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Abstract—Some results of alpha-information theory are pre-
sented in order to derive simple non-asymptotic lower bounds
on the probability of error for any binary block code used on
symmetric channels with or without feedback. In particular, we
obtain lower bounds on the signal-to-noise ratio for given code
parameters and probability of error.

Index Terms—Sibson’s alpha information, Rényi’s alpha diver-
gence, converse theorems, perfect feedback, symmetric binary-
input channel

I. INTRODUCTION

Consider the classical point-to-point communication chan-
nel model with (or without) perfect feedback as depicted
in Fig. 1. We assume that a (n,M) block code is used
to transmit an M -ary information source W as a n-symbol
codeword X = (X1, . . . , Xn) through a memoryless channel.
The channel output Y = (Y1, . . . , Yn) is decoded to retrieve
the information source cW with probability of decoding error
Pe = P(cW 6= W ), that is, probability of successful decoding
equal to Ps = 1� Pe = P(cW = W ).

Encoder Channel Decoder
W

Yj

X Y cW

feedback

Fig. 1. The archetype of a point-to-point communication channel with perfect
feedback such that Xj = f(W,Y1, . . . , Yj) for each time instant j.

In a sense, this problem is well known and entirely solved by
Shannon: The optimal coding rate for arbitrarily reliable com-
munication is the channel capacity C = max

pX

I(X;Y ) [13],
which (since the channel is memoryless) is not increased
by feedback [14]. In the sequel, we focus the determination
of converse theorems, deriving lower bounds on Pe for any
(n,M) code. Such bounds are established in a non-asymptotic
setting (without requiring n ! +1) for practical communica-
tion models based on the recent development of ↵-information
theory, with the hope to attract attention of the communication
society community on such recent developments.

While most of the theoretical results used here were already
established, we have put an effort to include self-contained
and simplified proofs so as to convince the reader about the
powerfulness of the approach. Following the seminal work

of [10], several known results such as zero-error capacity in the
presence of feedback [14], Arimoto’s converse bound (strong
converse theorem) [2] are easily recovered as special cases.

As “practical communication models” we consider binary
(n,M) codes over symmetric channels arising from the addi-
tive white Gaussian noise (AWGN) channel with or without
quantization at the output; in particular the binary symmetric
channel (BSC), the binary erasure channel (BEC) or more
generally the binary erasure and error channel, and the binary-
input AWGN channel.

For each type of channel, not only do the converse theorems
establish infeasible regions in terms of coding rate R = logM

n
(in bits/bit1) and probability of error Pe for fixed dimension n,
but also lower bounds on the required signal-to-noise ratio
(SNR) depending of R and Pe.

Notations: To simplify notations in the sequel, we fol-
low [16] and consider random variables whose distributions
are dominated by some �-finite measure µ. This is always
possible since we only consider a finite number of random
variables at a time. Also, the quantities (↵-divergence, ↵-
information, ↵-capacity) defined below can be shown to be
independent of the choice of the dominating measure µ.

From this assumption it follows that every considered ran-
dom variable X admits a probability density pX w.r.t. µ. In the
sequel we shall identity X’s distribution with pX . When µ is
the Lebesgue measure, pX is the genuine probability density
function (p.d.f.); when µ is a counting measure, pX is the
discrete probability mass function (p.m.f.).

The integral w.r.t. µ is accordingly denoted by the special
symbol ⌃

R
(classical integral for p.d.f.’s, discrete sum for

p.m.f.’s). Thus, e.g., one always has
PZ

pX =
PZ

x
pX(x) = 1.

Outline: The remainder of the paper is organized as
follows. Section II presents some basic definitions and proper-
ties of ↵-information theoretic quantities. Sections III and IV
derive the main ingredients, data processing and Fano inequal-
ities, respectively. The ↵-capacities are studied in Section V
and the main result is presented in Section VI along with some
theoretical and numerical applications. Section VII concludes.

