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_ Shannon’s Entropy: Operational Definition
Message x = (X1,X2,...,Xp) @ very long i.i.d. sequence of symbols ~ p(x):
p(x) = p(x1)p(x2) - p(xn)
B rearrange terms according to the number n(x) of symbols equal to x:

p(x) = [T p)"®

B asymptotically as n — 400, by the law of large numbers, @

~ p(x):
1

pl) =[] P00 =exp(-n3_p(x)log )

entropy H = H(p)

Theorem (Asymptotic Equipartition Property (AEP))
For any typical sequence, m where P(typical) ~ 1.




_ Shannon’s Source Coding Theorem

To encode messages x = (X1, X2, ..., Xp) reliably:
B since P(typical) ~ 1 it is enough to encode the N typical sequences (Pe ~ 0)

® but P(typical) ~ Ne™"™ ~ 1, so there are about typical sequences.

All

|
= ogN ~ H.
n

Theorem (Shannon’s 1st Coding Theorem)

Entropy H is an achievable (lossless) compression rate of source X

2 / 34 Mar 2nd, 2022 Information Leakage and Side-Channel Attacks

B coding rate (information units per symbol) : R
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_ Relative Entropy (Divergence): Operational Definition
Suppose X = (X1, Xz, - - -, Xp) i-i.d. ~ q(x) # p(x) ~ "X,
a(x) = a(x1)a(x2) - Hq(x ) ~Hq )P = exp( nzp(x log

cross—entropy H(pllq)
® probability that x ~ g is p-typical (N ~ e"¥(P) typical sequences)

P(typical) = Ne "(Plla)  gnHlp)=nH(plla) — eXP(‘” > p(x)log Zg; )
X

relative entropy D(p||q) = H(p|lq) — H(p) > 0
(Kullback-Leibler divergence)

Theorem (Large Deviation Bound (LDB))

. = o - 5 _ eX|
Divergence D(p||q) is the deviation exponent | P(typical) < e nb(plla) | £ 0 jfp £ g




_ Shannon’s Channel Coding Theorem

Transmit reliably codeword x = (x1,X2,...,Xp) inachannel x — y = (y1,¥2,.-.,¥n)

INFORMATION
SOUR

CE TRANSMITTER X RECEIVER DESTINATION
1 y L >}
2 SIGNAL RECEIVED
SIGNAL
ME SSAGE MESSAGE

NOISE
SOURCE

® decode X from received y with error probability Pe = P(X # x)

B “random coding” evaluate P, averaged over all possible codes as if codewords
X1,X2,...,Xy were drawn i.i.d. ~ p(x)

B typical decoding : decode X if it is the only codeword jointly typical with received
sequence y, i.e., (x,y) is typical for p(x, y).
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_ Shannon’s Channel Coding Theorem

B another (independent) codeword x’ ~ q(x’,y) = p(x’)p(y) can be also jointly typical
with y (according to p(x, y)) with probability

o771 = exp (-0 32 3 ple) g pi)p&) _ e i)

mutual informat|on 1(X;Y)

Iog
n

B coding rate (information units per symbol) : for N codewords:

Pe = (N — 1)e—nl(X;Y) ~ @N(R=I(X;Y)) &P
when|R < I(X;Y) | (maximized for some optimal choice of p(x)).

Theorem (Shannon’s 2nd Coding Theorem)

Any R < Capacity C= m(a;d(X; Y) can be a reliable transmission rate over channel X — Y.
p(x
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_ Achievability and Converse Results

B previous results are
° achievability results: what one can actually do to approach a limit (HorC...).
* asymptotic (as n — +o00)

B converse theorems establish limits that cannot be exceeded, e.q., using

Data Processing Inequality (DPI) “processing can only decrease information”

If W — X —Y — Zis a Markov chain, [I(X;Y) > I(W; Z)

Fano’s Inequality [Fano’52]

X —Y — X = %(Y) with M-ary equiprobable X, success probability Ps = P(X = X) = 1 — P,

H(X|Y) < h(Pg) + P log(M — 1) = I(X;Y) > d(Ps| 3)
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_ Converse Coding Theorems
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By the data processing inequality, I(X; X) < I(C; C) = H(C) < log M.
By Fano’s inequality, I(X; X) = H(X) — H(X|X) ~ H(X) = nH if Pe ~ 0
Thus if P = 0, : entropy H is the optimal bound.
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By the data processing inequality, nC > ni(X;Y) > I(X;Y) > I(Z; 1)
By Fano’s inequality, I(Z;1) > d(Ps|1/M) ~ log M if P ~ 1.
Thus if P = 0, : capacity C is the optimal bound.
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_ Parametric Estimation

Observed data x = (x1,X2,...,Xn) be a very long i.i.d. sequence ~ pg- < p.
Model 6 — py is known:

po(x) = po(x1)Pa(x2) - - - pPo(Xn)
Find an asymptotically optimal estimator 9(5) of 6*.

