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Abstract
The kissing number of a code is the average number of pairs of codewords at
minimum distance from each other. It has fundamental applications in determining
codes performances. Besides, a recent interest has arisen from the field of side-
channel analysis of algorithms handling sensitive information (e.g., cryptographic
keys). Namely, when code-base masking protections are applied, their performance
in terms of attacker’s signal-to-noise ratio ormutual information is proportional to the
kissing number of the masking code. Therefore the kissing number is also a security
metric for a given minimum distance in side-channel protected implementation,
as it is in codes performance evaluation. It is known exactly for some classical
families of codes. To estimate it in general, two types of bounds are given. Linear
programming, either numerically or by the polynomial method is the most versatile
and the more precise. Spectral graph theory provides bounds on the multiplicity of
the subdominant eigenvalue that are easier to state.
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1 Introduction

The kissing number of a code is the average number of pairs of codewords at
minimum distance from each other. Thus for a linear code it equals the number of
codewords ofminimumnonzeroweight. The terminology is adapted from lattices and
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sphere packings [11] where it is inspired by the snooker game. It occurs naturally in
a number of estimates of probability of error events in error detection and correction.
More recently it appeared in assessing the security of so-called code-based masking
as a measure of resilience to side-channel attacks [6, 8].

In general, estimating the kissing number is a difficult problem. It is known exactly
but for a handful of cases: low order BCH (Bose-Chaudhuri-Hocquenghem) codes,
RM (Reed-Muller) codes, MDS (Maximum Distance Separable) codes and some
low genera geometric codes. To derive upper and lower bounds as functions of the
length, minimum distance and dimension, linear programming techniques [25] can
be used, where the variables are the weight frequencies, and constraints are based on
the Delsarte-MacWilliams inequalities [12]. This kind of technique has been used in
the past to derive bounds on frequencies for the whole weight spectrum [1]. It can be
used numerically or through the polynomial method which is less precise, but gives
simple formulas. Another approach that gives closed form bounds is the connection
with spectral graph theory via the coset graph of the dual code [9].

This survey is organized as follows. Section 2 contains the motivation from
coding theory and side-channel security. Section 3 is a census of exact results for
classical families of codes. Section 4 is an exposition of the Linear Programming
(LP) bounds. Section 5 gives some bounds from spectral graph theory. Conclusions
and perspectives are in Section 6.

2 Motivations

The kissing number is fundamental in approximating the performance of coded
systems for large signal-to-noise ratios. For the sake of the presentation we make the
following definitions.

2.1 Definitions

Definition 1 ((n,M)Code)A (n,M) code is any finite set of M equiprobable distinct
points x1,x2, . . . ,xM in an n-dimensional metric space equipped with a distance
denoted by d(·, ·).

Codewords are assumed of equal probability p(xi) = 1
M . The minimum distance of

a code is
dmin = min

i,j
d(xi,xj). (1)

Definition 2 (Kissing Number) Let Ad(x) be the number of codewords located at
distance d from a given codeword x, and

Ad =
1
M

M∑
i=1

Ad(xi) (2)
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be the average number of codewords located at distance d from one another. The
kissing number of a code is Admin , the average number of codewords located at
minimum distance from one another.

When the code is distance-invariant (e.g., linear) then Ad = Ad(xi) for every i and
Admin is a whole integer.

For simplicity we restrict ourselves in the sequel of this section to binary codes:
A binary code is such that every component xi, j in xi = (xi1, . . . , xin) can only take
two values. There are two cases that are most often considered for coded systems:

1. the Euclidean space Rn with Euclidean distance dE (x,y) =
√∑n

j=1(xj − yj)2,

where each codeword component xi, j take values in {±
√

E} where E is the
energy per bit.

2. the Hamming space with Hamming distance dH (x,y) =
��{ j | xj , yj}

�� where
xi, j ∈ {0,1} = F2.

With the identification 0 ↔ −
√

E and 1 ↔ +
√

E , the two distances are linked by
the relation

d2
E (x,x

′) = 4E dH (x,x′) (3)

for any two codewords x, x′. The Euclidean and Hamming kissing numbers Admin

coincide in this case. Thus in the rest of the paper, we omit to specify the particular
distance used.

The binary code is used over a noisy memoryless symmetric channel (input x,
output y) defined by its transition probabilities p(y|x). Decoding is performed on the
received noisy codeword y in order to recover the correct emitted codeword x.

1. The Additive White Gaussian Noise (AWGN) channel has input and output in the
Euclidean space Rn with

p(y|x) =
1

√
πN0

n exp
(
−

d2
E (x,y)

N0

)
, (4)

where N0 denotes the noise power per unit frequency and E/N0 is the Signal-to-
Noise Ratio (SNR). This channel is symmetric because p(−y| − x) = p(y|x).
Soft decoding occurs on the AWGN channel when decoding is done directly on
the noisy codeword y.

