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Abstract—In a theoretical context of side-channel attacks,
optimal bounds between success rate and guessing entropy are
derived with a simple majorization (Schur-concavity) argument.
They are further theoretically refined for different versions of the
classical Hamming weight leakage model, in particular assuming
a priori equiprobable secret keys and additive white Gaussian
measurement noise. Closed-form expressions and numerical
computation are given. A study of the impact of the choice
of the substitution box with respect to side-channel resistance
reveals that its nonlinearity tends to homogenize the expressivity
of success rate and guessing entropy. The intriguing approximate
relation GE = 1/SR is observed in the case of 8-bit bytes and
low noise.

I. INTRODUCTION

Side-Channel analysis (SCA) is a well-known threat for

secure chips in embedded symmetric crypto-systems. They

aim at recovering the key, byte by byte in a divide-and-

conquer approach, by exploiting the leakage information. The

attacker guesses one key byte K from several side-channel

observations Y (modeled as a random vector) knowing the

corresponding plain or cipher text bytes T = t and leveraging

a (noiseless or noisy) leakage model.

There are two main figures of merit in order to characterize

the efficiency of the secrets’ recovery: success rate SR and

guessing entropy GE. Roughly speaking, SR is the empirical

success probability that the best ranked (most likely) key

happens to be the correct one, while GE relates to the number

of tries that the attacker has to make before finding the actual

secret, thereby estimating the brute force effort to find the

correct key by exhaustive search. On one hand, GE is more

informative insofar as it depends on the whole key ranking

distribution for a given number of leakage traces. On the other

hand, SR computation scales easily to the whole multibyte key

(the global SR being the byte-wise product of SRs) while GE

is much harder to estimate in a multibyte context.

In principle, it is desirable to evaluate both SR and GE during

the attack because it gives a trade-off between the required

number of observations (traces) and the remaining effort for

key enumeration. Of course, there is a clear strong correlation

between SR and GE: a lower GE will generally mean higher

SR and vice versa. This is true not only for a given attack on

a given device as the number of traces increases, but also to

compare different attacks or different devices endowed with

different countermeasures against SCA. In this respect, these

metrics are relevant both for the “black hat” attacker or the

“white hat” evaluator, and the “blue hat” defender.

However, there remains a missing theoretical link between

SR and GE that could be exploited to estimate one metric

knowing the other. Obviously there is no one-to-one relation

between them, but we show that one metric can be lower

and upper bounded as a function of the other, which can be

optimally determined for a given leakage model.

State-of-the-art: Some previous approaches attempted

to bridge the gap by extending the definition of SR to the

probability SRi that the correct key belongs to the list of the

first i best key guesses [1]. For instance [2] compares various

key enumeration algorithms that allow to estimate SRi based

on the knowledge of the key bytes’ likelihoods.

While computing GE can be intractable in practice, [3]

heuristically approximates GE by considering “security graphs”

summarizing both SR and GE for a given number of traces in

the same visual representation.

Chérisey et al. [4] evaluate side channel attacks through SR

with inequalities derived from mutual information. They also

improve an inequality on GE yet the relation between the two

metrics is not investigated.

A very different approach in [5] derives fairly tight mathe-

matical bounds to estimate GE from entropy or Rényi entropy

of order 1/2. From a purely theoretical viewpoint, [6] derives

optimal bounds in very generic settings for the “guessing

moments” with Rényi entropies of various orders. In this

respect, considering entropy of infinite order and first order

guessing moment yields optimal bounds between SR and GE.

Contribution: In this paper, we first present simple and

intuitive arguments to derive the optimal bounds between the

two metrics SR and GE. Such bounds are all the more tighter

as the key space is small. We then refine the relationship in

various SCA scenarios and leakage models, providing closed-

form expressions for GE in these scenarios. We observe that the

bounds are all the more tight as the leakage model is nonlinear

(property of an S-Box in a block cipher), which tends to explain

why the expressivity of SR and GE gets similar. This accounts

for their interchangeable use as an attack working factor in the

SCA literature.

