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Abstract—Side-channel attacks (SCAs) are among the most
powerful physical attacks against cryptographic implementations.
To thwart SCAs, a well-established countermeasure is random
masking. A recent code-based masking formalism unifies several
known masking schemes and allows one to carry out an all-in-one
leakage quantification.

In this paper, we investigate how a code-based masked imple-
mentation leaks in an information-theoretic setting, where the
mutual information measures the impact of both number and
positions of probes in the probing attack model. We also establish
that the mutual information decreases as the measurement noise
variance increases, with an exponent equal to the dual distance
of the masking code. Our findings quantitatively connect the
attacker’s capability to recover secret keys with the actual mutual
information leakage of the protected implementation.

I. INTRODUCTION

Side-channel attacks consist in retrieving sensitive infor-
mation from compromising emanations (e.g., electromagnetic,
power consumption) of cryptographic devices [10], [13], [15].
In the probing model [12], it is assumed that the adversary
has the capability to measure a limited amount of intermediate
data from the device. Randomly masking sensitive information
is a method to thwart such attacks, up to a given probing
order [15]. A fairly general formalization of masking is code-
based masking, where the probing security order relates to the
dual distance of the underlying linear code [6], [9], [17].

The defender can always increase the probing security order
if the attacker has a higher number of probes, but this comes at a
higher cost. This cat-and-mouse game can be seen as futile and
even detrimental to the defender who runs for more expenses.
The attacker is also hindered beyond the number of probes
he can deploy. When probed sensitive variables are tainted
with noise, the advantage gained by the attacker is reduced as
the number of probes increases. This was the spearhead for
motivating masking as a well-founded countermeasure since
the seminal work of Waddle and Wagner [20] in 2004.

In a sense, the masking setting under the probing model can
be viewed as a special case of a wiretap channel of Type II
(WTC II) [16], where an eavesdropper has access to a given
number of bits. Assuming that the information symbols are
elements in a finite field F, the information X ∈ Fk is encoded
as Z ∈ Fn by using a random mask Y ∈ Fm (with n = k+m),
and the d probed bits (0 < d 6 n) are denoted by ZΠ. This
is illustrated in Fig. 1. The eavesdropper should be able to
recover X when she probed a sufficient number of bits.
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Fig. 1. The archetype of a WTC of type II adapted for masking in a noiseless
scenario. Note that the dashed part is mainly for illustration of the masked
variable in the following computations.

The SCA scenario, however, differs from the classical WTC
scenario in one important respect: While each wiretap channel
use corresponds to a different message to be communicated
to a legitimate user, every side-channel use corresponds to a
query of the unintended leakage arising from the same sensitive
variable X .

Furthermore, in a practical side-channel scenario, the eaves-
dropper only has access to a noisy leakage because of some
intrinsic noise N from various sources (e.g., measurement
noise). An example of setup is shown in Fig. 2. Therefore,
the question arising is the following: how much information is
leaking in presence of masking?
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Fig. 2. The realistic side-channel setup in the presence of noise. The intrinsic
noise N is from the acquisition environment, instruments and specific settings.

In this paper, we evaluate the mutual information leakage
in the presence of the code-based masking countermeasure,
without noise or with noise. In this way, we quantify the pow-
erfulness of this countermeasure by revisiting the adversary’s
advantage. More precisely, we show that there is a gap between
the attacker’s means (probes) and the actual information leakage.
Quite surprisingly, the exploitable information requires that
the number of probes placed by the attacker should be at least
equal to the dual distance of the masking code but otherwise
irrespective of their positions.

The remainder of this article is organized as follows. Sec-
tion II introduces notations and the code-based masking scheme.
Section III studies the information leakage in a noiseless
scenario. Section IV studies the impact of measurement noise
and provides a numerical validation. Section V concludes.

II. CODE-BASED MASKING AND LEAKAGE MODEL

The rationale of masking is to split each sensitive (secret-
dependent) variable into several shares and then perform the



corresponding cryptographic operations separately on each
share. As a result, knowing only a subset of shares is not
enough to recover the secret when the cardinality of the probed
set is smaller than a certain threshold t, called the security
order of the masking scheme.

