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Shannon’s Entropy: Operational Definition

Message x = (x1, x2, . . . , xn) a very long i.i.d. sequence of symbols ∼ p(x):

p(x) = p(x1)p(x2) · · ·p(xn)
rearrange terms according to the number n(x) of symbols equal to x:

p(x) =
∏
x

p(x)n(x)

asymptotically as n→ +∞, by the law of large numbers, n(x)
n ≈ p(x):

p(x) ≈
∏
x

p(x)n·p(x) = exp
(
−n
∑
x

p(x) log
1

p(x)︸ ︷︷ ︸
entropy H = H(p)

)

Theorem (Asymptotic Equipartition Property (AEP))

For any typical sequence, p(x) ≈ e−nH where P(typical) ≈ 1.
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Shannon’s Source Coding Theorem

To encode messages x = (x1, x2, . . . , xn) reliably:

since P(typical) ≈ 1 it is enough to encode the N typical sequences (Pe ≈ 0)

but P(typical) ≈ Ne−nH ≈ 1, so there are about N ≈ enH typical sequences.

coding rate (information units per symbol) : R =
logN

n
≈ H.

Theorem (Shannon’s 1st Coding Theorem)

Entropy H is an achievable (lossless) compression rate of source X
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Relative Entropy (Divergence): Operational Definition

Suppose x = (x1, x2, . . . , xn) i.i.d. ∼ q(x) 6= p(x) ≈ n(x)
n :

q(x) = q(x1)q(x2) · · ·q(xn) =
∏
x

q(x)n(x) ≈
∏
x

q(x)n·p(x) = exp
(
−n
∑
x

p(x) log
1

q(x)︸ ︷︷ ︸
cross-entropy H(p‖q)

)
probability that x ∼ q is p-typical (N ≈ enH(p) typical sequences)

P(typical) = Ne−nH(p‖q) ≈ enH(p)−nH(p‖q) = exp
(
−n

∑
x

p(x) log
p(x)

q(x)︸ ︷︷ ︸
relative entropy D(p‖q) = H(p‖q)− H(p) > 0

(Kullback-Leibler divergence)

)

Theorem (Large Deviation Bound (LDB))

Divergence D(p‖q) is the deviation exponent P(typical) ≤ e−nD(p‖q)
exp.−−→ 0 if p 6= q
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Shannon’s Channel Coding Theorem

Transmit reliably codeword x = (x1, x2, . . . , xn) in a channel x→ y = (y1, y2, . . . , yn)

decode x̂ from received y with error probability Pe = P(x̂ 6= x)
“random coding” evaluate Pe averaged over all possible codes as if codewords
x1, x2, . . . , xN were drawn i.i.d. ∼ p(x)
typical decoding : decode x̂ if it is the only codeword jointly typical with received
sequence y, i.e., (x, y) is typical for p(x, y).
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Shannon’s Channel Coding Theorem

another (independent) codeword x′ ∼ q(x′, y) = p(x′)p(y) can be also jointly typical
with y (according to p(x, y)) with probability

e−nD(p‖q) = exp
(
−n
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)︸ ︷︷ ︸
mutual information I(X; Y)

)
= e−nI(X;Y)

coding rate (information units per symbol) : R =
logN

n
for N codewords:

Pe ≈ (N− 1)e−nI(X;Y) ≈ en(R−I(X;Y))
exp.−−→ 0

when R < I(X; Y) (maximized for some optimal choice of p(x)).

Theorem (Shannon’s 2nd Coding Theorem)

Any R <Capacity C=max
p(x)

I(X; Y) can be a reliable transmission rate over channel X→ Y.
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Achievability and Converse Results

previous results are
• achievability results: what one can actually do to approach a limit (H or C. . . ).
• asymptotic (as n→ +∞)

converse theorems establish limits that cannot be exceeded, e.g., using

Data Processing Inequality (DPI) “processing can only decrease information”

· · · - -W -· · · - -X -· · · - -Y -· · · - -Z -· · ·

If W − X − Y − Z is a Markov chain, I(X; Y) ≥ I(W;Z)

Fano’s Inequality [Fano’52]

X− Y − X̂ = x̂(Y) with M-ary equiprobable X, success probability Ps = P(X̂ = X) = 1− Pe

H(X|Y) ≤ h(Pe) + Pe log(M− 1) ⇐⇒ I(X; Y) ≥ d(Ps‖ 1
M)
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Converse Coding Theorems

-
X Source

Encoder
-C Noiseless

Channel
-C Source

Decoder
-X̂

Discrete
Source Code Code Destination

By the data processing inequality, I(X; X̂) ≤ I(C;C) = H(C) ≤ logM.
By Fano’s inequality, I(X; X̂) = H(X)− H(X|X̂) ≈ H(X) = nH if Pe ≈ 0

Thus if Pe ≈ 0, R ≥ H : entropy H is the optimal bound.