Outline: The remainder of this paper is organized as

follows. The notions of SR and GE are introduced in Section II

with emphasis on their similar properties such as data process-
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ing inequalities. Section III establishes the Schur-concavity of

GE using majorization theory which allows one to derive simple

and intuitive bounds between GE and SR. The important cases

of Hamming weight leakage model, with an S-Box, and with

noise, are mathematically developed in Section IV. Section V

concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this section, we define success rate and guessing entropy

with emphasis on their similar properties.

Basic Notations: We consider an M -ary secret K ∈
{1, 2, . . . ,M} taking M = 2n values and some side-channel
observation Y used to guess the key K̂. Observation Y gathers

several measurements with known plain or cipher text bytes

T = t. Since K̂ depends on the actual secret key K only

through Y , the triple K − Y − K̂ forms a Markov chain.

The guess K̂ is said to be blind if it does not depend on the

observation Y . For any finite set A, |A| denotes its cardinality.

A. Success Rate

Definition 1 (Success Rate (SR)). The success rate of K̂
denoted Ps is the probability that K̂ guesses the secret,

Ps = P(K̂ = K). (1)

Theorem 1 (Optimal SR). The maximal success rate is attained
with the MAP rule k̂(y) ∈ argmaxk P(K = k|Y = y) and is
given by

Ps(K|Y ) = EY

(
max

k
P(K = k|Y )). (2)

In particular, for a blind guess, we write

Ps(K) = max
k

P(K = k) ≥ 1

M
. (3)

Proof. Since K−Y −K̂ is a Markov chain, P(K̂ = k̂|Y,K) =
P(K̂ = k̂|Y ) so that

Ps = EY

(
P(K̂ = K|Y )) (4)

= EY

(∑
k
P(K = k|Y )P(K̂ = k|Y )) (5)

≤ EY

(
max

k
P(K = k|Y )) (6)

with equality if and only if P(K̂ = k̂|Y ) = 1 for some k̂ ∈
argmaxk P(K = k|Y ).
Theorem 2 (Data Processing Inequality for Ps). One has

Ps(K) ≤ Ps(K|Y ) (7)

(observing side channel information always increases success).
More generally, if K − Y − Z is a Markov chain, then

Ps(K|Z) ≤ Ps(K|Y ) (8)

(data processing can only reduce success).

Proof. Since P(K = k|Y ) ≤ maxk P(K = k|Y ), tak-

ing the expectation over Y gives EY P(K = k|Y ) ≤
EY maxk P(K = k|Y ) for every k, hence

max
k

EY P(K = k|Y ) ≤ EY max
k

P(K = k|Y ) (9)

which is (7). This in turn implies Ps(K|Z) ≤ Ps(K|Y, Z) by

considering each fixed value Z = z and taking the expectation

over Z. Finally, Ps(K|Y, Z) = Ps(K|Y ) because K|Y, Z is

distributed as K|Y since K − Y − Z is a Markov chain.

B. Guessing Entropy

In a guessing problem, keys are guessed one by one in a

sequence (1), (2), . . . , (M). Such a sequence is a permutation

of {1, 2, . . . ,M} where (i) denotes the ith ranked key for

i = 1, 2, . . . ,M . Thus, first (1) is guessed, then (2), etc. The

number of key guesses before the actual secret K = (I)
is found is I , a random variable which depends upon the

observation Y . Hence, K − Y − I forms a Markov Chain.

Definition 2 (Guessing Entropy (GE)). The guessing entropy

is the average number of guesses:

G = EK,Y (I) (10)

Notice that some previous works define GE as I itself [5], [7].

Let p(i)|y = P(K = (i)|Y = y) be the probability of the ith
ranked key given observation Y = y.

Theorem 3 (Optimal GE). The minimal guessing entropy is
attained with the ranking rule

p(1)|y ≥ p(2)|y ≥ · · · ≥ p(M)|y (11)

and is given by

G(K|Y ) = EY

( M∑
k=1

k p(k)|Y

)
. (12)

In particular, for a blind guess, this reduces to G(K) =∑M
k=1 kp(k), where the p(k) = P(K=(k)) are in descending

order.