2. The Binary Symmetric Channel (BSC) has input and output in the Hamming
space with

p(y|x) = pdH (x,y)(1 − p)n−dH (x,y), (5)

where p < 1/2 is the channel’s bit error probability. The channel is symmetric
because for each transmitted bit, p(0|0) = p(1|1) and p(0|1) = p(1|0).
Hard decoding occurs on theAWGNchannel when bitwise detection is performed
prior to decoding. In this case the resulting y is the output of a BSCwith parameter

p = Q(
√

2E/N0), (6)
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where the Q-function

Q(x) =
1
2

erfc(x/
√

2) =
1
√

2π

∫ ∞

x

exp(−
t2

2
) dt (7)

is the tail distribution function of the standard normal distribution. In this case,
the large SNR hypothesis amounts to considering small values of p.

2.2 Probability of Decoding Error

Having received the noisy y, the decoder aims at finding the codeword x̂ that min-
imizes the word error probability Pe = P(x̂ , x). This yields the Maximum A
Posteriori (MAP) rule

x̂ = arg max
x

p(x|y) (8)

which, since we assumed equiprobable codewords, is equivalent to maximizing the
likelihood:

x̂ = arg max
x

p(y|x). (9)

From (4) and (5) this gives
x̂ = arg min

x
d(x,y), (10)

where d denotes Euclidean distance for soft decoding and Hamming distance for
hard decoding. The performance of a coded system can then be measured by the
resulting minimum probability of error:

Pe =
1
M

∑
i

Pe |xi (11)

where Pe |x denotes the probability of decoding error when codeword x has been
transmitted. For linear codes we simply have Pe = Pe |x = Pe |0 where 0 denotes the
zero codeword.

In order to obtain a tight closed form expression (upper bound) for the probability
of error for large SNR, one usually applies the union bound [28, (2.3.4)][3, (4.50)
and (10.71)]:

Pe |xi ≤
∑
j,i

Pxi→x j (12)

where Pxi→x j denotes the pairwise error probability of decoding xj rather than xi as
if they were the only two codewords, that is, the probability that d(xj,y) ≤ d(xi,y)
given that xi was transmitted.

The pairwise error probability is computed as

Pxi→x j = Q
(

dE (xi,xj)
√

2N0

)
(13)
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for soft decoding (AWGN) and

Pxi→x j =
∑

k≥dH (xi ,x j )/2

(
dH (xi,xj)

k

)
pk(1 − p)dH (xi ,x j )−k (14)

for hard decoding (BSC). Note that the Q-function in (13) is the tail of a Gaussian
distribution, whereas (14) is the tail of a binomial distribution.

Yet other simpler upper bounds are obtained using the Bhattacharyya bound [28,
(2.3.15)] and [3, (10.75)]:

Pxi→x j ≤
∑∫
y

√
p(y|xi)p(y|x′i), (15)

where the summation is over the entire space (continuous summation in the Euclidean
case, discrete summation in the Hamming case). There exists a generalization known
as theChernov boundwhich cannot improve the Bhattacharyya bound for symmetric
channels.

This bound writes

Pxi→x j ≤ exp
(
−

d2
E (xi,xj)

4N0

)
(16)

for soft decoding (AWGN) [28, (2.3.17)], [3, (4.53)] and

Pxi→x j =
√

4p(1 − p)
dH (xi ,x j ) (17)

for hard decoding (BSC) [28, (3.10.8)], [3, (10.76)]. From (3) it follows that both
expressions simply reduce to

Pxi→x j ≤ ζ
dH (xi ,x j ), (18)

where 0 < ζ < 1 is defined by

ζ =

{
e−E/N0 (soft decoding)√

4p(1 − p). (hard decoding)
(19)

The high SNR hypothesis reduces to the assumption that ζ is small. Putting this
together with (12) and (2) gives [28, (3.10.15)], [3, (10.78), (10.88)]

Pe ≤
n∑

d=dmin

Adζ
d, (20)

where the right-hand side is dominated by the first term for high SNR:

Pe . Admin ζ
dmin . (21)
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This shows that maximizing the coding performance amounts to (i) maximizing
minimumdistance and then (ii)minimizing the kissing number. For a givenminimum
distance, it is the kissing number that matters the most.