-I Channel
Encoder

-
X Noisy

Channel
-

Y Channel
Decoder

-Î

Information Code Received Destination

By the data processing inequality, nC ≥ nI(X; Y) ≥ I(X; Y) ≥ I(I; Î)
By Fano’s inequality, I(I; Î) ≥ d(Ps‖1/M) ≈ logM if Ps ≈ 1.
Thus if Pe ≈ 0, R ≤ C : capacity C is the optimal bound.

7 / 34 Mar. 2nd, 2022 Olivier Rioul Information Leakage and Side-Channel Attacks



Parametric Estimation

Observed data x = (x1, x2, . . . , xn) be a very long i.i.d. sequence ∼ pθ∗ � µ.
Model θ 7→ pθ is known:

pθ(x) = pθ(x1)pθ(x2) · · ·pθ(xn)
Find an asymptotically optimal estimator θ̂(x) of θ∗.

taking logarithms, asymptotically as n→ +∞, by the law of large numbers,

1

n
log pθ(x) =

1

n

n∑
1

log pθ(xi)→ Eθ∗ log pθ(X) = −H(pθ∗‖pθ)

divergence D(pθ∗‖pθ) = H(pθ∗‖pθ)− H(pθ∗) ≥ 0 is minimum = 0 iff pθ = p∗θ.
(i.e., by identifiability θ = θ∗)
asymptotically as n→ +∞,

θ∗ = argmin
θ

D(pθ∗‖pθ) ⇐⇒ θ̂(x) = argmax
θ

1

n
log pθ(x) (maximum likelihood)
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Fisher’s Information: Operational Definition

θ
θ∗

D(pθ∗‖pθ)

1/Jθ∗

At the minimum θ = θ∗:

null gradient ∂
∂θD(pθ∗‖pθ)

∣∣
θ=θ∗

= −ESθ(X) = 0
where score Sθ(X) =

∂
∂θ log pθ(X).

curvature Jθ∗ = ∂2

∂θ2D(pθ∗‖pθ)
∣∣
θ=θ∗
≥ 0

(Fisher information)

Jθ = −
∫

∂2

∂θ2

(
log pθ(x)

)
pθ(x)dµ(x) =

∫ ( ∂
∂θ

log pθ(x)
)2
pθ(x)dµ(x)︸ ︷︷ ︸

Var(Sθ(X))
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Fisher’s Information: Operational Definition

Therefore, the maximum likelihood estimator
θ̂(x) = argmax

θ
log pθ(x) satisfies:

θ
θ̂(x)

``θ(x)=log pθ(x)

Sθ(x) =
∂
∂θ log pθ(x) = 0

1/Jθ∗asymptotically, 0 = 1
nSθ(x) ≈ E(Sθ(X)) at θ = θ̂

hence D(pθ∗‖pθ̂)→ 0 and θ̂ → θ∗ as n→∞;

asymptotically,
Sθ∗ (x)−

=0︷︸︸︷
Sθ̂(x)

θ∗−θ̂
→ ∂2

∂θ2 log pθ(x)
∣∣
θ=θ∗

≈ −n Jθ∗
hence E(θ̂ − θ∗)2 ∼ n Jθ∗

n2J2
θ∗

= 1
n Jθ∗

, i.e.,

Theorem (Fisher’s Estimation Theorem)

Asymptotically, ML estimation has MSE ≈ 1
n Jθ∗

for observation X

Converse theorem: Cramér-Rao bound (Fréchet-Darmois, 1943)

If θ̂ is unbiased, MSE = Var(θ̂) ≥ 1
n Jθ∗
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Information Leakage: Side-Channel Analysis
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Physical Problem

embedded symmetric crypto on secure chips (e.g., AES-256)

the device leaks through a side channel
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Acquisition Platform
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Acquisition Platform (Profiled Scenario)
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Mathematical Problem