1All logarithms log are taken to base 2, hence informational units are bits.
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II. ↵-INFORMATION

While the classical Shannon’s information theory can be
seen as based on the properties of the Kullback-Leibler diver-
gence, the generalized ↵-information theory is based on the
properties of the Rényi divergence [11] of order ↵.
Definition 1 (↵-Divergence): Given ↵ 2 (0, 1)[ (1,+1) and
two probability distributions p, q,

D↵(pkq) ,
1

↵� 1
log

PZ
p↵q1�↵ =

↵

↵� 1
log(pkq)↵ (1)

where the ↵-product
(pkq)↵ ,

�PZ
p↵q1�↵

�1/↵ (2)

is a.k.a. Hellinger integral or Bhattacharyya coefficient.
The ↵-divergence was extensively studied in [16]. In particular
one has the following properties:

[D1] By Hölder’s inequality for ↵ < 1 (or reverse Hölder
inequality for ↵ > 1)

(pkq)↵
↵<1
7

↵>1

�
(
PZ

p)↵(
PZ

q)1�↵
�1/↵

= 1, (3)

hence D↵(pkq) � 0 with equality D↵(pkq) = 0 if and
only if p ⌘ q are the same distribution.

[D2] The ↵-divergence between two binary distributions (1�
p, p) and (1� q, q) is
d↵(pkq) , 1

↵�1 log
�
(1�p)↵(1�q)1�↵+p↵q1�↵

�
. (4)

It is easily checked directly that q 7! d↵(pkq) decreases
for q  p and increases for q � p. (In fact, it is convex
and vanishes at q = p.) In particular,

p � q � r =) d↵(pkr) � d↵(pkq). (5)

[D3] D↵(p, q) is nondecreasing in ↵ [16, Thm. 3].
[D4] Limits [16, § II.C]:

• for ↵ % 1 one recovers the classical Kullback-Leibler
divergence (a.k.a. relative entropy) D1(pkq) = D(pkq) =
PZ

p log
p

q
;

• for ↵& 0 one obtains D0(pkq) = � log
PZ

p>0
q;

• for ↵% +1 one obtains D1(pkq) = log supq
p
q .

[D5] D↵(p, q) is lower semi-continuous in (p, q) w.r.t. the
convergence in distribution [16, Thm. 19].

Now consider a channel X ! Y with input X and
output Y . The channel is defined by the transition probabilities
pY |X and we note pX ! pY |X ! pY .

Knowing a particular observed output Y = y modifies
the distribution of X . The ↵-divergence between pX|y (X’s
distribution knowing Y = y) and pX (X’s distribution not
knowing Y = y) is

D↵(pX|ykpX) =
↵

↵� 1
log(pX|ykpX)↵.

Sibson’s ↵-information [15] is then obtained by averaging
over Y inside the logarithm:
Definition 2 (↵-Information and ↵-Response):

I↵(X;Y ) , ↵

↵� 1
logEY (pX|Y kpX)↵. (6)

For any pX , define its ↵-response of the channel X ! Y by

qY,pX , (pX|Y kpX)↵ pY
EY (pX|Y kpX)↵

=

�
⌃
R
x pXp↵Y |X

�1/↵

⌃
R
y

�
⌃
R
x pXp↵Y |X

�1/↵ . (7)

The normalization in the denominator shows that the ↵-
response qY,pX (y) is a probability distribution in y.
Lemma 1 (Chain Rule for ↵-Product):

(pXY kqXY )↵ =
�
(pX|Y kqX|Y )↵ pY kqY

�
↵
. (8)

Proof: Obvious by direct calculation.
Theorem 1 (Sibson’s Identity [15]): For any qY ,

D↵(pXY kpXqY ) = D↵(qY,pXkqY ) + I↵(X;Y ). (9)
In particular
I↵(X;Y ) = min

qY
D↵(pXY kpXqY ) = D↵(pXY kpXqY,pX )

(10)
where the ↵-response qY,pX is the unique distribution achiev-
ing the minimum.