A recent line of research generalizes several masking
schemes and unifies them from a code-theoretic perspective
into the so-called code-based masking [8], [21]. Let F be a
finite field with q elements (where q is a power of 2), and let
n = k+m where k and m are positive integers. The considered
code-based masking is modeled by

Z = XG + YH, (1)

where X ∼ U(Fk) is the secret, a random row vector uniformly
distributed over Fk; Y ∼ U(Fm) is the mask, a row random
vector uniformly distributed over Fm; G is an k × n matrix
of full rank k over F; H is an m× n matrix of full rank m
over F, so that Z ∈ Fn. This attacker aims at guessing values
of X based on the exploitation of the measurement of some
coordinates in Z.

Let C = VG be the row space of G and D = VH be the
row space of H. Thus, C is an [n, k] linear code and D is an
[n,m] linear code (the masking code). We assume that C and
D are in direct sum and complementary codes:

VG ∩ VH = C ∩ D = {0n},
VG ⊕ VH = C ⊕ D = Fn,

(2)

where 0n is the all-zero vector. To simplify the derivations in
the following sections, we represent Fq in F2 by the sub-field
representation [9], [14, § 7.7]. This allows one to focus only
on binary variables in F = F2 throughout this paper.

The following example is perhaps the simplest family of
code-based masking schemes for arbitrary n:
Example 1 (Boolean masking [7]): Let k = 1 and n = m+1,
then the two generator matrices are as follows.

G =
(

1 0n−1

)
H =

(
1Tn−1 In−1

)
where 1Tn−1 denotes the transpose of an all-one vector and
In−1 is the identity matrix of order n− 1.

Relying on the encoding in (1) and two conditions in (2),
the code-based masking encompasses the Boolean masking,
Inner Product masking (IPM) [1], Leakage Squeezing (LS) [5]
and Direct Sum masking (DSM) [3], [6], [17]. By the
uniform representation, the side-channel security order under
the probing model is equal to the dual distance of D (the
minimum distance of its dual code D⊥) [6], [17] minus one:
t = d⊥D− 1. In addition, the amount of information that can be
extracted by any adversaries from noisy leakage is also related
to the kissing number of the dual code D⊥ [9].

In order to quantify the impact of probes, we adopt the
following definition of the probing model in a d-dimensional
attack [12].
Definition 1 (Probing Model): Let d > 0 be the dimension
of the attack, and Π ∈ Fn be a binary vector of Hamming

weight d. The location of the nonzero elements in Π represent
the “location” of probes in a d-dimensional attack. Let AΠ

denote the m × d matrix obtained from A by removing all
columns (Ai,j)j corresponding to zero elements Πj = 0 in Π.
The probing model is described as

ZΠ = XGΠ + YHΠ.

The question is whether ZΠ (or some noisy version of it) leaks
information about secret X in the presence of masking Y .

Note that with our notation, Π
Π ∈ Fd is the all-one vector

and we have A · Π
t = AΠ · (Π

Π)t.
Let wH(·) denote the Hamming weight of a vector. In

particular wH(Π) = d. The following notion of generalized
Hamming weight is known to be a sound tool to characterize
the leakage [22], especially under the probing model in the
noiseless scenario where the information leakage in code-based
masking is modeled by a special case of wire-tap channel II.
Definition 2 (Generalized Hamming Weight [22]): For any
linear code C, the support χ(C) of C is the set of not-always-
zero coordinates of C. The r-th Hamming weight of an [n, k]
linear code C, where 1 6 r 6 k, is defined as the cardinality
of the smallest support of a r-dimensional subcode of C:

dr, C = min
C′
{|χ(C′)| ; C′ is an [n, r] subcode of C}. (3)

In particular d1, C is the minimum Hamming weight of
codewords in C, i.e., the minimum distance of C.
Definition 3 (Weight Enumerators): Let Bi = |{u ∈ D;
wH(u) = i}| be the Hamming weight distribution of the
linear code D generated by H, and let Ai denote the weight
distribution of the dual code D⊥. The corresponding weight
enumerator polynomials A and B are