B taking logarithms, asymptotically as n — 400, by the law of large numbers,

|nge Z log pg(xi) — Eg+ log pg(X) = —H(po- [|Py)

® divergence D(py-||pg) = H(po-|lps) — H(ps+) > 0 is minimum = 0 iff py = pj.
(i.e., by identifiability 8 = 6*)
B asymptotically as n — 400,

N 1
py) <= 0(x) = arg max — log po(x) (Mmaximum likelihood)

0 = arg mein D(py+
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_ Fisher’s Information: Operational Definition

D(po-|lps)
At the minimum 6 = 6*:

® null gradient 2 (p9*||p9)|9 o= —ESp(X) =0
where score Sy(X )— 55 log po(X).

B curvature Jg- = 892 D(po-lpo) ‘9 6+
(Fisher information)

- / 8802 (1og Po(x) ) Po(x) dia(x) = / (55 108Po(2) o) ()

Var(Sg(X))
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_ Fisher’s Information: Operational Definition

Therefore, the maximum likelihood estimator 5
0(x) = arg meaxlog pe(x) satisfies: So(X) = g logpe(x) = 0

® asymptotically, 0 = 1Sy(x) ~ E(Sy(X)) at 0 = 0

hence D(pg-||py) — O and asn — oo;
B asymptoticall M — = log po(X)| —nJ
ymp R \ 0*—0 W gp9 0= 9* 0* |
hence E( — 6*)2 ~ 2o — ie., A \ 9

nZJg* an*

Theorem (Fisher’s Estimation Theorem)

Asymptotically, ML estimation has MSE ~ —+— for observation X

=log py(x)

Converse theorem: Cramér-Rao bound (Frechet Darmois, 1943)
If § is unbiased, MSE = Var(d) > n/ i
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Information Leakage: Side-Channel Analysis
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_ Physical Problem

B embedded symmetric crypto on secure chips (e.g., AES-256)

Black Box

Plaintext

S

B the device leaks through a side channel

Plaintext Ciphertext

Side Channel Information
Electromagnetic radiation
Current consumption
Tirming
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_ Acquisition Platform
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_ Acquisition Platform (Profiled Scenario)
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_ Mathematical Problem

Can we derive

B the maximum attack success rate for a given number g of queries (traces)

B minimum # gmin Of queries (traces) for a given level of attack success (e.g., 95%)
for

B any type of attack (DoM, DPA, CPA, LRA, MIA, KSA, other as-yet-unknown...)

B an omniscient/almighty (best possible) attacker

* knows how the device leaks, everything except the secret
° worst case for the defender
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_ Formalization

text T" (plain or cipher)

l e.g., wy

secret U
K ——  Crypto Leakage

%K

Framework of [Cherisey-Guilley-Rioul-Piantanida’19]:

B AES-256 implementation with many (q) measurement traces
B Hamming weight leakage model Y; = wy(S(T; @ K)) + N;
B with or without countermeasures (shuffling, noising, masking)

B optimal attack

noise NV T
Side Channel Attack
(i=1,2,...,9)
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_ Bayesian Hypothesis Testing

X ] Y 5
Side ] .
Channel Estimation
M-ary . .
Observation Estimate
Secret

Maximize success probability Ps = IP’()A( = X) (minimize error probability Pe = 1 — Ps)
P(X = X) = E(P(X = X|Y))
=E()_px|V)P(X = x|Y)) since X — Y — X is Markov
X
< E(m)?xp(x|Y))

with equality if P(X = x|Y) = 1 for some x achieving max, p(x|Y).

MAP (maximum a posteriori) rule

Maximum success | Ps(X|Y) = E(maxp(x|Y)) | attained with X = X(Y) = arg max, p(x|Y).
X
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I AP rule

B using disclosed measurements Y (output of a side channel):
Ps(X|Y) = E(mxaxp(x|Y))
B prior belief (“blind”, without access to the measurements):
Ps(X) = m)?xp(x) = m)?xJE(p(X|Y))

Theorem (Data Processing Inequality)

ifX —Y — Z is Markov,

Ps(X]Y) = Ps(X|2)
In particular,

Ps(X]Y) > Ps(X)

max E < E max. O
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_ Guessing Entropy

In a game of “20 questions”, what is the min average # questions before X is found?
* arbitrary questions: by dichotomy (probability 1/2-1/2): H(X) (entropy)
* yes/no questions: by ranking (most probable first): G(X) (guessing entropy)
B G(X) = number of successive guesses before secret X is found.
Optimal strategy: G(X) = k guesses with probability Pk (kth largest probability)

B guessing entropy | G(X) = minE(G(X)) = Zf_l kp(x) | [Massey’94]

