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Abstract—Measuring the information leakage is critical for
evaluating the practical security of cryptographic devices against
side-channel analysis. Information-theoretic measures can be
used (along with Fano’s inequality) to derive upper bounds on
the success rate of any possible attack in terms of the number of
side-channel measurements. Equivalently, this gives lower bounds
on the number of queries for a given success probability of
attack. In this paper, we consider cryptographic implementations
protected by (first-order) masking schemes, and derive several
information-theoretic bounds on the efficiency of any (second-
order) attack. The obtained bounds are generic in that they do
not depend on a specific attack but only on the leakage and
masking models, through the mutual information between side-
channel measurements and the secret key. Numerical evaluations
confirm that our bounds reflect the practical performance of
optimal maximum likelihood attacks.

Index Terms—Side-Channel Analysis, Information-Theoretic
Metric, Masking Scheme, Success Rate, Monte-Carlo Simulation.

I. INTRODUCTION

Since the seminal work by Kocher et al. [1], side-channel
analyses (SCAs) have been ones of the most powerful practical
attacks against cryptographic devices. They exploit physically
observable information leakage like instantaneous power con-
sumption [1] or electromagnetic radiation [2] to extract secret
keys as illustrated in Fig. 1.
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Fig. 1. Side-channel in a nutshell. An adversary attempts to recover the secret
key K embedded in a cryptographic circuit by exploiting noisy side-channel
leakage Y and public plaintext T (or ciphertext T').

In last two decades, many different types of attacks have
been proposed to exploit various types of leakages. In partic-
ular, Heuser et al. [3] presented a channel representation of
side-channel analysis to derive optimal (maximum likelihood)
attacks that maximize success rate for a given leakage model.
Other performance metrics such as guessing entropy also
provide a fair comparison between different attacks [4].
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To counteract SCAs, many countermeasures were proposed;
masking is a well-established protection which provides prov-
able security [5]-[7]. The idea is to split a sensitive (secret-
dependent) variable into several shares and perform computa-
tions separately on each (secret-independent) share. Since the
masks themselves are leaking, sound attacks against masked
implementations must be multidimensional and require an
exponentially high number of measurements in the number
of shares to succeed [8].

A precise evaluation of the efficiency of any possible side-
channel attack in the presence of countermeasures is an open
problem. Given a set of side-channel measurements, can one
establish a generic upper bound on the success rate of any
attack? Several bounds have been proposed in [7], [8] by
approximations and inequalities. The resulting lower bounds
(on the number of traces needed for a given success rate)
are quite loose. Chérisey et al. [9], [10] derived several upper
bounds on the success rate using mutual information, which
are tight in assessing unprotected cryptographic implementa-
tions. However, as we show in this paper, such bounds can
also be very loose when targeting a protected cryptographic
implementation.

In this paper, we aim at providing tight bounds on the
success rate of any SCA by leveraging information-theoretic
tools. To do so, we consider a channel framework similar to
the ones proposed in [3], [9]-[11] but enhance it for masking
schemes. The overview of the framework is shown in Fig. 2
with notations introduced in the following Subsection.

A. Notations

In the sequel, uppercase letters (e.g., X) denote ran-
dom variables; lowercase letters (e.g., x) are for realiza-
tions (typically bytes); bold letters are for vectors, e.g.,
X = (Xi1,Xs,...,Xg). The cryptographic implementation
typically works on bytes (e.g., of 8 bits) where the attacker, in a
divide and conquer strategy, tries to recover each key byte K
one by one. Let T & K be the bitwise exclusive or (XOR)
operation between a text byte and a key. For a sequence of ¢
text bytes T we write TG K = (T1 ¢ K, 128K, ..., T,6K).
Also let wy(X) denote the Hamming weight of X and
wH(X) = (wH(X1)7wH(X2)7 N ,’LUH(Xq)).

Throughout this paper we make the following notations as
illustrated in Fig. 2:

e K € Ty is the targeted key byte (typically ¢ = 8, e.g.,

for AES);
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Fig. 2. Channel representation of side-channel analysis of a masked cryptographic operation.