A(x, y) =

d∑
i=0

Aix
iyd−i, B(x, y) =

d∑
i=0

Bix
iyd−i. (4)

The MacWilliams identity [14] applied to this weight enumer-
ators for x = p and y = 1− p is

B(p, 1− p) =
1

|D⊥|
A(2p− 1, 1). (5)

III. NOISELESS ATTACKS

A. Evaluation of Mutual Information

In a noiseless attack, the attacker knows ZΠ without noise.
The question is what quantity of information it can leak
about the secret X . The information leakage is classically
measured [19, §5] by Shannon’s mutual information

I(X;ZΠ) = H(ZΠ)−H(ZΠ|X) (6)

where H(·) denotes the discrete entropy.
Remark 1: If X ∼ U(V ) where vector space V has dimen-
sion d over F of cardinality 2, then clearly

H(X) = log2 |V | = d bits. (7)

Lemma 1: Let A be an m× n matrix of rank r over F, and
VA ⊂ Fn its row space. If X ∼ U(Fm) is a row random vector



uniformly distributed over Fm, then Y = XA ∼ U(VA) is
uniformly distributed over VA.

Proof: By the canonical decomposition of the linear
application Φ : x 7→ y = xA, Im Φ = VA ∼= Fm/Ker Φ
where Ker Φ has dimension m− r. In other words Φ−1(y) =
x+ Ker Φ for any y ∈ VA.

Now if X ∼ U(Fm) with P(X = x) = 1
2m and Y = XA =

Φ(X), then for any y ∈ VA, we have

P(Y = y) = P(X ∈ Φ−1(y)) = P(X ∈ x+ Ker Φ)

=
|Ker Φ|

2m
=

2m−r

2m
=

1

2r
=

1

|VA|
.

Lemma 2: One has
H(ZΠ) = d bits. (8)

Proof: From Lemma 1, XG ∼ U(C), YH ∼ U(D),
hence Z = XG + YH ∼ U(C ⊕ D) = U(Fn). It follows that
ZΠ ∼ U(Fd), hence H(ZΠ) = log |Fd| = d bits.

Next consider the dual code D⊥. We have Π ∈ D⊥ if and
only if H · Π

t = HΠ · (Π
Π)t = 0. Thus to every codeword

of Π ∈ D⊥ of weight d correspond to d linearly dependent
columns in HΠ. Now if d < d⊥D every set of d columns of H
are linearly independent so that HΠ always has full rank1 d.
Theorem 1: Let d⊥D be the dual distance of the code D. If
d < d⊥D then

I(X;ZΠ) = 0. (9)

Proof: Since HΠ has full rank d, by Lemma 1, YHΠ ∼
U(VHΠ) = U(Fd). The conditional distribution of ZΠ given
X = x is then ZΠ|X = x ∼ xGΠ + U(Fd) = U(Fd), which
does not depend of x. Thus ZΠ is independent of X , that is,
I(X;ZΠ) = 0.

Hence ZΠ does not leak any information about the secret. In
particular, we recover the following result from [9]: If a poly-
nomial P has numerical degree < d⊥D, then I(X;P (ZΠ)) = 0.

Theorem 2 (Noiseless Information Leakage): If an adversary
chooses d = d⊥D probes, then

I(X;ZΠ) =

{
1 bit if Π ∈ D⊥

0 otherwise.
(10)

Proof: If Π 6∈ D⊥ then the d columns of HΠ are linearly
independent and HΠ has full rank. Then as in the proof of
Theorem 1, I(X;ZΠ) = 0.

If Π ∈ D⊥ then the d columns of HΠ are linearly dependent
while every subset of less than d columns of H is linearly
independent. Hence HΠ has rank d − 1. By Lemma 1,
YHΠ ∼ U(VHΠ) where VHΠ has dimension d − 1, so that
H(ZΠ|X = x) = H(xGΠ + YHΠ) = d − 1 bits. Averaging
over X gives H(ZΠ|X) = d − 1 bits. From Lemma 2,
I(X;ZΠ) = H(ZΠ)−H(ZΠ|X) = d− (d− 1) = 1 bit.