Proof: From the chain rule (8), (pXY kpXqY )↵ =�
(pX|Y kpX)↵ pY kqY

�
↵

= (qY,pXkqY )↵ · EY (pX|Y kpX)↵.
Taking the logarithm gives (9); (10) follows from [D1].

The ↵-information was extensively studied in [6], [10], [15],
[17]. In particular on has the following properties:
[I1] By (10), I↵(X;Y ) � 0 with equality I↵(X;Y ) = 0 if

and only if X and Y are independent.
[I2] An easy calculation shows that

I↵(X;Y ) =
↵

↵� 1
log

PZ

y

�PZ

x
pXp↵Y |X

�1/↵
. (11)

In particular, letting �(x) = 1
↵�1 exp

�
↵�1
↵ x

�
, � is

an increasing function for all ↵ and �(I↵(X;Y )) =
1

↵�1⌃
R
y

�
⌃
R
x pXp↵Y |X

�1/↵ is concave in pX for fixed chan-
nel pY |X [6].

[I3] By (9) and [D3], it is easily seen that I↵(X;Y ) is non
decreasing in ↵.

[I4] Limits [6]:
• for ↵ ! 1 one recovers the classical Shannon mutual

information I1(X;Y ) = I(X;Y );

• for ↵& 0 we get I0(X;Y ) = � log supy
PZ

py|X>0
pX ;

• for ↵% +1 we get I1(X;Y ) = log
PZ

y
sup

pX(x)>0
pY |x.

In contrast to the case ↵ = 1, ↵-information is no longer
“mutual” in the sense that I↵(X;Y ) 6= I↵(Y ;X) for ↵ 6= 1.

III. DATA PROCESSING INEQUALITIES (DPIS)

Theorem 2 (DPI for ↵-Divergence [16]): When a given chan-
nel pY |X responds to two different inputs: pX ! pY |X ! pY
and qX ! pY |X ! qY , one has D↵(pY kqY )  D↵(pXkqX).
In words, any random transformation reduces ↵-divergence.
We give a short proof.

Proof: Since pY |X = qY |X , (8) with X and Y permuted
gives (pXY kqXY )↵ = (pXkqX)↵. Now by (8) and (3),

(pXY kqXY )↵ =
�
(pX|Y kqX|Y )↵ pY kqY

�
↵

↵<1
7

↵>1
(pY kqY )↵.

Taking logarithms gives D↵(pXkqX) � D↵(pY kqY ).
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Theorem 3 (DPI for ↵-Information [10]): If W�Y �cW forms
a Markov chain (as in Fig. 1), then I↵(W ;Y ) � I↵(W ;cW ).
In words, any processing (here the decoder) can only decrease
↵-information. We give the proof for completeness.

Proof: Consider the channel pWcW |WY = pW |W pcW |WY
where pcW |WY = pcW |Y by the Markov condition. Thus
pWY ! pWcW |WY ! pWcW , and if qY ! pcW |Y ! qcW ,

one has pW qY ! pWcW |WY = pW |W pcW |Y ! pW qcW . Thus

by Theorem 2, D↵(pWY kpW qY ) � D↵(pWcW kpW qcW ) �
I↵(W ;cW ) where the last inequality follows from (10). Again
by (10), applying the resulting inequality to qY = qY,pW

proves the theorem.
It can be similarly shown [10] that ↵-information also

satisfies the preprocessing inequality I↵(Y ;cW ) � I↵(W ;cW ).

IV. FANO-TYPE INEQUALITIES

As is well known, the minimum probability of error Pe or
the maximum probability of success Ps = P(cW = W ) upon
observation of the channel output Y = y is achieved by the
MAP rule: cW (y) = argmax

w
pW |Y (w|y) (12)

In this case of optimal decoding we write

Ps(W |Y ) , max
W�Y�cW

P(cW = W ) = EY

�
max
w

pW |Y (w|Y )
�

(13)
In particular, a blind estimation of W (without access to the
channel output Y ) gives

Ps(W ) , max
w

pW (w) (14)

It is obvious that Ps(W |Y ) � Ps(W ) (observation increases
success).
Theorem 4 (Fano’s Inequality for ↵-Information [12]):