Often G(K) is simply referred to as the guessing entropy

of K while G(K|Y ) is known as the conditional guessing
entropy of K given Y .

Proof. By the law of total expectation,

G = EY EK(I|Y ) = EY

( M∑
i=1

i · P(K = (i)|Y )
)
. (13)

By the rearrangement inequality [8, Thm. 368], since (i) is

an increasing sequence, the minimum G is obtained when the

probabilities P(K=(i)|Y ) are in descending order.

Theorem 4 (Data Processing Inequality). One has

G(K) ≥ G(K|Y ) (14)

(observing side channel information improves guessing).
More generally, if K − Y − Z is a Markov chain, then

G(K|Z) ≥ G(K|Y ) (15)

(data processing can only worsen guessing).

Proof. Without loss of generality assume that K’s probability

distribution is in descending order p1 ≥ p2 ≥ · · · ≥ pM
so that I = K and G(K) = E(K). Then by definition of

minimum guessing, G(K|Y = y) ≤ E(K|Y = y). Taking the
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expectation over Y gives G(K|Y ) ≤ EY E(K|Y ) = E(K) =
G(K) by the law of total expectation. This proves (14). This in

turn implies G(K|Z) ≥ G(K|Y, Z) by considering each fixed

value of Z = z and taking the expectation over Z. Finally,

G(K|Y, Z) = G(K|Y ) because K|Y, Z is distributed as K|Y
since K − Y − Z is a Markov chain.

III. BOUNDS DERIVATION

A. Schur-Concavity of Guessing Entropy
First we introduce some notation for the theory of majoriza-

tion [9]. Hereafter we let p(1), p(2), . . . , p(M) denote the vector

p = (p1, p2, . . . , pM ) of nonnegative elements arranged in

descending order p(1) ≥ p(2) ≥ · · · ≥ p(M). We also use the

cumulative sum notation

P(k) = p(1) + p(2) + · · ·+ p(k) (k = 1, . . . ,M) (16)

with the convention P(0) = 0.

Definition 3 (Majorization). We say that q majorizes p, and

we write p � q if

P(k) ≤ Q(k) (k = 1, . . . ,M − 1) (17)

and P(M) = Q(M). (Notice that this latter condition is always

satisfied when p and q are probability distributions since

P(M) =
∑

k pk = 1 and Q(M) =
∑

k qk = 1.)

The intuition behind majorization is that p � q means that p
is more “spread out” than q. Thus in the case of a probability

distribution p, the minimum spread is for a deterministic (but

Dirac) distribution and the maximum spread is for a uniform

distribution. Indeed, it is easily checked that(
1
M ,

1
M , . . . ,

1
M ) � p � (1, 0, 0, . . . , 0) (18)

for any probability distribution p = (p1, p2, . . . , pM ). More

generally [9],(P(M)

M ,
P(M)

M , . . . ,
P(M)

M ) � p � (P(M), 0, 0, . . . , 0) (19)

for any vector p = (p1, p2, . . . , pM ).

Definition 4 (Schur-Concavity). A function G(p) is Schur-
concave if p � q =⇒ G(p) ≥ G(q).

In other words, a Schur-concave function is large for “spread

out” distributions and small for “condensed” distributions.
It is well known that entropy [9], and more generally the

Rényi entropy of any order [10] (e.g., min-entropy, collision

entropy, etc.) is Schur-concave. Perhaps lesser known is that

guessing entropy is Schur-concave:

Theorem 5 (Schur-Concavity of Guessing Entropy). Guessing
entropy G(K) =

∑M
k=1 kp(k) is Schur-concave in p.

Proof. Using summation by parts,
M∑

k=1

kp(k) =

M∑
k=1

k(P(k) − P(k−1)) (20)

=MP(M) − P(0) +

M−1∑
k=1

(
k − (k + 1))P(k) (21)

=M − P(1) − P(2) − · · · − P(M−1). (22)

The Schur-concavity of G(K) is now obvious from the

definitions.