Assuming the attacker chooses her probes’ locations at
random, let Π be a random vector chosen uniformly among
all Π ∈ Fn of weight d. Then we have the following

1As a byproduct this gives d 6 m = n − k for any d < d⊥D , a proof of
Singleton’s bound d⊥D 6 n− k + 1.

Corollary 1: If an adversary chooses d positions of probe
randomly and d = d⊥D, then on average

I(X;ZΠ) =
Ad(
n
d

) bits (11)

where Ad = |{v ∈ D⊥ |wH(v) = d}| is the kissing num-
ber [18] in the weight distribution of the dual code D⊥ and
wH(v) is the Hamming weight of codeword v.

Proof: From Theorem 2, I(X;ZΠ | Π = Π) = 1 or 0
according to whether Π ∈ D⊥ (Ad possibilities) or not (

(
n
d

)
−Ad

possibilities). Averaging over Π gives

I(X;ZΠ) =
Ad(
n
d

) × 1 +

(
n
d

)
−Ad(
n
d

) × 0 =
Ad(
n
d

) bits.

Theorem 2 can be generalized as follows.
Theorem 3: If an adversary can choose d > d⊥D = d1,D⊥

probes, then the maximum amount of information she can
extract is determined by:

max
Π

I(X;ZΠ) = max{r ; dr,D⊥ 6 wH(Π)} bits, (12)

where dr,D⊥ is the rth generalized Hamming weight of the
code D⊥.

Proof: Probing wH(Π) positions is equivalent with taping
wH(Π) coordinates of a codeword in the wiretap channel II.
Therefore, it is straightforward from [22] that the extractable
information is determined by (12).

B. The “Exact Information” Brought by the Attack

Lemma 3: We have I(X;ZΠ) = I(XGΠ;ZΠ) where (by
Lemma 1) XGΠ ∼ U(VGΠ).
In other words, the information brought by the attack zΠ

depends on the secret x only through xGΠ.
Proof: Write I(X;ZΠ) = H(ZΠ)−H(ZΠ|X). Since XGΠ

is a deterministic function of X , H(ZΠ|X) = H(ZΠ|X,XGΠ).
But since ZΠ depends on X only through XGΠ, one
has H(ZΠ|X,XGΠ) = H(ZΠ|XGΠ). Hence I(X;ZΠ) =
H(ZΠ)−H(ZΠ|XGΠ) = I(XGΠ;ZΠ).

Lemma 4: If HΠ · (Π
Π)t = 0 then GΠ · (Π

Π)t 6= 0.
Proof: It is equivalent to prove that if Π ∈ Fn is a non

zero vector, then it is impossible to have both H · Π
t = 0

and G · Π
t = 0. In other words, this amounts to prove that

C⊥ ∩ D⊥ = {0}. Now C⊥ ∩ D⊥ = (C +D)⊥ = (C ⊕ D)⊥ =
Fn⊥ = {0}.

Theorem 4: If Π ∈ D⊥ is of weight d = d⊥D, the “exact
information” brought by ZΠ on the secret x is the bit

x · (G · Π
t) ∈ F. (13)

What is meant here by “exact information” brought by ZΠ

on X is that I(X;ZΠ) = H(X · (G · Π
t)) = 1 bit where

X · (G · Π
t) is a function of ZΠ.

Proof: By Lemma 3, the information brought by zΠ on
x is only on x′ = xGΠ ∈ VGΠ . By the proof of Theorem 2,
ZΠ|X = x is uniformly distributed over x′+VHΠ = x′+(Π

Π)⊥

which covers VGΠ/VGΠ ∩ (Π
Π)⊥.