2.3 Probability of Undetected Error

The kissing number matters not only for error correction, but also for error detection:
When using a code on a q-ary symmetric channel with probability of transition p in
a Automatic Repeat reQuest (ARQ) scheme, one easily obtains [3, (10.62)]

Pe =
n∑

d=dmin

Adpd(1 − (q − 1)p)n−d, (22)

where again the right-hand side is dominated by the first term for high SNR:

Pe ' Admin pdmin . (23)

2.4 Information Leakage in Code-Based Masking

Randomly masking the implementation of cryptographic algorithms is a method to
provably reduce their side-channel leakage. Initially applied at bit-level [18], random
masking schemes extended their scope to word-level description of algorithms [23].
A general class of random masking techniques is the so-called code-based masking
schemes [29]. A recent application of the kissing number lies in quantifying side-
channel leakage of cryptographic implementations protected by these code-based
masking schemes. Assume that in code-based masking, the information X and the
random masks Y are encoded into: Z = XG + YH, where G and H are generator
matrices of two linear codes C and D, respectively. In order to allow for unmasking,
codes C and D must not overlap, i.e., C ∩ D = {0}. In [6], it is shown that the
Signal-to-Noise Ratio (SNR) of a side-channel attack against a code-based masking
scheme under Hamming weight leakage with AWGN is equal to:

SNR =
Ad⊥D

σ2

(
d⊥D!
2d⊥D

)2

, (24)

where σ2 is the noise variance and d⊥D is the dual distance of D. Essentially, (24)
is applicable for the code-based masking where the two codes C and D are com-
plementary, e.g., in Inner Product Masking (IPM). Thus the kissing number of D⊥

plays a critical role as a metric of code-based masking efficient.
More generally, in [8], the above result on SNR is further extended for the code-

based masking where C and D are not complementary anymore (but still, condition
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C ∩ D = {0} must hold), e.g., in Shamir’s Secret Sharing (SSS) based masking
scheme. Accordingly, (24) is generalized as:

SNR =
A′
d⊥D

σ2

(
d⊥D!
2d⊥D

)2

. (25)

where A′
d⊥D

is called the adjusted kissing number [8] which is calculated as:

A′
d⊥D
=

��{(x, y) ∈ (D⊥\C⊥)2 | x + y ∈ C⊥, wH (x) = wH (y) = d⊥D}
�� , (26)

and where wH denotes the Hamming weight function. Particularly, A′
d⊥D

depends
on both linear codes C⊥ and D⊥, indicating that the side-channel resistance of the
code-based masking relies on both codes.

Furthermore, similar with SNR in (24), the mutual information between side-
channel leakage under the Hamming weight model and the sensitive variable is
approximated involving both d⊥D and Ad⊥D

. That is, the information leakage in
code-based masking can be quantified accordingly from an information-theoretic
perspective [6, 8].

In summary, from a coding-theoretic perspective, (24) and (25) allow us to evalu-
ate the residual leakage, i.e., the side-channel resistance of any code-based masking
scheme by investigating the dual distance of D and the (adjusted) kissing number
of D (and C). It is also worth mentioning that other terms (e.g., Ad+1) in weight
distribution affects the residual leakage [7], especially when there is a tie on the
kissing number.

3 Classical Values of the Kissing Number

From now on, we use d to denote dmin when there is no ambiguity.
The following observation will be used in the next three subsections. When the

codewords of weight d of a q-ary code form a 2 − (n, d, λ) design [13] then we have

Ad =
n(n − 1)
d(d − 1)

λ(q − 1). (27)

Note that all the nonzero multiples of a given codeword share the same support.

3.1 Hamming and Simplex Codes

Recall that the perfect Hamming codeC(m,q) overFq has parameters [ q
m−1)
(q−1) ,

qm−1)
(q−1) −

m,3]. Its dual is the [ q
m−1)
(q−1) ,m,q

m−1] simplex code. Theorem 10.15 in [13] gives the
kissing number of C(m,q) and its dual to be
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A3 =
(qm−1)(qm−q)

6 , (28)
A⊥
qm−1 = qm − 1. (29)

respectively. The second equality is immediate by observing that C(m,q)⊥ is a one-
weight code.

3.2 BCH Codes

Let C(q,n, δ, b) denote the BCH code over Fq of length n and designed distance
δ having zeros at αb, . . . , αb+δ−2, with α a primitive element of order n over the
algebraic closure of Fq .

• The dual of the binary double error correcting BCH code of length 2m − 1
(primitive length) has d = 2m−1 − 2(m−1)/2 (resp. d = 2m−1 − 2m/2) for m odd
(resp. m even) and kissing number Ad = (2m − 1)(2m−2 + 2(m−3)/2) (resp Ad =
2(m−4)/2

3 (2m − 1)(2(m−2)/2 + 1)). See [20, pp. 451–452].
• The dual of the triple error-correcting BCH code C(2,2m − 1,7,1) has minimum

distance d = δ = 2m−1 − 1 − 2(m+1)/2 for m odd and kissing number given in [13,
Table 7.9].