I↵(W ;Y ) � d↵
�
Ps(W |Y )

��Ps(W )
�

(15)

where d↵(pkq) is the binary ↵-divergence (4).
Proof: By Thm 3 & Eq. (10), I↵(W ;Y ) � I↵(W ;cW ) =

D↵(pWcW kpW qcW,pW
). Now apply Theorem 2 to the de-

terministic channel with input (W,cW ) and binary out-
put = 1 if cW = W , and = 0 otherwise. This gives
D↵(pWcW kpW qcW,pW

) � d↵(P(cW = W )kP0) where P0 =P
w pW (w)qcW,pW

(w)  maxw pW (w) = Ps(W ). Assuming
the MAP rule, P(cW = W ) = Ps(W |Y ) � Ps(W ) � P0,
hence by (5), d↵(Ps(W |Y )kP0) � d↵(Ps(W |Y )kPs(W )).
Combining yields the announced Fano inequality.

Since our aim is to derive upper bounds on Ps (lower
bounds on Pe) we can always assume that the MAP rule
holds. Notice, however, that any “reasonable” suboptimal de-
coding procedure should always give a probability of success
Ps � maxw pW (w). In this case Fano’s inequality still holds
with Ps in place of the maximum Ps(W |Y ).

For equiprobable M -ary source W (a usual assumption in
the communication model), Fano’s inequality (15) reduces to
I↵(W ;Y ) � d↵

�
Ps

�� 1
M

�
. When ↵ ! 1 one recovers the

classical Fano inequality [5].

V. ↵-CAPACITY

A. Definition and Characterization
By analogy with Shannon’s formula C = max

pX

I(X;Y ), we

define the ↵-capacity as follows2.
Definition 3:

C↵ , max
pX

I↵(X;Y ). (16)

Thus C↵ depends only on the considered channel pY |X . The
↵-capacity was extensively studied in [9] and [3].
Theorem 5 (Characterization of ↵-Capacity [3], [4]): For
discrete X ,
C↵ = min

qY
max

x
D↵(pY |xkqY ) = max

x
D↵(pY |xkqY,p⇤X ) (17)

where qY,p⇤X is the ↵-response of the distribution p⇤X achieving
the maximum in (16).
We give a simple proof of this key result.

Proof: From the definition (16) and (10) we observe
that C↵ = maxpX D↵(pXpY |XkpXqY,pX ) where qY,pX is the
unique distribution achieving minqY D↵(pXpY |XkpXqY ).

Now let  (x) = sgn(↵ � 1) exp
�
(↵ � 1)x

�
;  is an

increasing function for all ↵ and  (D↵(pXpY |XkpXqY )) =
sgn(↵ � 1)⌃

R
x pX(x)⌃

R
y p

↵
Y |X q1�↵

Y is linear in pX for fixed
qY . It is also lower semi-continuous in qY for fixed pX
by [D5]. Therefore, f(pX , qY ) =  (D↵(pXpY |XkpXqY ))
satisfies the conditions of Lemma 3 in the Appendix,
andf we have C↵ = minqY maxpX D↵(pXpY |XkpXqY ) =
maxpX D↵(pXpY |XkpXqY,p⇤X ).

Finally, since  (D↵(pXpY |XkpXqY )) is linear in pX , its
maximum over pX is necessarily achieved when pX is a Dirac
distribution at some X = x. This proves (17).

The following Lemma is also useful.
Lemma 2: One has
D↵(pXY kqXqY )  D↵(pXkqX)+max

x
D↵(pY |xkqY ). (18)

Proof: Consider the difference D↵(pXY kqXqY ) �
D↵(pXkqX). By (1) and (8), an easy calculation
shows that (pXY kqXpY )↵

(pXkqX)↵
=

((pY |XkqY )↵pXkqX)↵
(pXkqX)↵

has the
form (rXpY |XkrXqY )↵ where rX =

p↵
Xq1�↵

X
(pXkqX)↵↵

is a
distribution. Thus D↵(pXY kqXqY ) � D↵(pXkqX) =
D↵(rXpY |XkrXqY )  maxx D↵(pY |xkqY ) by the same
argument as in the last part of the proof of Theorem 5.