By Lemma 4, G · Πt = GΠ · (Π
Π)t is nonzero. It follows that

the linear form Φ : x′ = xGΠ ∈ VGΠ 7→ x′ · (Π
Π)t is nonzero,

hence Im Φ has dimension 1. By the canonical decomposition
of Φ, VGΠ/Ker Φ ∼= Im Φ where Ker Φ = VGΠ ∩ (Π

Π)⊥.
Hence VGΠ/VGΠ ∩ (Π

Π)⊥ is canonically isomorphic to Im Φ.
Now we assert that the exact information brought by zΠ on x′

is given by the element Φ(x′) = x′ · (Π
Π)t = x ·GΠ · (Π

Π)t =
x ·G · Π

t. Indeed, given z = xG + yH, we recover the bit
x · (G · Π

t) by taking

x · (G · Π
t) = z · Π

t (14)

where Π ∈ D⊥. Since X ·(G·Πt) ∼ U(Im Φ) = U(F) is a deter-
ministic function of ZΠ, H(X · (G · Π

t)) = I(X · (G · Π
t);ZΠ)

= I(X;ZΠ) = 1 bit.
Remark 2: Since x · (G · Π

t) = z · Π
t where Π ∈ D⊥, the

corresponding attack is simply an instance of syndrome
decoding where z · Π

t is the syndrome.

IV. ATTACKS UNDER NOISY MEASUREMENTS

In classical side-channel analysis setups [4], [11], the attacker
exploits directly the noisy leakage, usually assumed to be equal
to the leakage of Z in the presence of some additive white
Gaussian noise (AWGN) of variance σ2. However, such setups
require to make an ad-hoc assumption about the leakage model,
i.e., a function that transduces a vector of field elements in
F into a real number in R. In order to be more general, we
assume in this paper a narrower attack model, which digitizes
the measured side-channel leakage for subsequent analysis.
This corresponds to the situation of a hard detection or hard
decision making—the side-channel is digitized prior to analysis.

Consider a AWGN channel with i.i.d noise ∼ N (0, σ2) in
transmitting binary variables, followed by a binary detector.
As is well known, the overall channel model becomes a
memoryless binary symmetric channel (BSC) of probability
p = Q(

√
γ) where

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt

is the Q-function and γ = 1/σ2 is the actual signal-to-noise
ratio (SNR). Therefore, in this section, we consider a discrete
noise (a.k.a. binary error vector E) which follows the i.i.d.
Bernoulli distribution and show how this discrete noise affects
the amount of information an adversary can extract.

Let E ∈ Fn be the error vector with i.i.d components Ei ∼
B(p) where p = P(Ei = 1). In short E ∼ B(p)⊗n. Let

Z ′ = XG + YH + E

be the noisy leakage, and considering d = wH(Π) probes gives

Z ′Π = ZΠ + EΠ = XGΠ + YHΠ + EΠ. (15)

The problem is to evaluate the mutual information I(X;Z ′Π).
By Theorem 1, d probes provide no information about the

sensitive variable X when d < d⊥D. In this case I(X;Z ′Π) = 0.
Therefore, we shall only consider the scenario for which d =
d⊥D with Π ∈ D⊥. Then, from the analysis of the previous
section, HΠ has rank d − 1 and generates a [d, d−1] parity

check code DΠ = VHΠ , with the [d, 1] repetition code as the
dual code DΠ⊥ = {0, Π

Π}.
Theorem 5 (Noisy Information Leakage): In our hard decision
probing model with d = d⊥D with Π ∈ D⊥, one has

I(X;Z ′Π) = 1−H2(p∗) (16)

where H2(p) = −p log p − (1 − p) log p denotes the binary
entropy and p∗ = B(p, 1−p) =

∑
iBip

i(1−p)d−i, the weight
enumerator polynomial of the code DΠ generated by HΠ.
Notice that 0 6 p∗ 6

∑
i

(
d
i

)
pi(1 − p)d−i 6 1 hence p∗ is a

probability.
Proof: Consider I(X;Z ′Π) = H(Z ′Π) −H(Z ′Π|X). Be-

cause E is independent of Z, Z ′Π = ZΠ + EΠ is, like ZΠ,
uniformly distributed over U(Fd) so that H(Z ′Π) = d.