Remark 1. Recent works on guessing such as [11] state

Schur-concavity of Rényi entropy but do not mention the

same property for GE. During the review process we became

aware that the Schur-concavity of GE was observed earlier

by Khouzani and Malacaria [12] among many other types of

entropies. They established Schur-concavity by stating (without

proof) that G(K) is symmetric and concave in the probability

distribution of K. While symmetry is obvious here, concavity

of GE is precisely established by inequality (14) above.

Remark 2. The proof of this Theorem carries over verbatim

for any function of the form
∑M

k=1 αkp(k) where (αk) is an

increasing sequence. In particular for guessing moments [13]:

Corollary 1 (Schur-Concavity of Guessing Moments).
Gρ(K) =

∑M
k=1 k

ρp(k) is Schur-concave in p.

These results are in line with the known inequalities between

guessing entropy (or guessing moments) and entropy (or Rényi

entropies) as established in [13], [14].

Remark 3. Since guessing entropy is Schur-concave, it

follows from (18) that guessing entropy is minimized for

the deterministic distribution and maximized for the uniform

distribution, which gives the trivial bounds 1 ≤ G(K) ≤ M+1
2 .

B. Optimal Bounds on GE for a Given SR

Theorem 6 (Optimal Lower and Upper Bounds for Blind

Guess). For a fixed success rate Ps(K), the optimal lower and
upper bound on guessing entropy G(K) are(
1 + � 1

Ps(K)�
)(
1− 1

2� 1
Ps(K)�Ps(K)

)
≤ G(K) ≤ 1 + M

2
(1− Ps(K)). (23)

Proof. From Theorem 5, for a fixed p(1), G(K)− Ps(K) =∑M
k=2 kp(k) is Schur-concave in (p(2), . . . , p(M)). It follows

that this quantity is maximum for the uniform distribution

(p(2), . . . , p(M)) = (
1−Ps

M−1 ,
1−Ps

M−1 , . . . ,
1−Ps

M−1 ) and minimum for

the least spread out distribution (p(2), . . . , p(M)) with p(k) ≤
Ps. It is easily seen that the latter (least spread out) distribution

is of the form (p(2), . . . , p(M)) = (Ps, . . . ,Ps, x, 0, . . . , 0)

where x < Ps is such that
∑M

k=2 p(k) = 1, that is, x =
1− �1/Ps�Ps. Plugging these values of (p(1), p(2), . . . , p(M))
into the expression of the guessing entropy gives the announced

lower and upper bounds.

Fig. 1 below illustrates the corresponding optimal regions

(in blue) between Ps and G for M = 2n with n = 2, 4, 8.

Theorem 7 (Bounds with Side-Channel Information).

(1 +
⌊

1
Ps(K|Y )

⌋
)(1− ⌊

1
Ps(K|Y )

⌋Ps(K|Y )
2

)

≤ G(K|Y ) ≤ 1 + M
2
(1− Ps(K|Y )). (24)

Proof. Applying Theorem 6 to the random variable K|Y =
y for every value y gives (1 + � 1

Ps(K|Y =y)�)(1 −

498



(a) Regions for M = 22 (b) Regions for M = 24 (c) Regions for M = 28

Fig. 1. Regions G(K|Y ) vs. Ps(K|Y ) as given by Theorem 7. The red curve is the improved upper bound (27) for the deterministic Hamming weight

model. The 4 green dots are the exact values computed for Q = 1, 2, 3, and 4 traces. The yellow curve corresponds to the formula G = P
−1
s and seems to

approximate well the actual relation for n = 8 bits.

� 1
Ps(K|Y =y)�Ps(K|Y =y)

2 ) ≤ G(K|Y = y) ≤ 1 +
My
2 (1 −

Ps(K|Y = y)) where My ≤ M is the number of possible

keys given Y = y. Taking the expectation over Y we obtain

lower and upper bounds on G(K|Y ) = Ey G(K|Y = y). By

Theorem 1, Ps(K|Y ) = Ey Ps(K|Y = y), we obtain the

announced upper bound G(K|Y ) ≤ 1 + M
2 (1− Ps(K|Y )).