B. Memoryless Channel With (or Without) Perfect Feedback
Consider the memoryless channel illustrated in Fig. 1. Then

it is easily seen that

pY |W =
nY

j=1

pYj |W,Y1,...,Yj�1
=

nY

j=1

pYj |Xj
(19)

where Xj = f(W,Y1, . . . , Yj�1) for j = 1, . . . , n.
Theorem 6: [10] With the above assumptions, one has

I↵(W,Y )  n · C↵ (20)
where C↵ is the ↵-capacity (16) in bits per symbol (for the
single-letter channel).
In the absence of the feedback link in a memoryless channel,
one has in fact [9], [10] I↵(W,Y )  maxpX I↵(X;Y ) =
n · C↵. A simple proof of Theorem 6 is as follows.

2Notice, however, that this is not an operational definition.
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Proof: Let qYj =qYj ,p⇤Xj
be the distribution achieving (17)

for the jth symbol, j = 1, . . . , n . Then from (10), I↵(W,Y ) 
D↵(pWY kpW qY1 · · · qYn). Now by n applications of (18)
using (19), D↵(pWY1···YnkpW qY1 · · · qYn)  D↵(pW kpW ) +Pn

j=1 maxxj D↵(pYj |xj
kqYj ). The first term = 0 and all terms

in the sum are = C↵ by (17).

C. Binary Input Symmetric Channel Model
We now derive the general expression of C↵ for binary-

input symmetric channels X ! Y . Without loss of generality
we can assume that the input X has values ±1 so that by sym-
metry, pY |X=1(y) = pY |X=�1(�y), that is, pY |1 = p�Y |�1.
Theorem 7 (↵-Capacity of a binary-input symmetric channel):

C↵ = 1� ↵

1� ↵
log

PZ 1
2

�
p↵Y |1 + p↵�Y |1

�1/↵
. (21)

Proof: By concavity [I2] of I↵(X;Y ) in the binary
distribution pX , the ↵-capacity is achieved for equiprobable
inputs p⇤X = ( 12 ,

1
2 ). Then the corresponding ↵-response (7) is

qY,p⇤X / (
P

x p
⇤
Xp↵Y |X)1/↵ =

�
1
2 (p

↵
Y |1+p↵Y |�1)

�1/↵. Thus, by
symmetry, one has D↵(pY |1kqY,p⇤X ) = D↵(pY |�1kqY,p⇤X ) =
maxx D↵(pY |xkqY,p⇤X ). Therefore, by (17), C↵ =

D↵(pY |1kqY,p⇤X ) = 1
↵�1 log

PZ
p↵Y |1

�
1
2 (p

↵
Y |1 + p↵Y |�1)

� 1�↵
↵

�PZ �
1
2 (p

↵
Y |1 + p↵Y |�1)

� 1
↵
�1�↵

where the two sums/integrals are equal by channel symmetry.
Simplifying gives (21).

One has the following properties:
[C1] For a binary-input channel,

C↵  1 bit. (22)
For a symmetric channel, this can be checked directly
using Minkowski/reverse Minkowski inequality to show
that the second term in (21) is nonnegative. More gener-
ally, this can easily seen by noting that from Theorem 3,
since X � X � Y forms a Markov chain, I↵(X;Y ) 
I↵(X;X)  C↵(0), the ↵-capacity of the binary noise-
less channel, which by (21) equals 1 � ↵

1�↵ log 1 = 1
bit.

[C2] By [I3], C↵ is nondecreasing in ↵.
[C3] Limits [9, Lemma 15]: ↵ 7! C↵ is continuous in ↵

for finitely many inputs (in particular for binary inputs).
Thus, one recovers the following particular cases:

• For ↵ & 0 one obtains the feedback zero-error capacity
C0 (see § VI-A below). In the binary-input symmetric
case, the limit of (21) is easily computed as C0 = 1 �
log supy(p

0
y|1 + p0y|�1), i.e., C0 = 1 � log 2 = 0 bit for

a noisy channel and C0 = 1 � log 1 = 1 for a noiseless
channel.