The conditioned entropy H(Z ′Π|X = x) = H(xGΠ+YHΠ+
EΠ) = H(YHΠ +EΠ) is independent of the value of x because
the probability distribution of YHΠ + EΠ is only affected by
the invertible shift operator which adds xGΠ ∈ Fd. Hence
averaging over X gives H(Z ′Π|X) = H(YHΠ + EΠ).

Now consider the dth extension of the memoryless BSC
channel, which transforms each input vector v ∈ VHΠ = DΠ

to some output v′ ∈ VFd . Noting p∗ =
∑
iBip

i(1− p)d−i, a
direct inspection shows that there are two possible cases:
• v′ ∈ VHΠ : the probability of each v′ is p∗

2d−1 ;
• v′ /∈ VHΠ : the probability of each v′ is 1−p∗

2d−1 .
Then we have
H(Z ′Π|X) = H(YHΠ + EΠ)

=

2d−1∑
1

p∗

2d−1
log

2d−1

p∗
+

2d−1∑
1

1− p∗

2d−1
log

2d−1

1− p∗

= d− 1 +H2(p∗),

hence I(X;Z ′Π) = H(Z ′Π)−H(Z ′Π|X) = 1−H2(p∗).
Theorem 5 shows that adding noise can only decrease the

mutual information I(X;Z ′Π). In the sequel, we further detail
the evaluation of mutual information under weak and strong
noise, respectively.

A. Attacks Under Weak Noise
For weak noise we consider σ → 0, γ → +∞, and,

therefore [2],

p = Q(
√
γ) ∼ e−γ/2√

2πγ
(17)

tends exponentially toward zero. As a result we have the
following behavior.
Theorem 6 (Information Leakage Under Weak Noise): In
our hard decision probing model with d = d⊥D with Π ∈ D⊥,
as σ → 0 (hence p→ 0), one has the asymptotic equivalence

1− I(X;Z ′Π) ∼ d · e−1/2σ2

2
√

2πσ2
→ 0. (18)

Proof: Applying MacWilliams’ identity (5) to the code
DΠ = VHΠ , whose dual code DΠ⊥ is the [d, 1] repetition code,
we obtain

p∗ =
1

2

d∑
i=0

Ai(2p− 1)i =
1 + (2p− 1)d

2



Since p → 0, according to whether d is even or odd, p∗ →
1 or p∗ → 0. Hence H2(p∗) → 0 is equivalent to either
−(1−p∗) log(1−p∗) or −p∗ log p∗. Therefore, 1−I(X;Z ′Π) =

H2(p∗) ∼ −pd log(pd) ∼ −pd log(p) ∼ γde−γ/2

2
√

2πγ
where γ =

σ−2, which yields the announced formula .
Since I(X;Z ′Π) will tend to 1 when the noise approaches

zero, one recovers Theorem 2 in the noiseless case.

B. Attacks Under Strong Noise

One of the main benefits of masking is that, under sufficient
strong noise, the number of measurements to recover the
secret key used in a masked cryptographic implementation
increases exponentially with the protection order (indicated by
the dual distance in code-based masking). Herein we investigate
the asymptotic features of information leakage quantified by
I(X;Z ′Π) under a strong noise, i.e., when σ → +∞, γ → 0
so that p→ 1

2 .
Theorem 7 (Information leakage under strong noise): In our
hard decision probing model with d = d⊥D with Π ∈ D⊥, as
σ → +∞, one has the following equivalence:

I(X;Z ′Π) ∼ 2d−1

πd · ln 2
· σ−2d, (19)

where d is the minimum distance of the dual code of the code
generated by HΠ.

Proof: By first-order Taylor expansion, Q(x) = 1
2 −

1√
2π

x∫
0

e
−t2

2 dt = 1
2 −

x√
2π

+ o(x) and p = Q(
√
γ) = 1

2 −√
γ
2π + o(

√
γ) = 1

2 − ε+ o(ε) where ε =
√

γ
2π = 1√

2πσ2
→ 0

when σ → +∞.
Applying MacWilliams’ identity (5) to DΠ = VHΠ , we obtain

p∗ =
1

2

d∑
i=0

Ai(2p− 1)i =
1

2
− 2d−1εd + o(εd).