® with side information Y: |G(X|Y) = E,G(X|Y =)

Theorem (Data Processing Inequality)

ifX —Y — Z is Markov, G(X|Y) < G(X|Z)
In particular,
G(X|Y) < G(X)
W.l.o.g. X = G(X). Then G(X|Y=y) < E(X]Y=y) so G(X|Y) < E(X) = G(X). O
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_ Success Rate vs. Guessing Entropy
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_ a-Entropy
«

B q-entropy: Huo(X) = T log ||px|la| [Rényi’61]

a 1/a . convex (Minkowski) a > 1
plla = (f p>du)**is {

where “norm”

concave (reverse Minkowski) o < 1

«

B conditional a-entropy: |Ha(X]Y) = log Ey||pxjylla| [Arimoto’75]

l—«

(expectation inside the log)

Theorem (Data Processing Inequality)

if X —Y — Z is Markov, Ha(X]Y) < Ho(X|2)
In particular,

Ha(X]Y) < Ha(X)

Proof.

Q
AN

1
E|l-|| = ||E-||. One recovers the usual DPI for the limit case a = 1. O
1

a>
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B MAP and min-Entropy, Guessing and 1/2-entropy

1
Ho(X) =logM  >.--> HX)=Hi(X) >--> Hu(X)=log
Po(X)
WV WV WV
1
Ho(X|Y) =logM > ---> H(X|Y) = Hy(X|Y) >---> Huo(X|Y) = log
B, (X]Y)

a — 0 : Hartley’s information theory
a — 1 : Shannon’s information theory
o — oo : estimation theory

Arikan’s inequalities: [Arikan’96] useful for scalability [Choudary17]

Hi2(X) —log(1+InM) < logG(X) < Hyp(X)
WV WV WV
Huja(XY) — log(1+ InM) < logG(X|Y) < Haa(XIY)
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_ What is a-Information Theory?

a-entropy H,(X) or Hu(p)
a-conditional entropy H, (X|Y)
a-divergence (relative entropy) D, (p||q)
a-information /,(X;Y)
B o-conditional information /,(X; Y|Z)
with interesting properties:
B consistency, nonnegativity, uniform expansion, relationships, ...
B conditioning reduces entropy
B data processing decreases information
B Fano’s inequality
where o € (0,1) U (1, 400) with limiting cases:
a — 0 : Hartley’s information theory
a — 1 : Shannon’s information theory
o — 400 : estimation theory (MAP)
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N D.(p|lq): «-Divergence

Da(pllq) =

7'0g(Pla)a|  [Rényi’61]

1l/a
where a-“product” (p||q)a = </ peql— du>
Properties:

® D,(pllq) = D(p|lq) (Kullback-Leibler)

m binary expression da(pllq) = =1 log(p*q*~*+(1—p)*(1—q)*™)
® s-independent! © pdu = p'du & qdp = q’ du = (p/q)*qdu = (p'/q')*q" dp’

_ (Holder) a < 1
" nonnegative: |0 (qu) = 0fsince qu fp fCI)l B {(reverse Holder) a > 1
\—v—’

m uniform expansion: if u = & then (p||u), = MaT_alHa and‘Da(pHu) = logM — Ha(p)‘
hence H,(X) < logM = max a-entropy for uniform
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N D.(p|lq): «-Divergence

B data processing inequality:

by the “golden formula”

a<l
(Pxvllaxy)a = (ox (PyixllGvix)a || 9x)., %1 (pxllax)a
«

one has D, (pxv||gxy) > Da(px||gx) with equality if pyx = gy x. Therefore,

Px —|Py|x |— Py
if then

ax —>—> qy

Example: X —|14|— Y

Do (pllg) > da(pallga) where pa = P(X € A), ga = Q(X € A).
Example: binary channel X —>—> Y

Do(pyllav) < Da(px|lax)

da(pllr) = da(pllg) and da(pllr) = da(qllr)
forany p,qg,rinthatorder (p <g<rorp>q>r).
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_ I.(X;Y): a-Information

Consider Do (pxjy=yllox) = 521 log(px|v=yIPx)a and take the expectation over Y inside
the logarithm:

lo(X;Y) =

(0%
— 108 Ev(pxiyllpx)a

thatis, Io(X;Y) = ;%5 log fy (pr(x)pa(y|x) du(x)) 1/a du(y) =

21108 [, p) ([ P (xY)p™ () da(x)) " dp(y) ISibson'69]
Properties:
B ;-independent! ®
B uniform expansion: if U ~ U(M) then I,(U; Y) = logM — H,(U|Y)
but 1,(X;Y) # Ho(X) — Ha(X]Y) in general
® not mutual: I,(X;Y) # I,(Y; X) in general
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_ I.(X;Y): a-Information