• For ↵ = 1
2 , C1/2 = R0 is known as the cut-off rate as

defined in [18, § 5.4, 6.2] for binary inputs (see also [4]).
Following Massey [8], this had been long adopted as an
important criterion for coding systems design. The value
of (21) at ↵ = 1

2 is indeed

C1/2 = 1� log
�
1 +

PZ p
pY |1 pY |�1

�
. (23)

• For ↵ ! 1, C1 = C is the genuine Shannon capacity
(which is equal to the feedback capacity for a memoryless
channel [14]). It can be checked directly by l’Hospital
rule that (21) when ↵ ! 1 gives the expression of
I(X;Y ) for equiprobable X .

• For ↵! +1, C1 = 1 + log
PZ 1

2
max(pY |1, pY |�1). A

usual assumption (for small noise) is pY |1(y) � pY |�1(y)
when y � 0 and the opposite inequality for y  0. Using
symmetry, the expression then easily simplifies to

C1 = 1� log
1

1� pe
= log

ps
1/2

(24)

where pe = 1 � ps = ⌃
R
y0 pY |1(y) is the bit-error

probability obtained by the usual threshold detector at
the channel output (possibly with 50% chance in case of
a tie y = 0). This is equivalent to using the maximum
likelihood rule (here equivalent to the MAP rule for
equiprobable input), and with the notations of § IV one
obtains C1 = log Ps(X|Y )

Ps(X) .

D. ↵-Capacities of Some Known Channels

We consider binary-input symmetric channels arising from
the additive white Gaussian noise (AWGN) channel with
or without quantization at the output. With quantization the
considered channel models are depicited in Fig. 2.

1� p

p

1� p

p
1

-1

1

-1

1� ✏

✏

1� ✏

✏

1

-1

1

0

-1

1� p� ✏

✏

1� p� ✏

✏
p

p
1

-1

1

0

-1

Fig. 2. Flow graphs of symmetric channels. Left to right: BSC; BEC; BSEC.

As is well known, for binary output, we obtain the binary
symmetric channel (BSC) of parameter p = Q(

q
2Eb
N0

) where
Q(·) is the Q-function and Eb/N0 is the SNR per bit. To
simplify the obtained expressions, we assume Eb = 1 for input
X 2 {±1} and write �2 = N0/2 (noise sample variance) so
that p = Q( 1� ). One may always assume p  1/2.

For a ternary output, we obtain the binary symmetric error
& erasure channel (BSEC) with raw error probability p and
erasure probability ✏. Typical expressions (for a uniform output
quantization) are p = Q( 3

2� ) and p + ✏ = Q( 1
2� ). For large

SNR (small noise) p is negligible w.r.t. ✏ in which case the
channel model reduces to a binary erasure channel (BEC) of
parametrer ✏ = Q( 1

2� ).
Finally, without output quantization we have the binary-

input AWGN model with X 2 {±1} and X = Y + Z where
Z ⇠ N (0,�2).

Applying (21) readily gives the expressions in Table I. We
recover in particular the results of [3] for BSC and BEC. Some
↵-capacities are given in Fig. 3. Notice that the ↵-capacity of
the AWGN is always larger then that of the BSC or BSEC by
the DPI (Theorem 3) applied to the output quantizer.
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TABLE I
SOME ↵-CAPACITIES OF BINARY-INPUT MEMORYLESS CHANNELS. h(p) = �p log p� (1� p) log(1� p) IS THE BINARY ENTROPY FUNCTION.

