys ŝk can be characterized by and further refined as per:

ŝk =

Q⋂
i=1

{x ∈ Fq | cix ≤ ∆q} (5)

= {x ∈ Fq | ∀i, 1 ≤ i ≤ Q, cix ≤ ∆q} (6)

=

{
r

c1
| r ∈ Fq and ∀i, 1 ≤ i ≤ Q, r ci

c1
≤ ∆q

}
(7)

=

{
r

c1
| r ∈ {1, . . . ,∆q} and ∀j, 2 ≤ j ≤ Q, rc̃j ≤ ∆q

}
. (8)

In this series of equivalent distinguishers, we leveraged:

• variable change r = c1x between lines 6 and 7,

• condition that r ci
c1
≤ ∆q is equivalent to 1 ≤ r ≤ b∆qc when i = 1 between lines 7 and 8,

• precomputation of reduced ciphertexts c̃j (with respect to pivot ciphertext c1), namely
c̃j =

cj
c1
.

11
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The complexity of the computation is reduced from line to line, namely it is:

• O(qQ) at line 5,

• O(q) at lines 6 and 7,

• O(∆q) at line 8.

Therefore the overall complexity of our cryptanalysis is O(∆q). Interestingly, it does not depend
on Q.

The attack results are presented graphically in Fig. 1. This figure represents, in logarithmic
scale, the number of candidates for sk, as a function of the number Q of ciphertexts which cause
an extra-reduction. It also represents, in linear scale, the time taken for the off-line part of the
attack (in seconds) coded in Magma [24], running on a quadcore with Intel(R) Xeon(R) CPUs
cadenced at 2.0 GHz, using 16 GBytes of RAM.

In this figure:

• the values for 0 ciphertext are trivial: all q keys are possible and it require no time to
make such useless deduction. Still, this value allows to materialize the starting point of
the attack;

• the values for 1 ciphertext correspond to the case where Alg. 5 is executed once, hence
our optimization (equation (8)) is not leveraged. The optimization starts to be useful
from 2 ciphertexts on; indeed, the attack activates shortcuts in the enumeration within
the interval of size ∆q while at the same time pruning many key candidates.

Figure 1: Performance of the attack, leveraging distinguisher Eqn. (8)

The number of solutions after Q = 1, 2, 3, etc. ciphertexts is represented in Tab. 1. In
this case, the number of possible candidates for sk is dramatically reduced when the number
of ciphertexts increases, particularly, the secret key sk is uniquely determined after Q = 8
ciphertexts.

12
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Table 1: Number of solutions for the cryptanalysis in recovering the secret key sk when the
number of ciphertexts increases.

Number of c Number of solutions for sk
1 48220170
2 2188334
3 99295
4 4508
5 192
6 8
7 2
8 1

In this experiment, the upper bound on ∆ is 0.045. This is reflected by the geometrical
decrease of the number of solutions by a rate ≈ ∆ in Tab. 1.

Remark 4 (Computation optimization of Alg. 5). For each ciphertext c causing an extra-
reduction, a large loop over ∆q possible values of r must be executed (see line 3). It is possible
to precompute a pruned list of such rs by noting that, at the end of the process, we have that
all ri/ci mod q are the same (namely equal to sk). Therefore, it is possible to select the values
of r corresponding to ciphertext ci such that all rici/cj, for j 6= i also meet the requirement
rici/cj ∈ {1, . . . ,∆q}.

4.4 Countermeasure
Essentially, the timing leakage caused by the extra-reduction is the non-constant time imple-
mentation of Barrett modular multiplication as shown in Listing 1. Therefore, this timing
leakage shall be removed by implementing the macro SEAL_COND_SELECT in a constant time
manner.

The improved macro is shown in Listing 2, in which the well-known trick is applied to
transform the ternary condition operator into non-conditional implementation. In particular,
the variable val will equal the modular value q if falg is true, and 0 otherwise. Therefore, the
following constant time implementation is equivalent to the one in Listing 1.

Listing 2: Constant time implementation of the macro in SEAL library.
[ . . . ]

//Barre t t s u b t r a c t i on
tmp3 = input [ 0 ] − tmp1 ∗ modulus . va lue ( ) ;

f l a g = (tmp3 >= modulus . va lue ( ) ) // f l a g must be an unsigned i n t e g e r
va l = ( − ! ! f l a g ) & modulus . va lue ( ) ;

return tmp3 − va l ;

5 Conclusion
Barrett multiplication has been one of the common techniques to implement fast modular mul-
tiplication like in SEAL FHE library. In this work, we target this elementary module, especially
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the new variant implemented in SEAL library, and exhibit a cache-timing vulnerability that
exploits the existence of extra-reductions as side-channel leakage. We present a key-recovery
attack that utilizes this leakage, which can determine the secret key with a few ciphertexts.
Our simulated experimental results confirm our findings.

As perspective, we will explore the practical applications of our attack with cache-timing
leakage. Furthermore, as a fundamental block, Barrett modular multiplication must be pro-
tected against such attacks that exploit the timing leakage of extra-reductions. For applications,
we will apply our findings to lattice-based post-quantum cryptography schemes like Crystals-
Kyber and Crystals-Dilithium with different sets of parameters, where our cryptanalysis shall
be very efficient with small modulus values.
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