• The extended BCH code of length 2m and designed distance δ = 2m−1 − 1 −
2[(m−1)/2] hasminimum distance d = δ+1, and kissing number Ad = (2m−1)2m−1

for odd m. For even m its kissing number becomes Ad = (2m/2 − 1)2m.
• Let δ2 = (q − 1)qm−1 − 1 − q b

m−1
2 c . Then the minimum distance of C(q,n, δ2,0)

is δ2 + 1. The kissing number is given by [13, Tables 7.3 & 7.4]

Aδ2+1 =

{
(q − 1)(qm − 1)(qm−1 + q(m−1)/2)/2 when m is odd,
(q − 1)(q(3m−2)/2 − q(m−2)/2) when m is even.

• Assume q is odd. Let δ3 = (q− 1)qm−1 − 1− q b
m+1

2 c . Then the minimum distance
of C(q,n, δ3,0) is δ3 + 1. The kissing number is given in [13, Tables 7.11 & 7.12].

3.3 Reed-Muller Codes

Let q be a prime power, l and m be positive integers such that 0 ≤ l < (q − 1)m. The
generalized Reed-Muller code over Fq is denoted as Rq(l,m).

Write l as l = l1(q − 1) + l0, where l0 and l1 are non-negative integers, and
0 ≤ l0 < q − 1. Then Rq(l,m) has parameters [qm, k, (q − l0)qm−l1−1], where

k =
l∑

i=0

m∑
j=0
(−1)j

(
m
j

) (
i − jq + m − 1

i − jq

)
. (30)
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The kissing number is given by

A(q−l0)qm−l1−1 = (q − 1)
ql1 (qm − 1)(qm−1 − 1) · · · (ql1+1 − 1)
(qm−l1 − 1)(qm−l1−1 − 1) · · · (q − 1)

Nl0 (31)

where

Nl0 =

{
1, if l0 = 0,(q
l0

) qm−l1−1
q−1 , if 0 < l0 < q − 1.

(32)

See [13, p.166] for more details.
For instance, if q = 2, l = 1, we get A2m−1 = 2(2m − 1) = 2m+1 − 2, as could

have been expected from the fact that binary Reed-Muller code RM(1,m) is a self-
complementary two-weight code. In general if r > 2, the full weight distribution is
not known.

Besides this, if q > 2, the codeRq((q−1)m−2,m) has parameters [qm,qm−m−1,3]
with kissing number

A3 =
(q − 1)(q − 2)(qm − 1)qm

6
. (33)

See [13, p.169].

3.4 MDS Codes

By definition, an MDS code over Fq has parameters [n, k,n − k + 1]. By [20], we
know that

An−k+1 = (q − 1)
(

n
n − k + 1

)
. (34)

3.5 Elliptic Codes

If C is an Algebraic Geometry (AG) code constructed from an elliptic curve over Fq,
of parameters [n, k,n − k] with (k,n) = 1, then we have

An−k =

(n
k

)
(q − 1)

n
. (35)

The full weight distribution is computed in [26, Cor. 3.2.9].
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3.6 Extremal Self-Dual Codes

Let C be a binary [n, n2 , d] even self-dual code. If C has the greatest minimum weight
we could hope to attain, i.e., it achieves the bound in [13, Thm. 11.4], then C is said
to be extremal. If C is an extremal self-dual code of Type II or Type I with n . 22
(mod 24), let µ = [n/24], then C has minimum distance d = 4µ+ 4, and the kissing
number is given by [20, Thm. 19.13]:

A4µ+4 =



(
n
5

) (
5µ − 2
µ − 1

)/ (
4µ + 4

5

)
, if n = 24µ,

1
4

n(n − 2)(n − 4)
(5µ)!

µ!(4µ + 4)!
, if n = 24µ + 8,

3
2

n(n − 2)
(5µ + 2)!
µ!(4µ + 4)!

, if n = 24µ + 16.

(36)

Recall that the Quadratic-Residue (QR) codes are cyclic codes of prime block
length n over a field Fp , where n is an odd prime, p is a different prime and a
quadratic residue modulo n. Let QRC0

(n,p) denote the cyclic code over Fp of length
n with generator polynomial

g0(x) =
∏
r ∈Q

(x − αr ), (37)

where Q denote the set of quadratic residues modulo n, and α is a primitive pth root
of unity in some field containing Fp . The generator matrix of QRC0

(n,p) is denoted
as Gi . Let QRC0

(n,p) denote the extended code of QRC0
(n,p). It has the generator

matrix as follows 
0

Gi

...
0

1 1 · · · 1 −ζn


where n ≡ −1 (mod 4) or n ≡ 1 (mod 4) and q ≡ −1 (mod 4), and ζ is a solution
of 1 + ζn2 = 0. See more details in [13, Section 3.7].