Properties (cont’d)
B Sibson’s identity (golden formula): by the golden formula
(pxvllpxay)a = (py (PxyllPx)a || av) . we have
N———

x gy

Do (px,vllpxqy) = Da(qyllay) + 1a(X;Y)

® in particular I,(X; Y) = min Do (px v|/Pxqy) > 0 (nonnegative) and = 0 iff X LY
Qqy

B data processing inequality: if W — X — Y — Z is Markov, by the data processing
inequality for a-divergence: D, (pxy||pxqy) > Da(Pwzllpwaz), hence

126 Y) > 1(W; 2)]
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N I.(X;Y|Z): Conditional a-Information

Consider I,(X; Y|Z = z) = ;%5 log Ey(px|v,z=z||Px|z=7)o @nd take the expectation over Z
inside the logarithm:

Io(X;Y|Z) =

log E
a_1 og Evz(pxy zllPx|z)a

[Liu,Cheng,Guilley,Rioul’21]
B consistent: 1, (X; Y|0) = 1,(X;Y)
® uniform expansion: I, (U; Y|Z) = logM — H,(U|YZ)

® golden formula: Do (pxvz|Px|zQvz) = Da(ayzllqvz) + 1a(X; Y|Z) hence I,(X;Y|Z) > 0
(nonnegative) and =0iff X —Z—-Y
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_ Other definitions

B a-entropy:
1 — e(l-a)Ha(X)
* Tsallis [Havrda-Charvat’67]
o —
not even constant in « for uniform X ®

B conditional a-entropy:
* EyH.(X|]Y = y) [Cachin’97]; not monotonic ®
* Hu(X,Y) — Ho(Y) [Golshani+al’09]; not monotonic ®
* 2 log Ey||px|yy||% [Hayashi’11]; no chain rule ®

e
—

* —logEy||pxjy=y|lc~" [Fehr-Berens’14]; no chain rule ®
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_ Other definitions

B o-information:

H,(X) — Ho(X]Y) [Arimoto’75] no data processing inequality ®

D, (pxv||pxpy); no uniform expansion ®

ming, E D, (py|x|/qy) [Augustin’78][Csiszar’95] no uniform expansion, no data
processing inequality ®

ming, ¢, Do (Pxv||gxqy) [Lapidoth-Pfister’16] (symmetric) not even closed-form ®
etc.

B conditional a-information:

D.(pxvz|lpx|zPy|zPz) not consistent ®

r(?in D.(pxvz|lpxzqv|zPz) [Tomamichel-Hayashi’18] no unif. expansion ®
min D.(pxvz|lpx|zPv|zqz) [Esposito+al’21] not consistent ®
qz

etc.
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_ a~-Fano Inequality for a-Information
X — Y — X with M-ary X, probability of success Ps = P(X = X)
B X is a sensitive data (depending on a secret);
B Py|x is a “side-channel” through which information leaks
B Y is disclosed to the attacker (measurements by probes/sniffers...)
n P)?IY is the attack (MAP rule maximizes probability of success)

1a(X; Y) > 1a(X, X) =Da(py 5 0xa%) > da(Ps(X|Y)[IP5) > da(Ps(X|Y)||Ps(X))
DPI DPI dpi

where Pg = 3, px(x)g3(x) < maxy px(x) = Ps(X).

a-Fano’s Inequality [Rioul’21]

1a(X;Y) > do(Ps(X|Y) [| Ps(X))

generalizes [HanVerdu’94] (o = 1)
= implicit upper bound on Ps(X|Y) as a function of a-information.
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_ Application to Side-Channel Analysis

text T" (plain or cipher) noise N T

l e.g., wy l l
secret U ¥ v )
K —— Crypto Leakage Side Channel Attack |—— K

Framework of [Cherisey-Guilley-Rioul-Piantanida’19]:
B AES-256 implementation with many (q) measurement traces
Hamming weight leakage model Y; = wy(S(T; & K)) +N;  (i=1,2,...,q)
lo(X,Y|T) > do (Ps || ) by the main theorem applied to K — X — Y
Monte-Carlo simulation to compute /,(X, Y|T)
upper bound success rate P as a function of g
lower bound # traces gmin Needed to achieve a given success Ps
compare to optimal (maximum likelihood) attacks giving Ps(K|Y)
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_ Upper Bounds on Success Rate P
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_ Upper Bounds on Success Rate P
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_ Lower Bounds on # of Traces to Achieve 95% Success

1201 —— Predicted by Io(X; Y|T) with a=0.80
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_ Lower Bounds on # of Traces to Achieve 95% Success

1201 —— Predicted by Io(X; Y|T) with a=0.50
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_ Lower Bounds on # of Traces to Achieve 95% Success
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_ Lower Bounds on # of Traces to Achieve 95% Success
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