The lower bound, of the form φ(p) = (1+ � 1
p�)(1− � 1

p�p
2 ),

is piecewise linear and convex in p = Ps. Indeed, its value

at p = 1
k for positive integer k is (1 + k)(1 − k

2k ) =
1+k
2 ,

hence its successive slopes between p = 1
k−1 and p = 1

k are
1/2

1
k− 1
k−1

= −k(k−1)
2 , which is increasing as p = 1

k increases.

Thus, by Jensen’s inequality, we have Ey[φ(Ps(K|Y = y))] ≥
φ(Ey[Ps(K|Y = y)]) = φ(Ps(K|Y )), which gives the

announced lower bound.

Remark 4. It is immediate from its proof that a refinement

of the upper bound of Theorem 7 is given by

G(K|Y ) ≤ 1 + maxyMy

2
(1− Ps(K|Y )). (25)

This is particularly interesting for deterministic (noiseless)

leakage since, as shown in the next Section, My decreases

rapidly as the number of traces increases.

IV. REFINED BOUNDS FOR HAMMING WEIGHT LEAKAGE

MODEL

A. Deterministic Leakage for One Observed Trace

A well-known leakage model of an embedded cryptographic

device in a noiseless scenario is the Hamming weight model

Y = wH(K ⊕ t) (26)

where wH is the bitwise Hamming weight operator [15], ⊕
denotes the XOR operation and T = t is given value of plain

or cipher text. Let Y = {0, 1, . . . , n} be the set of all values

taken by Y and Ky be the set of key values k for fixed Y = y.

Theorem 8. For the Hamming weight model, the region (24)

reduces (improves) to the following values of SR and GE:

G(K|Y ) ≤ 1 + 1
2

(
n

�n+1
2 �

)
(1− Ps(K|Y )) (27)

Ps(K|Y ) ≥
(

n

�n+1
2 �

)−1

. (28)

Proof. For observed Y = y, My = |Ky| is the number of

n-bit vectors having Hamming weight y, that is, My =
(
n
y

)
in the improved bound (25). Since maxyMy =

(
n

�n+1
2 �

)
, this

gives (27).

Since K|Y = y has My possible values, Ps(K|Y = y) =
maxk P(K = k|Y = y) ≥ 1

My
≥ 1/( n

�n+1
2 �

)
. Averaging over

Y gives (28). Equality holds if and only if K is uniformly

distributed over the largest class Ky .

Figure 1 illustrates the improvement for n = 2, 4, and 8
bits, where the red curves correspond to the reduced upper

bound (27). It can be observed that the case of equality in (28)

corresponds to the points where the upper bound (27) (red

curve) and the lower bound in (24) (blue curve) meet. In

particular for M = 22 our improved upper bound coincide

with the lower bound. This proves that in this case the SR and

GE are in one to one correspondence with a Hamming Weight

leakage model.

B. Case of Equiprobable Keys

A usual assumption is thatK is a priori uniformly distributed

over M values. In this case the following exact formulas hold.

Theorem 9 (Exact Formulas of Equiprobable Keys).

Ps(K|Y ) = |Y|
M

and G(K|Y ) = 1

2
+

1

2M

∑
y∈Y

M2
y . (29)

More generally, these formulas hold when Y is any determinis-
tic function of K. In the special case of the Hamming weight
model (26), this gives

Ps(K|Y ) = (n+ 1)2−n, G(K|Y ) = 1 + 2−n
(
2n
n

)
2

. (30)

Proof. If K is equiprobable and Y = y is fixed (with

probability P(Y = y) =
My
M ), then K|Y = y is equiprobable

over My = |Ky| values so that Ps(K|Y = y) = 1
My

. Taking

the average over Y gives Ps(K|Y ) =
∑

y
My
M

1
My

, which yields

the announced expression for SR. Similarly G(K|Y = y) =
My+1

2 for a uniform guess, and taking the average over Y

gives G(K|Y ) =∑
y

My
M

My+1
2 , which yields the announced

expression for GE. The Hamming weight case follows from

the Vandermonde’s identity
∑n

k=0

(
n
k

)2
=

(
2n
n

)
.
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(a) S1 (linear) (b) S7 (c) S254 (AES—nonlinear)

Fig. 2. Sets Y of deterministic Hamming weight leakage values for t1 = 0 and t2 = 3 = (00000011) for different S-Boxes.