« T € ng denotes plaintext or ciphertext sequences, as
vectors of length g;

o U is the sensitive variable, say U = S(T @& K) where S
denotes a cryptographic operation like the Sbox in AES;

e V=(UdM,M) in a first-order Boolean masking with
random mask M € Fi,; here V = (V,V3) € ]Fg@X2
is a concatenation of Vi = U® M and V, = M; In
the unprotected case (no masking) we would simply have
V = U as in [3], [10];

e X = f(V)= f(V1)+f(V2) is the so-called determinis-
tic leakage, where e.g., f = wp in well-known Hamming
weight model as in [3]; more general models are possible;

e Y = X + N is the (noisy) leakage which models ¢
measurements (a.k.a. traces) in practice, where N is an
independent i.i.d. noise (memoryless additive channel); in
particular N ~ A/(0, 02T) for the AWGN channel.

o The attack is performed with a so-called distinguisher D
which results in a guessed key K = D(Y,T).

From an information-theoretic perspective, it follows from
Fig. 2 that conditionally on T, we have a Markov chain:

K-U-V-X-Y-K.

Remark 1: It is important to note that Fig. 2 is not a genuine
communication channel. The designer wants the secret key K
to remain unknown and static (the same secret key is used for
every side-channel use) as shown in Fig. 1. Therefore, there
is no message to be intentionally encoded and transmitted: K
leaks unintentionally. Besides, the actual (plain or encrypted)
message T is public in our context and is supposedly known
to the adversary. For all these reasons, our situation is totally
different from problems such as those arising in a wiretap
channel [12] for which a message is to be encoded, transmitted
and decoded reliably in the presence of an eavesdropper.

As recalled in [10] for a memoryless channel, we have
the following relation to single-letter quantities: I(X; Y |T) <
qI(X;Y|T). In particular, this explains why mutual informa-
tion evaluation provides lower bounds on the number g of
queries as in [10, §3.1]. Also, in [13, Theorem 4], the leak-
age metric is: I(K;Y|T) = I(U;Y|T), which is implicitly
connected to ¢ [14].

B. Our Contributions

In this work, we derive security bounds for side-channel
attacks in the presence of first-order masking countermea-
sures. Instead of using theoretical upper bounds on mutual
information MI) I(X;Y|T) as in [9], [10], we numerically
evaluate mutual information itself to derive bounds on the
success rate thanks to Fano’s inequality [15]. We also use

I(U; Y|T) in place of I(X;Y|T) in the presence of masking
because the resulting bounds are much tighter. Numerical
results in a commonly used side-channel setting will confirm
that our new bound provides more accurate security guarantees
for the chip designer in the context of masked cryptographic
implementations.

The remainder of this paper is organized as follows. Sec-
tion II provides connections between mutual informations
(MIs) for different pairs of variables in a side-channel setting.
Section III presents several bounds on success rate. The
numerical results for additive Gaussian noise are in Section IV.
Finally, Section V concludes the paper.

II. THEORETICAL PRELIMINARIES
A. Links between MlIs of Different Variables

With the notations shown in Fig. 2 in the context of side-
channel analysis, we have the following chain of equalities
and inequalities for MIs on different pairs of variables.
Lemma 1: With the above definitions and notations, one has

I(K;Y|T) = I(U; Y|T) < I(V; Y|T) = I(X; Y[T). (D)

As a result, we shall restrict ourselves only on the two MIs
I(U;Y|T) and I(X;Y|T), where the former will necessarily
give a better bound than the latter.

Proof: Conditionally on T, K —U —Y is a Markov sub-
chain; by the data processing inequality one has I(K;Y|T) <
I(U;Y|T). Now since U = S(T @ K) is a deterministic
function of K for fixed T, U — K — Y also forms a Markov
chain conditionally on T and the converse inequality holds.
This shows equality I(K;Y|T) = I(U;Y|T). Similarly,
conditionally on T, V — X — Y is a Markov subchain, but
since X = f(V), X =V =Y also forms a Markov chain.
Then the data processing inequality in both directions implies
equality I(V;Y|T) = I(X;Y|T). The data processing in-
equality applied to the Markov subchain U — V — Y gives
I(U;Y|T) < I(V;Y|T) yet the converse is not true because
of the presence of the unknown random mask M. [ ]
Lemma 2: With the above definitions and notations, for any
attack,

I(K; K) < I(K; K|T) < I(K;Y|T). )

Proof: Since conditioning reduces entropy, H(K|K) >
H(K|K,T). Then, since K is independent of T, we
have I(K;K|T) = H(K|T) — H(K|K,T) = H(K) —
H(K|K,T) > H(K) — H(K|K) = I(K;K). This proves
the first inequality.