Consider the binary codeQRC0
(47,2) with parameters [48,24,12]. It is an extremal

self-dual code of Type II, see [13, Ex. 11.4]. By (36), the kissing number of C is
Ad =

(48
5
) (8

1
) / (12

5
)
= 17296.

3.7 Various Cyclic Codes

If C is an q-ary cyclic code, let α be a generator of F∗qm and Mαi (x) denotes the
minimal polynomial of αi over Fq .
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For q = 2, letCe denote the binary cyclic code of length n = 2m−1with generator
polynomial ge(x) = Mα(x)Mα1+2e (x). Let m ≥ 4 and 1 ≤ e ≤ m/2, we have the
following results:

• When m/gcd(m, e) is odd, define h = (m − gcd(m, e))/2. Then the dual code C⊥e
has parameters [n,2m,2m−1 − 2(m−1−h)/2] and kissing number Ad = 2h−1(2m −
1)(2h + 1). See [13, Table 6.2].

• When m is even and e = m/2, then C⊥e has parameters [n,3m/2,2m−1 − 2(m−2)/2]
and kissing number Ad = (2m/2 − 1)(2m−1 + 2(m−2)/2). See [13, Table 6.3].

• When m/gcd(m, e) is even and 1 ≤ e < m/2, then C⊥e has parameters
[n,2m,2m−1 − 2(m+l−2)/2] and kissing number is given in [13, Table 6.4].

• When 1 + 2e equals to several special values which are listed in [13, p.219],
then the minimum distance of C⊥e is 2m−1 − 2 m−1

2 and kissing number Ad =

2 m−3
2 (2m − 1)(2 m−1

2 + 1). See [13, Table 8.1].

For q = 3, let Cm denote the ternary cyclic code of length v = (3m − 1)/2 with
generator polynomial

g(x) = (xv − 1)/((x − 1)LCM(Mα1 (x),Mα2 (x), · · · ,Mαδ−1 (x))) (38)

where δ = 3m−1−1− 3(m+1)/2−1
2 . Let m ≥ 3 be odd. ThenC⊥m has d = 3m−1−3(m−1)/2,

and kissing number Ad =
(3m−1−3(m−1)/2)(3m−1)

2 , see [13, Table 8.5].

4 Linear Programming Bounds

Let C be a linear code over finite field Fq , with length n, size M = qk for some
integer k, and minimal distance d. The field size q can be any prime power. By
definition, A0 = 1, and

qk = 1 + Ad +

n∑
j=d+1

Aj . (39)

4.1 Numerical Method

Definition 3 (Krawtchouk Polynomial [20, Chap 5, §7]) For any prime power q
and positive integer n, define the Krawtchouk polynomial

Pk(x; n) = Pk(x) =
k∑
j=0
(−1)j(q − 1)k−j

(
x
j

) (
n − x
k − j

)
(40)

where k = 0,1, . . . ,n.
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The first three values for q = 2 are:

P0(x) = 1,
P1(x) = n − 2x,

P2(x) = n(n − 1)/2 − 2nx + 2x2.

See [20, Chap 5, §7] for background on these polynomials, and [20, Chap 17, §4]
for their use in the context of LP bounds.

For linear codes over Fq , by MacWilliams formula for q-ary codes [20, Chap. 5,
Eq. (47)] we have

qk
n∑
i=0

A′i x
n−iyi =

n∑
i=0

Ai(x + (q − 1)y)n−i(x − y)i (41)

which means

qk A′i =
n∑
j=0

AjPi( j), (42)

for all i = 0,1, . . . ,n.
Linear programming [10] is a method to solve an optimization problem consisting

of various inequalities. It is fruitful to derive bounds on the kissing number, as shown
in [25]. The rest of this section is based on this reference paper.

Linear programming leads to the following theorem concerning a lower bound
on the kissing number.

Theorem 1 (Lower Bound on the Kissing Number)
If C is an [n, k, d] q-ary code then Ad ≥ qk − 1 − bLc, where L denotes the

maximum of
n∑

j=d+1
Aj subject to the 2n − d constraints

−Pi(0) − (qk − 1)Pi(d) ≤
n∑

j=d+1
Aj(Pi( j) − Pi(d)) (43)

for i = 1,2, . . . ,n, and Aj ≥ 0 for j = d + 1, d + 2, . . . ,n.

Proof By definition of A′i , we have A′i ≥ 0 for i = 1,2, . . . ,n which, from (42), reads

Pi(0)+ AdPi(d)+
n∑

j=d+1
AjPi( j) ≥ 0. Substituting Ad = qk −1−

n∑
j=d+1

Aj gives (43).