(a) S1 (linear) (b) S7 (c) S254 (AES—nonlinear)

Fig. 3. Number of keys My for given Y = y for t1 = 0 and t2 = 3 for different S-Boxes. The x, y-axes represent the two coordinates of the 2-dimensional
leakage Y = y = (y1, y2). The z-axis corresponds to the number My of possible keys given Y = y, which tends to decrease as the nonlinearity of the
S-Box increases. In particular, maxyMy is respectively 40, 20, 20 thereby improving the bound (25) for nonlinear S-Boxes.

It is easily seen that we recover the well-known expressions

Ps(K) =
1
M and G(K) = M+1

2 for a blind guess.

C. Deterministic Leakage for Multiple Observed Traces

Consider multiple observed traces (Q queries) Y =
(Y1, Y2, . . . , YQ), where

Yi = wH(K ⊕ ti) (i = 1, 2, . . . , Q) (31)

for fixed and distinct plain or cipher texts t1, t2, . . . , tQ. In this

case we are faced with a combinatorial problem since letting

Y = y determines the intersection of Q Hamming balls.

To simplify the analysis we consider Q = 2 and the

computation of SR. Without loss of generality we can set

t1 = 0 and consider variable t2 = t.

Theorem 10. Let w = wH(t). Then

Ps(K|Y ) = (w + 1)(n− w + 1)
2n

(32)

In particular for 8-bit bytes (n = 8), one obtains:

Ps =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n+1
2n for w ∈ {0, 8}
2n
2n for w ∈ {1, 7}
3(n−1)

2n for w ∈ {3, 6}
4(n−2)

2n for w ∈ {4, 5}.

(33)

Proof. We show that |Y| = (w + 1)(n − w + 1) in (29) as

illustrated in Fig. 2 (a), where the set Y of points (y1 =

wH(k), y2 = wH(k⊕t)) forms a (rotated) (w+1)×(n−w+1)
rectangle. Indeed, let t̄ be the binary complement of t and write

the decomposition wH(k) = wH(k · t) + wH(k · t̄) where ·
denotes the bitwise product. For fixed wH(t) = w, wH(k·t) can

take w+1 values and wH(k · t̄) takes (n−w)+1 independent

values. Since wH(k⊕ t) = wH(k)+wH(t)−wH(k · t) = w+
wH(k · t̄), we have (y1, y2) = (wH(k ·t)+wH(k · t̄), w+wH(k ·
t̄)) which takes all possible (w + 1)(n− w + 1) values.

More generally, the set Y can be determined by exhaustive

enumeration of Hamming weights. We computed numerically

the resulting SR and GE for Q = 1, 2, 3, and 4 traces. They

are plotted as green dots in Fig. 1 for different values of M .

D. Role of the S-Box in the Hamming Weight Model

To prevent differential and linear cryptanalysis, block ciphers

are composed with non-linear operations. This non-linearity is

performed by substitution box (S-Box). We investigate different

choices for the S-Box to observe its effect on SR and GE with

respect to SCA resistance. We consider

Si(x) = ax
i ⊕ b ∈ F2n (34)

for exponents i = {1, 7, 19, 101, 254}, constants a, b ∈ F2n .

As an illustration, Fig. 2 plots the various sets Y of Hamming

weight leakage values for S1 (linear), S7, and the AES standard

S254 (highly nonlinear). We observe that the cardinality |Y|
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increases as exponent i increases. This shows that SR (as

given by Theorem 9) increases as nonlinearity increases. Fig. 3

(the 3-D extension of Fig. 2) also plots My as a function of

y ∈ Y . Here we observe that My tends to globally decrease

as exponent i increases, which shows that GE (as given by

Theorem 9) decreases as nonlinearity increases.
Therefore, the non-linearity of the S-Box diminishes the

side channel resistance. The geometrical explanation of this

phenomenon is that the scatter plots of Fig. 2 and 3 tend to

spread out for nonlinear S-Boxes. This confirms the observation

of [16] on the effect of the S-Box on the confusion coefficient,

which for monobit leakage relates to both SR and GE [17].