Secondly, given T, we have a Markov chain: K —Y — K s
since for fixed T, K = D(Y,T) is a deterministic function
of Y. The data processing inequality ends the proof. [ ]
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Remark 2: The ML (maximum likelihood) rule k = D(y,t) =
argmax, P(Y = y|k,T = t) gives the optimal distin-
guisher [3] when it coincides with MAP (Maximum A Poste-
rior) rule for uniformly distributed K — a common assumption
in SCA.

A trivial upper bound on I(K;Y|T) is as follows.
Lemma 3: With the above definitions and notations,

I(K:Y|T) < H(K) < £. 3)

where typically ¢ = 8 bits.

Proof: I(K;Y|T)=H(K|T)-H(K|Y,T)=H(K)—
H(K|Y,T) < HK). ]
Lemma 3 simply reflects the fact that the total amount of
information any adversary could extract cannot exceed the
information carried by the secret key, as measured by the
entropy H(K). Notice that a common assumption in SCAs
is that K is uniformly distributed, in which case H(K) = .

B. Relation to Channel Capacity
Lemma 4: With the above definitions and notations of Fig. 2,

I(X5Y) - I(T;Y) = I(X; Y[T) > 0. 4)

Proof: Since T — X —Y forms a Markov chain, one has
H(Y|X,T) = H(Y|X) !. Hence I(X;Y|T) = H(Y|T) —
HY|X,T)=H(Y|T)—- H(Y|X) =H(Y) - HY|X) —
(H(Y) —H(Y|T)) =I(X;Y)-I(T;Y). ]

Note that the inequality I(X;Y) — I(T;Y) > 0 is also a
direct consequence of the data processing inequality on the
Markov chain T - X - Y.

One is led to define the capacity of the side-channel (in bits
per ¢ channel uses) as

¢C= max I(X;Y|T)= max I(X;Y)-I(T;Y), (5)

T
where the maximum is taken over all distributions of X given
T such that T — X — Y is a Markov chain. Because the
“side information” T is known both at the “encoder” (leaking
crypto) and “decoder” (attack), the capacity can be determined
in the usual way:

Lemma 5: With the above definitions and notations of Fig. 2
where the side-channel is independent of T, one has

qC = m}%XI(X;Y) (6)

where the maximum is taken over all channel input distribu-
tions X.

Proof: Since I(X;Y|T) = ExI(X;Y|T = t), we can
choose p(x|t) = p(x) to maximize each I(X;Y|T = t)
to achieve channel capacity in (5). As the optimal distri-
bution does not depend on t, it also maximizes the ex-
pectation ErI(X;Y|T = t) = I(X;Y|T) and thus
maxrT-xX—-vy I(X, YlT) = maxx I(X, Y) |
Remark 3: This result is also obtained by taking X (and thus
Y ) independent of T such that I(T;Y) = 0 in the preceding

I'We use H both discrete and continuous variables, even though h is used
more frequently for differential entropy of a continuous variable.
2We use log, to have mutual information and entropy expressed in bits.

Lemma. We could also consider the more general situation
where the channel also depends on T. In this case we would
have C = E{C7} where ¢ Cy = maxx I(X;Y|T =t).
Remark 4: As it turns out, capacity yields an upper bound
on I(K;Y|T) which can improve the trivial upper bound of
Lemma 3. This does not mean, however, that one is faced
with a channel coding problem since the “encoder” hence
X'’s distribution cannot be chosen by the attacker.

III. BOUNDS ON THE SUCCESS PROBABILITY OF ATTACK

By combining Lemmas 1, 2 and 3, we have I(K;K) <
I(U;Y|T) < H(K). Now the probability of success (es-
timated as the success rate in SCA) is defined as: P, =
P(K = K). The corresponding “probability of error” (of
attack failure) is P, = 1 — Ps. Using Fano’s inequality [15]
we end up with the following theorem.