The Theorem is proved by using (39) again. �

We have a similar result for upper bounds.

Theorem 2 (Upper Bound on the Kissing Number)
IfC is an [n, k, d] q-ary code then Ad ≤ qk−1−dSe where S denotes the minimum

of
n∑

j=d+1
Aj under the same constraints as above.
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Proof The proof is similar as Theorem 1, so it is omitted. �

Consider the n inequality constraints (43)

−Pi(0) − (qk − 1)Pi(d) ≤
n∑

j=d+1
Aj(Pi( j) − Pi(d)). (44)

for i = 1,2, . . . ,n, along with the n− d constraints Aj ≥ 0 for j = d + 1, d + 2, · · · ,n.
In this mathematical program, the Aj’s are considered as rational variables if linear
programming is used, or integral variables if integer programming is intended. Both
approaches can be implemented in Magma [27].

The calculation result of the linear programming method is presented in Fig. 1
and 2 (on the next page). Here we focus on binary codes, and take different rates
R = k

n as different examples (R ≈ 1
2 and R ≈ 1

3 ), with d being the best known
for given parameters [n, k]. The LP bounds are represented for n ranging from 3
to 16. We omit the cases when k = 1 because they are trivial situations with only
two codewords. For some choices [3,2,2], [6,3,3], [7,4,3], [8,4,4], [5,2,3], [6,2,4],
[15,5,7] and [16,5,8], the lower and upper bounds agree and the kissing number is
necessarily unique.

[ 3 , 2
, 2 ]

[ 4 , 2
, 2 ]

[ 5 , 3
, 2 ]
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, 3 ]

[ 7 , 4
, 3 ]

[ 8 , 4
, 4 ]
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]
[ 1 1

, 6 , 4
]

[ 1 2
, 6 , 4

]
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]

[ 1 4
, 7 , 4

]
[ 1 5

, 8 , 4
]

[ 1 6
, 8 , 5

]

0
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2 0
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5 0

6 0
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  A d
  L P  b o u n d
  B K L C

Kis
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g n
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r A

d

L i n e a r  c o d e  [ n ,  k ,  d ]
Fig. 1 The rate R ≈ 1

2 , with d being the best known for given parameters [n, k]. The LP bounds
are represented for n ranging from 3 to 16.

However, in general, the lower and upper bounds do not agree, and it is possible
to find actual codes with different kissing numbers between those bounds, as rep-
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L i n e a r  c o d e  [ n ,  k ,  d ]
Fig. 2 Take R ≈ 1

3 , with d being the best known for given parameters [n, k]. The LP bounds are
represented for n ranging from 5 to 16.

resented in light blue color in Fig. 1 and 2. Our experiments have been carried out
by randomly selecting linear codes of parameters [n, k, d] and the range displayed
in blue correspond to actually discovered codes amongst the ones we explored. Our
search could not be exhaustive so that there might exist codes with lower or higher
kissing numbers. Some exceptions are when:

• [n, k, d] = [8,4,4] and [16,8,5], as those are unique codes (extended Hamming
code [20] and shortened QR code [20]). The uniqueness of the latter is proven
in [4].

• [n, k, d] ∈ {[3,2,2], [6,3,3], [7,4,3], [5,2,3], [6,2,4], [11, 4,5], [12,4,6], [15,5,7],
[16,5,8]}, as the room between lower and upper bounds is limited.

We also superimposed in Fig. 1 and 2 the special case of Magma Best Known
Linear Code (BKLC). The function BKLC(n,d) returns a code with the largest
known dimension, for a given length andminimum distance, consistently with Grassl
database [15], which favors codes obtained by some algebraic construction. On
several occasions, especially for rate 1/2 codes, the kissing number of BKLC is
relatively high, hence Magma is not adapted to applications requiring a small kissing
number.
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4.2 Polynomial Method

The following identity is a polynomial way of expressing the duality of LP.

Lemma 1 (Polynomial Method [12, Eq. (18)])
Let β(x) ∈ Q[x] denote a polynomial with Krawtchouk expansion

β(x) =
n∑
j=0

βjPj(x). (45)

The following identity holds

n∑
i=0

β(i)Ai = qk
n∑
j=0

βj A′j . (46)

Proof Immediate by (42), upon swapping the order of summation. �

4.2.1 Lower Bounds

Using Lemma 1 we have the following theorem. This theorem can also be obtained
by setting appropriate parameters in [1, Thm 1].