E. Hamming Weight Leakage Model With Gaussian Noise
In this section we derive the expression of SR and GE in

an Hamming Weight leakage scenario

Y = wH(K ⊕ t) +N (35)

in the presence of additive white Gaussian Noise (AWGN)

N ∼ N (0, σ2). Let fY and φσ denote the p.d.f. of Y and N ,

respectively. Thus φσ(x) =
1√

2πσ2
exp(− x2

2σ2 ). Also let Q

denote the standard Q-function Q(x) =
∫ ∞
x

e−
u2

2√
2π
du.

Theorem 11 (Expression With Noisy Leakage).

Ps(K|Y ) = n+ 1
M

− 2n
M
Q
( 1
2σ

)
, (36)

G(K|Y ) = 1

2
+

(
2n
n

)
2M

+
2
(

2n
n+1

)
M

Q
( 1
2σ

)

+
2n∑
i=2

fi(n)Q
( i
2σ

)
, (37)

where the latter sum is negligible at first order in σ and where
the fi are rational functions in n and M .

For low noise one recovers (30).

Fig. 4. πi(y) for i = 0, 1, 2, 3. We can observe that the πi are step functions.

Their are constant on the interval of the form [ p
2
, p+1

2
) for all integer p.

Proof. For j = 0, . . . , n let πj(y) denote the (j+1)-th closest

point to y in Y . In particular, π0(y) is the closest point to y
in Y . It can be checked with the help of Fig. 4 that

π0(y) =

⎧⎪⎨
⎪⎩
0 for y ≤ − 1

2

i for y ∈ [i− 1
2 , i+

1
2 )

n for y ≥ n+ 1
2 .

(38)

From (2), one has

Ps =
1

M

∫
φσ(y − π0(y)) dy

=
1

M

(
2Q(

1

2σ
) +

n∑
i=0

i+ 1
2∫

i− 1
2

φσ(y − i)
)

=
1

M

(
2Q(

1

2σ
) + (n+ 1)

∫ 1
2

− 1
2

φσ(y)

)

=
1

M
(2Q(

1

2σ
) + (n+ 1)(1− 2Q( 1

2σ
)))

which after simplification proves (36).

Now from (12), one has

G(K|Y ) =
∫
fY (y)

M∑
k=1

k p(k)|y dy (39)

Since the noise is Gaussian, the p(k)|y are sorted by Euclidean

distance. Applying Bayes’ rule we obtain

p(k)|y = φσ(y − πj(y))
1/M

fY (y)
, k = Sj−1(y) + 1, . . . , Sj(y).

(40)

where Sj(y) =
∑j

i=0

(
n

πi(y)

)
for j = 0, . . . , n with the

convention S−1(y) = 0. Therefore,

G(K|Y ) =
∫
fY (y)

n∑
j=0

Sj(y)∑
k=Sj−1(y)+1

k φσ(y−πj(y))
1/M

fY (y)
dy

=
1

M

n∑
j=0

∫ Sj(y)∑
k=Sj−1(y)+1

kφσ(y − πj(y)) dy

=
1

M

n∑
j=0

∫
Cj(y)φσ(y − πj(y)) dy

where

Cj(y) =
Sj(y)(Sj(y) + 1)− Sj−1(y)(Sj−1(y) + 1)

2
(41)

= 1
2

(
n

πj(y)

)(
2Sj−1(y) +

(
n

πj(y)

)
+ 1

)
. (42)

The j = 0 term can be written as

∫
S1(y)(1 + S1(y))

2
φσ(y − wH(π1(y))) dy (43)

=

[
2

∞∫
1
2

φσ(y)dy +

n∑
i=0

i+ 1
2∫

i− 1
2

(
n
i

)
(1 +

(
n
i

)
)

2
φσ(y − i)

]
(44)

=

[
2Q(

1

2σ
) +

n∑
i=0

(
n
i

)
(1 +

(
n
i

)
)

2
(1− 2Q( 1

2σ
))

]
(45)

=
M

2
+
1

2

(
2n

n

)
−Q( 1

2σ
)(M +

(
2n

n

)
− 2). (46)
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We now compute the j = 1 term. It can be checked with the

help of Fig. 4 that

π1(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for y ≤ − 1
2

i− 1 for y ∈ [i− 1
2 , i)

i+ 1 for y ∈ [i, i+ 1
2 )

n− 1 for y ≥ n+ 1
2 .