Theorem 1: Given the side-channel setting as in Fig. 2, we
have

dp(P,) < I(U; Y|T), (7

where dp(p) = H(K) — Ha(p) — (1 — p)log(2° — 1) and
Hy(p) = —plogp—(1—p)log(1—p), for p € [27¢,1]. (Recall
that ¢ denotes the number of bits in K = k.)

Proof: By Fano’s inequality [15] and Lemma 2, we have
H(K)—Hy(P,)—(1—Py)log(2' —1) < H(K)— H(K|K) =
I(K;K) < I(U; Y|T). n

Since dp(p) is strictly increasing for p € [27¢,1] [16, §A]
and 7(U;Y|T) increases as ¢ increases, Theorem 1 not only
provides an upper bound on FP;, but also gives a lower bound
on the number of queries ¢ to obtain a specific value of P;.

Remark 5: A much looser bound on P; can obtained from
Lemmas 1 and 5. Using Theorem I, one readily obtains

dp(Ps) < I(X;Y[T) < qC ()

where C'is the side-channel capacity, which is C' = 3 log(1+
SNR) for an AWGN channel .

However, as we will show below, this bound is useless
in evaluating masked implementations, particularly because
I(X;Y|T) is unbounded (compare with Lemma 3). In fact,
we will show in next section that 1(X;Y|T) is very close to
the capacity q C' in the presence of a Boolean masking on an
AWGN channel, hence it increases linearly in q without bound.

1V. APPLICATION TO HAMMING WEIGHT LEAKAGES WITH
ADDITIVE WHITE GAUSSIAN NOISE

By the equalities of Lemma 1, the only two MlIs that need to
be evaluated are I(X;Y|T) and I(U; Y|T). Taking notations
from Fig. 2, we calculate both MIs numerically. We have

I(X:Y|T) = H(Y|T) - H(Y|X,T),
I(U;Y|T) = H(Y|T) - H(Y[U,T),
where for the AWGN channel
H(Y|X,T) = H(Y|X) = H(N) = glog (2mec?), (10)

©))

and where H(Y|T) and H(Y|U,T) = H(Y|U) are esti-
mated by Monte-Carlo simulations as shown next.
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A. Monte-Carlo Simulation

As the number of traces ¢ gets very large, direct integration
to evaluate mutual information becomes infeasible. Monte-
Carlo simulation is a well-known method to estimate expec-
tations of a function under certain distribution by repeated
random sampling. We can then estimate the first term H (Y |T)
in (9) by randomly drawing N samples:

H(Y|T) = / memﬁ dy

= i —— 1 tJ
oy, Zogp 4

(1)

where each (t/,y7), for 1 < j < N¢, is drawn randomly.
The estimation in (11) is sound based on the law of large
numbers [15, Chap. 3] and it has been numerically verified
in [10]. Similarly, H(Y|U) can be estimated using Monte-

Carlo simulation by H(Y|U) = — - ;V:cl log p(y? [u?).

s"*”"\e\e—e
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N¢ = 6000
—— N = 10000
—— N = 100000

Mutual information /(X; Y|T)
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o
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Fig. 3. Monte-Carlo simulation with various No draws where o2 = 10.00.

The accuracy of Monte-Carlo simulation highly depends
on the number of samples. As an illustration, consider the
unprotected case where there is no masking and for which
I(X;Y|T) is bounded by H(K) = 8 bits. As shown in
Fig. 3, the estimation of I(X;Y|T) gets more accurate by
using larger N¢. In particular, this estimation on I(X;Y|T)
is accurate enough by using only N¢o = 100,000 draws. For
all results in this paper we use N = 1,000,000 to obtain a
very stable estimation.
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B. Numerical Results for First-order Boolean Masking

Here (t7,y7), for 1 < j < Ng, is drawn i.i.d. according to
this process:

o t/ ~U(FL,),

. m] ~ U(]Fg,),

o kI ~U(Fye), and

o Y ~ N(wy (St @ k) ®m’) +wy(m?), 0%L,) € R
Note that we consider the zero-offset leakage [14] where the
leakages of each share are summed together (see the sum of
two Hamming weights above). For each draw (t,y), we have

Zp Zp H (yilts, k)
=1
= (k) H S plma)p(yalts, km)
k

i=1 mg

p(ylt) = p(ylt, k

(12)

f(yl by ,km))?

o2
HZP ml 27“;2)1/2 )

- St
k i=1 m;

where f(t;, k,mi) = wu(S(t; ® k) & mi) + wy(m;) is

the zero-offset leakage under Hamming weight model. Again,

taking K € [F5. uniformly, and considering that all masks are

iid. ~U(Fy), we have

log p(y|t) = —4(qg+1) — g1og (2m0?)
Pog [ )
k i=1 m
log p(y|u) = —¢f — g log (27r02)
+logHZ SCfGem) g

=1 m
where f'(u;,m) = wy(w; & m) +wg(m).