Theorem 3 (Lower Bound [1])
Let β(x) ∈ Q[x] satisfying

βj ≥ 0, ∀ j = 0,1, . . . ,n, (47)
β(x) ≤ 0, ∀x ∈ (d,n], (48)
β(d) > 0, (49)
qk β0 > β(0). (50)

Then we have the lower bound

Ad ≥
qk β0 − β(0)

β(d)
. (51)

Proof By Lemma 1 we have

β(0) + Adβ(d) +
n∑

i=d+1
β(i)Ai = qk(β0 +

n∑
j=1

βj A′j).

Combined with (47) and (48), it implies the following inequality:

β(0) + Adβ(d) ≥ qk β0.

It gives a non-trivial lower bound on kissing number as long as (49) and (50) hold.�
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The main result of this paragraph are the following corollaries. First, we consider
the case of β being linear.

Corollary 1 If d = [(n − 1)(q − 1)/q], then

Ad ≥
qk − nq + n − 1
(n − d)q − n + 1

. (52)

Proof Take β(x) = nq − n + 1 − qx, where P1(x) = (q − 1)n − qx. By construction
β0 = β1 = 1. Note that β(0) = nq − n + 1, and β(d) = nq − n + 1 − qd. We see that
β(x) ≤ 0, for x an integer ≥ nq−n+1

q . So in order to satisfy β(x) ≤ 0, ∀x ∈ (d,n], we
must have d + 1 ≥ nq−n+1

q . Combined with β(d) > 0 we have (q − 1)(n − 1) ≤ qd <

(q − 1)(n − 1) + q. Plugging this data into Theorem 3, the result follows. �

Next, we consider the case of β being a quadratic polynomial.

Corollary 2 If qd > nq − n − 2q + 1 then

Ad ≥
qk−2n(n − qn + qd + 2q − 1) − nd − n

n − d
. (53)

Proof Assume β = 1 + β1P1(x) + β2P2(x). Here P2(x) =
q2

2 x2 +
q(q−2nq+2n−2)

2 x +
(q − 1)2

(n
2
)
. To ensure the negativity of β for x ∈ (d,n] the simplest is to assume

β(d + 1) = β(n) = 0. This gives a system of two equations in β1, β2. The solution
according to Magma [27] is

β1 =
nq − 2n − dq − 2q + 2
n(n − qn + qd + 2q − 1)

, β2 =
−2

n(n − qn + qd + 2q − 1)
.

This yields β(d) = q2(n−d)
n(n−qn+qd+2q−1) , and β(0) =

q2(d+1)
(n−nq+qd+2q−1) . The result follows

by Theorem 3. �

Example Consider the binary codeC = RM(1,m), when k = m+1, and d = 2m−1. It
is well-known thatC is a two-weight code with A0 = A2m = 1, and A2m−1 = 2m+1−2.
Since 2d − n+ 3 > 0, using Corollary 2 we have Ad ≥ 2m+1 − 2. So RM(1,m)meets
the lower bound.

This result can be improved in some cases.

Corollary 3 If C is a binary code and all weights of C lie in the range [d, n-d], with
distance d < n

2 and (n − 2d − 1)2 < n + 1, then

Ad ≥
2k−2(n2 − 4nd − 3n) + (2k + 1)d(d + 1)

(2d − n)
− d − 1. (54)

Proof Because all weights of C lie in the range [d, n-d], for a quadratic β, to ensure
its negativity on the weights it is enough to assume β(d + 1) = β(n − d) = 0. This
gives a system of two equations in β1, β2, if we write β = 1 + β1P1(x) + β2P2(x).
The solution according to Magma [27] is
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β1 = β2 =
2

n + 1 − (n − 2d − 1)2

This yields β(d) = −4n+8d
n2−4nd−3n+4d2+4d , and β(0) = 4(d2+d−nd−n)

n2−4nd−3n+4d2+4d . The result
follows by Theorem 3. �

4.2.2 Upper Bounds

Like Theorem 3, the following theorem can also be obtained by setting appropriate
parameters in [1, Thm 1].

Theorem 4 (Upper Bound [1])
Let β(x) ∈ Q[x] satisfying

βj ≤ 0, ∀ j = 1, . . . ,n, (55)
β(x) ≥ 0, ∀x ∈ (d,n], (56)
β(d) > 0, (57)
qk β0 > β(0). (58)

Then we have the upper bound

Ad ≤
qk β0 − β(0)

β(d)
. (59)

The proof is analogous to that of Theorem 3 and is omitted.
The main result of this paragraph are the following corollaries. First, we consider

the case of β linear.

Corollary 4 If n − nq + 1 + qd > 0, then

Ad ≤
qk + nq − n − 1
n − nq + 1 + qd

. (60)

Proof Take β(x) = n − nq + 1 + qx, where P1(x) = (q − 1)n − qx. By construction
β0 = 1, and β1 = −1. Note that β(0) = n − nq + 1, and β(d) = n − nq + 1 + qd. We
see that β(x) > 0, for x an integer > n−nq+1

q . Plugging this data into Theorem 4, the
result follows. �

Next, we consider the case of β being a quadratic polynomial.