Can we derive

the maximum attack success rate for a given number q of queries (traces)

minimum # qmin of queries (traces) for a given level of attack success (e.g., 95%)

for

any type of attack (DoM, DPA, CPA, LRA, MIA, KSA, other as-yet-unknown. . . )
an omniscient/almighty (best possible) attacker

• knows how the device leaks, everything except the secret
• worst case for the defender
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Formalization

Framework of [Cherisey-Guilley-Rioul-Piantanida’19]:

AES-256 implementation with many (q) measurement traces

Hamming weight leakage model Yi = wH(S(Ti ⊕ K)) + Ni (i = 1,2, . . . ,q)

with or without countermeasures (shuffling, noising, masking)

optimal attack
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Bayesian Hypothesis Testing

-
X Side

Channel
-

Y
Estimation -

X̂

M-ary
Secret

Observation Estimate

Maximize success probability Ps = P(X̂ = X) (minimize error probability Pe = 1− Ps)

P(X̂ = X) = E
(
P(X̂ = X|Y)

)
= E

(∑
x

p(x|Y)P(X̂ = x|Y)
)

since X − Y − X̂ is Markov

≤ E
(
max
x

p(x|Y)
)

with equality if P(X̂ = x|Y) = 1 for some x achieving maxx p(x|Y).

MAP (maximum a posteriori) rule

Maximum success Ps(X|Y) = E
(
max
x

p(x|Y)
)

attained with X̂ = x̂(Y) = argmaxx p(x|Y).
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MAP rule

using disclosed measurements Y (output of a side channel):

Ps(X|Y) = E
(
max
x

p(x|Y)
)

prior belief (“blind”, without access to the measurements):

Ps(X) = max
x

p(x) = max
x

E
(
p(x|Y)

)
Theorem (Data Processing Inequality)

if X − Y − Z is Markov,
Ps(X|Y) ≥ Ps(X|Z)

In particular,
Ps(X|Y) ≥ Ps(X)

Proof.

maxE ≤ Emax.
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Guessing Entropy
In a game of “20 questions”, what is the min average # questions before X is found?

• arbitrary questions: by dichotomy (probability 1/2-1/2): H(X) (entropy)
• yes/no questions: by ranking (most probable first): G(X) (guessing entropy)

G(X) = number of successive guesses before secret X is found.
Optimal strategy: G(X) = k guesses with probability p(k) (kth largest probability)

guessing entropy G(X) = minE
(
G(X)

)
=
∑M

k=1
kp(k) [Massey’94]

with side information Y: G(X|Y) = EyG(X|Y = y)

Theorem (Data Processing Inequality)

if X − Y − Z is Markov, G(X|Y) ≤ G(X|Z)
In particular,

G(X|Y) ≤ G(X)

Proof.

W.l.o.g. X = G(X). Then G(X|Y=y) ≤ E(X|Y=y) so G(X|Y) ≤ E(X) = G(X).
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Success Rate vs. Guessing Entropy
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α-Entropy

α-entropy: Hα(X) =
α

1− α
log ‖pX‖α [Rényi’61]

where “norm” ‖p‖α =
(∫

pα dµ
)1/α

is

{
convex (Minkowski) α > 1

concave (reverse Minkowski) α < 1

conditional α-entropy: Hα(X|Y) =
α

1− α
logEY‖pX|Y‖α [Arimoto’75]

(expectation inside the log)

Theorem (Data Processing Inequality)

if X − Y − Z is Markov, Hα(X|Y) ≤ Hα(X|Z)
In particular,

Hα(X|Y) ≤ Hα(X)

Proof.

E‖ · ‖
α<1
≶
α>1
‖E · ‖. One recovers the usual DPI for the limit case α = 1.
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MAP and min-Entropy, Guessing and 1/2-entropy

H0(X) = logM > · · · > H(X) = H1(X) > · · · > H∞(X) = log
1

Ps(X)> > >

H0(X|Y) = logM > · · · ≥ H(X|Y) = H1(X|Y) > · · · > H∞(X|Y) = log
1

Ps(X|Y)
α→ 0 : Hartley’s information theory
α→ 1 : Shannon’s information theory

α→ +∞ : estimation theory

Arikan’s inequalities: [Arikan’96] useful for scalability [Choudary17]

H1/2(X)− log(1 + lnM) ≤ logG(X) ≤ H1/2(X)> > >

H1/2(X|Y)− log(1 + lnM) ≤ logG(X|Y) ≤ H1/2(X|Y)
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What is α-Information Theory?