Now by Taylor’s expansion at second order for the entropy
H2(p∗) is H2( 1

2 ) +H ′( 1
2 )( 1

2 − p
∗) + 1

2H
′′( 1

2 ) · ( 1
2 − p

∗)2 =
1− 2 log2(e) · ( 1

2 − p
∗)2. Finally, we have

I(X;Z ′Π) = 1−H2(p∗) ∼ 2 log2(e) ·
(
2d−1εd

)2
= 22d−1ε2d · log2(e)

=
2d−1

πd · ln 2
· σ−2d

Theorem 7 shows that the mutual information between
the sensitive variable X and the noisy measurements is
exponentially decreasing in σ2 with an exponent equal to
the protection order d (dual distance).

C. Numerical Simulations

To verify our theoretical findings, we carried out numerical
experiments based on Monte-Carlo simulation. To simplify, we
chose the simplest code-based masking with varying n given
in Example 1. Here H⊥ =

(
1n
)

generates a repetition code
with the minimum distance n, which is thus equal to the dual
distance the code generated by H. We generated random draws
• X ∼ U(F2),
• Y ∼ U(Fn−1

2 ),

• Z = XG + YH ∼ U(Fn2 ),
• E ∈ Fn2 such that Ei ∼ B(p) with various p,
• Z ′ = Z + E ∈ Fn2 , and Z ′Π = ZΠ + EΠ ∈ Fd2 where
d = wH(Π) (and accordingly, Ad = 1).

Since the dual distance of the corresponding code D is d⊥D = n,
we select d = n probes in our simulation.
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Fig. 3. Numerical evaluation and theoretical estimation of mutual information
I(X;Z′Π) for n ∈ {1, 2, 3, 4, 5} under weak noise. Note that d = wH(Π) is
the number of attacker’s probes and the estimation is calculated by Theorem 6.
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Fig. 4. Numerical evaluation and theoretical estimation of mutual information
I(X;Z′Π) for n ∈ {1, 2, 3, 4, 5} under strong noise. Note that d = wH(Π) is
the number of attacker’s probes and the estimation is calculated by Theorem 7.

The numerical results of mutual information I(X;Z ′Π),
along with the corresponding theoretical estimation of Theo-
rem 6 and 7, are shown in Fig. 3 and 4 for weak and strong
noises, respectively. Note that Fig. 4 is plotted in logarithmic
scale to highlight the small values of mutual information under
strong noise. Particularly, Fig. 4, shows that Theorem 7 gives
very accurate approximation when p is greater than 0.1.

Overall, we obtain an accurate evaluation of the commonly
adopted assumption that the information leakage decreases
exponentially in masking order under sufficient noise [1], [12].

V. CONCLUSION

We have investigated how a code-based masked implemen-
tation leaks in an information-theoretic setting, where mutual
information measures the impact of both number and positions
of probes in the probing attack model, without or with additive
measurement noise. This allowed us to demonstrate the notion
of probing security order.

From the situation where one probe is missing (hence a zero
mutual information between the leakage and the secret), we



show that each additional probe brings a maximum of one
bit of information. Interestingly, this additional advantage is
irrespective of the position of the probes, provided that Π lies
in the dual code D⊥. This shows that there is no optimal
strategy to position the probes except in increasing the gained
information by an integral number of bits. On the opposite, it
can happen that adding one more probe surprisingly brings no
further information to the adversary, and we characterize such
cases with a notion of generalized Hamming weight.

We also explore how noise impacts the mutual information:
For low noise, the mutual information is little impacted, while
for high noise, the mutual information is vanishing at least as
σ−2d with d probes, where d is equal to or greater than the dual
distance of the masking code. This shows that masking is more
and more efficient as the measurement noise and protection
order increase.

As a perspective, one may consider a generalization of
the rate of decrease of mutual information as noise variance
increases for more general leakage, as studied (informally)
under the terms of high-order correlation immunity (HCI [5]),
as well as the constructions of optimal linear codes in code-
based masking.
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