The numerical results of I(X;Y|T) are depicted in
Fig. 4(a). It clearly appears that the effect of masking is
to increase the values of I(X;Y|T) without bound. This
motivates our focus on I(U;Y|T). The dotted black lines in
Fig. 4(a) show that upper bounds given by (8) are very tight.
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Fig. 4. Evolution of mutual information [(X;Y|T) and I(U;Y|T) with the number of traces under different levels of noise in masked cases, with
N¢ = 1,000, 000. Note that I(X;Y|T) is upper bounded by Shannon’s channel capacity, while I(U; Y|T) is upper bounded by H(K) = 8 bits.
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Fig. 5. Application and comparison of bounds on success rate. We present six instances with different noise levels by using gmax = 4800 traces. Note that
we omit the bounds given by I(X;Y|T) as they are invisible when plotted together with bounds given by I(U;Y|T).

As shown in Fig. 4(b), I(U;Y|T) is bounded as expected
by H(K) in Lemma 3. Particularly, given the same noise
level, the number of traces needed to obtain I(K;Y|T) =
I(U;Y|T) ~ 8 bits is much larger than in the unprotected
case. The curves I(U;Y|T) vs o2 also look homothetic with
a scale of 2. This is justified by a simple scaling argument:
if the number of traces for a given set of (T, U) is doubled,
then the mutual information is the same as with the nominal
number of queries, but with SNR doubled as well.

C. Bounds on Success Rate in Masked Implementations

By Theorem 1, we have an upper bound on probability
of success P;. This equivalently gives a lower bound on the
minimum of ¢ to get a specific Ps.

Numerical results are shown in Fig. 5 where we present
several instances with different levels of Gaussian noises.
In particular, the ML attacks utilize the higher-order distin-
guishers which have been demonstrated to be optimal in the
presence of masking [17]. In order to evaluate P of ML
attacks, each attack is repeated 200 times to have a more
accurate success rate.

Figure 5 already shows the usefulness of the bound given by
I(U; Y|T). Indeed, a commonly used metric on attacks is the
minimum number of traces to reach P; > 95%. Considering
02 =3.001in Fig. 5, we set Ps = 95% and the ML attack needs
around ¢ = 800 traces, where our new bound gives g = 720,
while the bound proposed in [10] by using I(X;Y|T) only
gives ¢ = 12. The comparison would be even worse for higher
levels of noise.

Figure 6 provides a more detailed comparison by plotting
the predicted minimum numbers of traces gy,i, reaching Ps; >
95% given by both I(U;Y|T) and I(X;Y|T). These curves
show that our new bound is much tighter than the previous one
from the state-of-the-art [9], [10], as it captures the masking

212 | i g

N
=
15}

N
©

i
!

ML attacks
Our new bound by /(U; Y|T)
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Fig. 6. Comparison of the minimum number of traces gmin to reach Ps >

95% predicted by our new bound, by I(X;Y|T) as in [10] and also the
baseline given by an ML attack.

scheme — recall from Fig. 2 that the masking countermeasure
step is between U and Y but not between X and Y.

V. CONCLUSIONS

We derived security bounds for side-channel attacks in the
presence of countermeasures (first-order masking). To do this,
we leveraged the seminal framework from Chérisey et al. [9],
[10] and extended it to the masking case of a protection aiming
at randomizing the leakage.

The generalization not only enhances bounds compared to
Chérisey et al., but also improves on the computation method
for the security metric, by resorting to a powerful information
estimation based on the Monte Carlo method. Our results
provide quantitative bounds allowing for the theoretical (“pre-
silicon) evaluation of protections applied on top of a given
cryptographic algorithm in designing secure circuits. As a per-
spective, we will push forward the practical applications of our
findings in evaluating concrete security level of cryptographic
circuits.
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