α-entropy Hα(X) or Hα(p)
α-conditional entropy Hα(X|Y)
α-divergence (relative entropy) Dα(p‖q)
α-information Iα(X; Y)
α-conditional information Iα(X; Y|Z)

with interesting properties:

consistency, nonnegativity, uniform expansion, relationships, . . .
conditioning reduces entropy
data processing decreases information
Fano’s inequality

where α ∈ (0,1) ∪ (1,+∞) with limiting cases:

α→ 0 : Hartley’s information theory
α→ 1 : Shannon’s information theory

α→ +∞ : estimation theory (MAP)
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Dα(p‖q): α-Divergence

Dα(p‖q) =
α

α− 1
log(p‖q)α [Rényi’61].

where α-“product” (p‖q)α =

(∫
pαq1−α dµ

)1/α

Properties:

Dα(p‖q) −→
α→1

D(p‖q) (Kullback-Leibler)

binary expression dα(p‖q) = 1
α−1 log

(
pαq1−α+(1−p)α(1−q)1−α)

µ-independent! , pdµ = p′ dµ & qdµ = q′ dµ =⇒ (p/q)αqdµ = (p′/q′)αq′ dµ′

nonnegative: Dα(p‖q) ≥ 0 since (p‖q)αα
α<1
≶
α>1

(
∫
p)α(

∫
q)1−α︸ ︷︷ ︸

=1

{
(Hölder) α < 1

(reverse Hölder) α > 1

uniform expansion: if u ≡ 1
M then (p‖u)α = M

α−1
α ‖p‖α and Dα(p‖u) = logM− Hα(p)

hence Hα(X) ≤ logM = max α-entropy for uniform
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Dα(p‖q): α-Divergence
data processing inequality:

by the “golden formula” (pXY‖qXY)α =
(
pX (pY|X‖qY|X)α

∥∥qX)α α<1
≶
α>1

(pX‖qX)α
one has Dα(pXY‖qXY) ≥ Dα(pX‖qX) with equality if pY|X = qY|X. Therefore,

if

pX → pY|X → pY

qX → pY|X → qY
then Dα(pY‖qY) ≤ Dα(pX‖qX)

Example: X→ 1A → Y

Dα(p‖q) ≥ dα(pA‖qA) where pA = P(X ∈ A), qA = Q(X ∈ A).

Example: binary channel X→ pY|X → Y

dα(p‖r) ≥ dα(p‖q) and dα(p‖r) ≥ dα(q‖r)
for any p,q, r in that order (p ≤ q ≤ r or p ≥ q ≥ r).
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Iα(X;Y): α-Information

Consider Dα(pX|Y=y‖pX) = α
α−1 log(pX|Y=y‖pX)α and take the expectation over Y inside

the logarithm:

Iα(X; Y) =
α

α− 1
logEY(pX|Y‖pX)α

that is, Iα(X; Y) =
α

α−1 log
∫
Y

(∫
X p(x)pα(y|x) dµ(x)

)1/α
dµ(y) =

α
α−1 log

∫
Y p(y)

(∫
X pα(x|y)p1−α(x) dµ(x)

)1/α
dµ(y) [Sibson’69]

Properties:

µ-independent! ,

uniform expansion: if U ∼ U(M) then Iα(U; Y) = logM− Hα(U|Y)
but Iα(X; Y) 6= Hα(X)− Hα(X|Y) in general

not mutual: Iα(X; Y) 6= Iα(Y;X) in general
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Iα(X;Y): α-Information

Properties (cont’d)

Sibson’s identity (golden formula): by the golden formula
(pXY‖pXqY)α =

(
pY (pX|Y‖pX)α︸ ︷︷ ︸

∝ q∗Y

∥∥qY)α, we have

Dα(pX,Y‖pXqY) = Dα(q
∗
Y‖qY) + Iα(X; Y)

in particular Iα(X; Y) = min
qY

Dα(pX,Y‖pXqY) ≥ 0 (nonnegative) and = 0 iff X ⊥⊥ Y

data processing inequality: if W − X − Y − Z is Markov, by the data processing
inequality for α-divergence: Dα(pXY‖pXqY) ≥ Dα(pWZ‖pWqZ), hence