C↵ cut-off C1/2 usual capacity C = C1 C1

BSC 1� 1
1�↵ log(p↵ + (1� p)↵) 1� log(1 + 2

p
p(1� p)) 1� h(p) 1� log 1

1�p

BEC 1� ↵
1�↵ log(1� ✏+ 2

1�↵
↵ ✏) 1� log(1 + ✏) 1� ✏ 1� log 1

1�✏/2

BSEC 1� ↵
1�↵ log

�
(p↵ + (1� p� ✏)↵)

1
↵ + 2

1�↵
↵ ✏

�
1� log(1 + ✏+ 2

p
p(1� p� ✏)) (1� ✏)(1� h( p

1�✏ )) 1� log 1
1�p�✏/2

AWGN 1� ↵
1�↵ log

Z 1

�1

e�(y2+1)/2�2

p
2⇡�2

1� log(1 + e�1/2�2
) 1�

Z 1

�1

e�(y�1)2/2�2

p
2⇡�2

1� log 1
1�Q(1/�)

⇥ 1
2 (e

y↵/�2
+ e�y↵/�2

)1/↵ dy ⇥ log(1 + e�2y/�2
) dy

C↵

SNR (dB)

↵ = 1 ↵ = 0.1↵ = 10

Fig. 3. ↵-capacities of binary-input BSC (black), BSEC (red) and AWGN
channel (blue) as a function of SNR= 1/(2�2) per transmitted bit.

VI. ↵-CONVERSE THEOREM

The following Theorem provides infinitely many non-
asymptotic upper bounds on Ps (lower bounds on Pe).
Theorem 8 (↵-Converse Theorem): For any ↵ 2 [0,+1] and
any block code (n,M) with rate R = logM

n and decoding
error probability Pe = 1�Ps on a memoryless channel (with
or without perfect feedback) of ↵-capacity C↵,

d↵(PskP0
s)  n · C↵ (25)

where P0
s = maxw pW (w)  Ps; in particular, P0

s = 1
M for

equiprobable messages W .
Proof: Combine Theorems 4 and 6. (The values ↵ = 0,

1, +1 are obtained by taking limits.)
For varying ↵ 2 [0,+1], (25) provides non-asymptotic

lower bounds on Pe (upper bounds on Ps) for any particular
choice of block code parameters (n,M)—or for any choice
of code length n with varying coding rate R = logM

n . An
illustration is given in Fig. 4 for increasing code lengths.

A. Application to the Zero-Error Problem
If one requires strictly zero error [14], that is, Pe = 0 and

Ps = 1, then (25) applies with equiprobable messages, where
d↵(1k 1

M ) = logM . Thus (25) takes the form of a coding rate
bound R = logM

n  C↵. By [C2] inf C↵ = C0, so this all
boils down to the inequality

R  C0 = max
pX

I0(X;Y ) = max
pX

inf
y
log 1P

py|X>0
pX

(26)

(see [I4]). As noticed in [17], this is exactly Shannon’s
expression of the zero-error capacity with feedback in the case
where this capacity is > 0 (when not all inputs pairs can cause
the same output [14]).

Pe

RC

acceptable
region

forbidden
region

Fig. 4. Lower bounds on error probability Pe vs. coding rate R on a BSC(.25)
for n = 8 (magenta), 16 (black), 32 (cyan), 64 (red), 128 (blue) for ↵ 2
[0,+1] with stepsize = 0.1. The dashed vertical line shows the capacity C.

B. Application: Strong Converse

For ↵ > 1, (25) readily implies the strong converse theorem
(for equiprobable messages):
Theorem 9 (Strong Converse): If R > C, then Pe tends
exponentially to 1 as n ! +1.
As shown in [10], Arimoto’s converse bound [2] can be
recovered from this result.

Proof: For ↵ > 1, 1
↵�1 log(P

↵
s

1
M1�↵ ) < d↵(Psk 1

M ) 
nC↵. Simplifying gives Ps < 2�n(R�C↵)↵�1

↵ . If R > C,
since C↵ & C as ↵ & 1, one has R > C↵ + ✏ for some
↵ > 1 and ✏ > 0, and Ps < 2�n✏↵�1

↵ ! 0 exponentially.
Fig. 4 illustrates Theorem 9 by showing lower bounds on Pe

for increasing lengths. The “hard limit” at Shannon’s capacity
C is only attainted for immeasurably large n.