(47)

In the j = 1 term, the contribution of the integral from 1
2 to

∞ and −∞ to − 1
2 both yields a term of value

n(n+3)
2 Q( 3σ2 ).

The contribution of the integral over [i− 1
2 , i) yields

1

2

(
n

i−1

)
[2
(
n
i

)
+
(

n
i−1

)
+ 1](Q(

1

2σ
)−Q( 1

σ
)). (48)

and that over (i, i+ 1
2 ] yields

1

2

(
n

i+1

)
[2
(
n
i

)
+
(

n
i+1

)
+ 1](Q(

1

2σ
)−Q( 1

σ
)). (49)

Summing the contribution yields, after some calculation,

n(n+3)Q(
3σ

2
)+[M−2+2(2n+1

n+1

)−(
2n
n

)
](Q(

1

2σ
)−Q( 1

σ
)).

(50)

Here we have used the following Vandermonde identities:
n∑

i=0

(
n

i+1

)2
=

n∑
i=0

(
n

i−1

)2
=

(
2n
n

)− 1
n∑

i=0

(
n
i

)(
n

i−1

)
=

n∑
i=0

(
n
i

)(
n

i+1

)
=

n∑
i=0

(
n
i

)
[
(
n+1

i

)− (
n
i

)
]

=
(
2n+1
n+1

)− (
2n
n

)
.

Summing the j = 0 and j = 1 terms simplifies to the first

three terms in (37).
One can go further and compute terms corresponding to

j = 2, 3, . . . , n. It is easily seen from the above derivation

that splitting the integral with Chasles relation on the interval

where πi is constant yields a sum of weighted Q( i
2σ ) as shown

in (37).

F. Validation by Simulation
We evaluated numerically the relation between SR and GE

for different noise levels σ2 and different number of traces. The

evaluation has been performed by 103 repetitions of maximum

likelihood attacks on synthetically generated leakages.
Figure 6 on next page plots the resulting values of SR and

GE for various noise levels and S-Boxes. We observe that

for low noise the approximation G(K|Y ) ≈ Ps(K|Y )−1 still

holds (yellow curve). As the noise increases, for a given SR, GE

increases, and the latter approximation is no longer valid. The

S-Box nonlinearity accentuates this effect because it decreases

the minimum distance of points in Y in Fig. 2 and, therefore,

makes the maximum likelihood attack less robust to noise.

G. Validation on real traces from DPA Contest V4.2
Figure 5 plots the results on values of SR and GE computed

on the three first folders of the DPA Contest V4.2 with

a Hamming Weight template attack with known mask. As

expected from the simulation the guessing entropy is lower

bounded by SR−1.

Fig. 5. Results on Traces from DPA Contest v4.2

V. CONCLUSION

In this paper, optimal bounds between success rate and

guessing entropy are derived with a simple majorization

argument, and further improved for the Hamming weight

leakage model—in particular for the classical assumptions of

a priori equiprobable secret keys and additive white Gaussian

measurement noise. Closed-form expressions and numerical

computations are given for various leakage scenarios. A study

of the impact of the choice S-Box with respect to SCA

resistance reveals that nonlinearity of the S-Box tends to tighten

the bounds between SR and GE. The approximate relation

GE = 1/SR holds in the case of 8-bit bytes and low noise.

As a perspective, we notice that our methodology can be

easily generalized to the definitions of the ith order success

rate [1] SRi vs. GE. However, as pointed out in [7], such

theoretical work assumes perfect knowledge on the distribution

of K given observation Y . This generally underestimates the

practical GE for a non optimal attack because such a practical

attack generally gives a suboptimal key ranking. Thus the

results of this paper should yield adequate estimates only for

optimal template attacks. The determination of more precise

regions SR vs. GE for other types of attacks is a topic for

future investigation.
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