Iα(X; Y) ≥ Iα(W;Z)
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Iα(X;Y|Z): Conditional α-Information

Consider Iα(X; Y|Z = z) = α
α−1 logEY(pX|Y,Z=z‖pX|Z=z〉α and take the expectation over Z

inside the logarithm:

Iα(X; Y|Z) =
α

α− 1
logEYZ(pX|Y,Z‖pX|Z〉α

[Liu,Cheng,Guilley,Rioul’21]

consistent: Iα(X; Y|0) = Iα(X; Y)

uniform expansion: Iα(U; Y|Z) = logM− Hα(U|YZ)
golden formula: Dα(pXYZ‖pX|ZqYZ) = Dα(q∗YZ‖qYZ) + Iα(X; Y|Z) hence Iα(X; Y|Z) ≥ 0
(nonnegative) and = 0 iff X − Z − Y
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Other definitions

α-entropy:

• Tsallis [Havrda-Charvát’67]
1− e(1−α)Hα(X)

α− 1
not even constant in α for uniform X /

conditional α-entropy:
• EYHα(X|Y = y) [Cachin’97]; not monotonic /
• Hα(X, Y)− Hα(Y) [Golshani+al’09]; not monotonic /
• 1

1−α logEY‖pX|Y=y‖αα [Hayashi’11]; no chain rule /

• − logEy‖pX|Y=y‖
α

α−1
α [Fehr-Berens’14]; no chain rule /
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Other definitions

α-information:
• Hα(X)− Hα(X|Y) [Arimoto’75] no data processing inequality /
• Dα(pXY‖pXpY); no uniform expansion /
• minqY EDα(pY|X‖qY) [Augustin’78][Csiszár’95] no uniform expansion, no data

processing inequality /
• minqX,qY Dα(pXY‖qXqY) [Lapidoth-Pfister’16] (symmetric) not even closed-form /
• etc.

conditional α-information:
• Dα(pXYZ‖pX|ZpY|ZPZ) not consistent /
• min

qY|Z
Dα(pXYZ‖pX|ZqY|ZpZ) [Tomamichel-Hayashi’18] no unif. expansion /

• min
qZ

Dα(pXYZ‖pX|ZpY|ZqZ) [Esposito+al’21] not consistent /

• etc.
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α-Fano Inequality for α-Information
X − Y − X̂ with M-ary X, probability of success Ps = P(X̂ = X)

X is a sensitive data (depending on a secret);
PY|X is a “side-channel” through which information leaks
Y is disclosed to the attacker (measurements by probes/sniffers...)
PX̂|Y is the attack (MAP rule maximizes probability of success)

Iα(X; Y) ≥
DPI

Iα(X, X̂)=Dα(pX,X̂‖pXq
∗
X̂
) ≥
DPI

dα(Ps(X|Y)‖P′s)≥
dpi

dα(Ps(X|Y)‖Ps(X))

where P′s =
∑

x pX(x)q
∗
X̂
(x) ≤ maxx pX(x) = Ps(X).

α-Fano’s Inequality [Rioul’21]

Iα(X; Y) ≥ dα
(
Ps(X|Y) ‖Ps(X)

)
generalizes [HanVerdú’94] (α = 1)
=⇒ implicit upper bound on Ps(X|Y) as a function of α-information.
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Application to Side-Channel Analysis

Framework of [Cherisey-Guilley-Rioul-Piantanida’19]:

AES-256 implementation with many (q) measurement traces
Hamming weight leakage model Yi = wH(S(Ti ⊕ K)) + Ni (i = 1,2, . . . ,q)
Iα(X,Y|T) ≥ dα

(
Ps ‖ 1

M

)
by the main theorem applied to K − X− Y

Monte-Carlo simulation to compute Iα(X,Y|T)
upper bound success rate Ps as a function of q
lower bound # traces qmin needed to achieve a given success Ps
compare to optimal (maximum likelihood) attacks giving Ps(K|Y)
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Upper Bounds on Success Rate Ps
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Lower Bounds on # of Traces to Achieve 95% Success
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Lower Bounds on # of Traces to Achieve 95% Success
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Lower Bounds on # of Traces to Achieve 95% Success
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Lower Bounds on # of Traces to Achieve 95% Success
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Information Leakage and Side-Channel Attacks

Fuites d’information et attaques par canaux

cachés

Merci !

Olivier Rioul
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