C. Application: Lower Bound on the SNR

In our channel models, letting Eb/N0 be the SNR per (in-
formation) bit, C↵ is expressed as functions of 1

�2 = 2R·SNR
per coded bit sent on the channel. Since C↵ is increasing in
SNR (as illustrated in Fig. 3), (25) gives a lower bound on
the feasible SNR for a given performance level (Pe, R) over
a given channel.

In particular for n ! +1 and R ! 0 we recover the
well-known Shannon limits �1.59 dB and 0.37 dB for binary-
input AWGN and BSC, respectively. What is more interesting,
however, is the non-asymptotic regions for a given choice of
code parameters as illustrated in Fig. 5, 6 and 7.
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Pe

SNR (dB)

forbidden
region

acceptable
region

↵ < 1 %

↵ > 1 &
. ↵ < 1

 � ↵ > 1

Fig. 5. Lower bounds on error probability Pe vs. SNR for a [128, 64] code
(n = 128, R = 1/2) on a BSEC. The thick curve is for ↵ = 1.

SNR (dB)

R

forbidden
region

acceptable
region

. ↵ < 1

↵ < 1 %

- ↵ > 1

Fig. 6. Lower bounds on SNR vs. coding rate for n = 1024 on a BSEC.
The thick curve is for ↵ = 1.

SNR (dB)

Rforbidden
region

acceptable
region

n=4

n=8

n=16

n=32768

Fig. 7. Lower bounds (maximized over ↵) on SNR vs. coding rate for n =
4, 8, 16, . . . , 32768 on a BSEC.

VII. CONCLUSION AND PERSPECTIVES

We have presented some results of ↵-information theory
in order to derive simple non-asymptotic lower bounds on
the probability of error for any binary block code used on
symmetric memoryless channels with or without feedback.
Such bounds can be rewritten as lower bounds on the SNR
for any given code parameters.

Since I↵(X;Y ) 6= I↵(Y,X), one can also define a “reverse”
↵-capacity C 0

↵ = maxpX I↵(Y ;X). Since [1] C↵  C 0
↵, the

resulting bounds (at least without feedback) cannot be tighter
than the bounds in this paper.

As a perspective, the obtained converse bounds can be
compared to other known finite-length bounds, applied to
more general types of channels and perhaps other types of
problems—in fact, data processing and Fano’s inequalities
were recently applied to side-channel analysis in [7].

APPENDIX: A TECHNICAL LEMMA

Lemma 3: Let P be a probability space and let f(p, q) be
defined for p, q 2 P such that

• f(p, q) is linear in p for fixed q;
• f(p, q) is lower semi-continous in q for fixed p;
• 8 p 2 P , there exists a unique q = qp achieving
minq f(p, q) = f(p, qp), where qp in continuous in p.

Further assume p⇤ achieves maxp f(p, qp) = f(p⇤, qp⇤) = C.
Then C = maxp f(p, qp⇤) = minq maxp f(p, q).

Proof: Let p 2 P and " > 0 and consider the perturbation
p⇤" = (1� ")p⇤ + "p so that p = "�1p⇤" + (1� "�1)p⇤. Then
by lower semi-continuity for small enough " > 0, f(p, qp⇤) 
f(p, qp⇤" ); by linearity in p, f(p, qp⇤" ) = "�1f(p⇤", qp⇤" ) +
(1 � "�1)f(p⇤, qp⇤" ), where f(p⇤, qp⇤" ) � f(p⇤, qp⇤) = C
by definition of qp⇤ and f(p⇤", qp⇤" )  f(p⇤, qp⇤) = C by
definition of p⇤. Combining we obtain f(p, qp⇤)  "�1C+(1�
"�1)C = C (8p) which proves C = maxp f(p, qp⇤). There-
fore, C � minq maxp f(p, q). Now C  maxp f(p, q) (8q)
hence C  minq maxp f(p, q), which proves the Lemma.
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