Corollary 5 If d <
(q−1)n+1

q , then

Ad ≤
qk−2n(qn − n − qd + 1) + n(d − 1)

n − d
. (61)
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Proof Assume β = 1− β1P1(x) − β2P2(x), with β1, β2 > 0. To ensure the positivity
of β for x ∈ (d,n] the simplest is to assume β(d − 1) = β(n) = 0. This gives a system
of two equations in β1, β2. The solution according to Magma [27] is

β1 =
2n + dq − 2 − nq

qn2 − n2 − qdn + n
, β2 =

2
qn2 − n2 − qdn + n

.

This yields β(d) = q2(n−d)
qn2−n2−qdn+n

, and β(0) = q2(1−d)
qn−n−qd+1 . The result follows by

Theorem 4. �

Example Still consider the binary code C = RM(1,m), where n = 2m, k = m + 1,
and d = 2m−1. Using Corollary 5, we have Ad ≤ 2m+1 − 2. From Corollary 2 we
know Ad ≥ 2m+1 − 2. So Ad = 2m+1 − 2. Because A0 = 1, it proved that RM(1,m)
is a two-weight code. RM(1,m) is the only code we know that satisfies the upper
bound and the lower bound at the same time.

This result can be improved in some cases.

Corollary 6 If C is a binary code and all weights of C lie in the range [d, n-d], with
n − 2d > 0 and (n − 2d + 2)2 > n, then

Ad ≤
2k−2 ((n − 2d + 2)2 − n

)
+ (d − 1)(n + 1 − d)

n + 1 − 2d
. (62)

Proof For a quadratic β, of concavity ∩, to ensure its positivity on the weights it is
enough to assume β(d − 1) = β(n − d + 1) = 0.

This gives a system of two equations in β1, β2, if we write β = 1 − β1P1(x) −
β2P2(x). The solution according to Magma [27] is

β1 = 0, β2 =
2

(n − 2d + 2)2 − n

This yields β(0) = 4(d−1)(d−n−1)
(n−2d+2)2−n and β(d) = 4(1−2d+n)

(n−2d+2)2−n . The result follows then by
Theorem 4. �

5 Eigenvalue Bounds

Let C be a q-ary code with parameters [n, k, d]. The coset graph Γ(C) of a code C
is then the graph defined on the qn−k cosets, two of them being connected if they
differ by a coset of weight one. We give without proof the following theorem of [5,
11.1.11].

Lemma 2 If C is a q-ary code of minimum distance at least three, with dual weight
distribution [〈i, Ai〉], then the spectrum of the adjacency matrix of Γ(C) is {(n(q −
1) − qi)Ai }. Thus Ai is the frequency of weight i in C⊥ and the multiplicity of the
eigenvalue (q − 1)n − qi.
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Theorem 5 If C is a q-ary code with parameters [n, k, d] with n(q−1)
q > d and dual

distance ≥ 3, then Ad ≤ qk − 2 − 2n(q − 1) + 2qd.

Proof Apply [22, thm 4] to the graph Γ(C⊥) along with Lemma 2. �

Denote by V(C,r) the volume of the ball of radius r in Γ(C⊥). It is immediate
that V(C,r) ≤ B(n,q,r) where B(n,q,r) denotes the volume of the Hamming ball of
radius r in length n over an alphabet of size q. As is well-known

B(n,q,r) =
r∑
j=0

(
n
j

)
(q − 1)j . (63)

Theorem 6 If C is a q-ary code with parameters [n, k, d] with dual distance ≥ 3,
then Ad + 1 ≥ qk/B(n,q, d cosh−1(qk )

cosh−1(
2+λ1
2−λ1
)
e) with λ1 =

qd
n(q−1) .

Proof The expression for the first nontrivial element of the Laplacian spectrum λ1
follows by combining Lemma 1 with the expression at the end of [9, §2]. Apply
Corollary 3 of [9] with k = 1 in the graph Γ(C⊥),which is regular of degree n(q− 1)
on qk vertices. The proof follows then by the same argument as that of Theorem 5
of [9]. �

Table 1 Upper/Lower Bounds for some Linear Codes
Binary code Eigenvalue bound of Ad LP bound of Ad

[n, k , d] Lower bound Upper bound Lower bound Upper bound
[5, 3, 2] −0.5000 4 2 6
[7, 4, 3] −0.7500 12 7 7
[9, 5, 3] −0.8750 24 4 8
[10, 5, 4] −0.8182 26 10 20
[11, 6, 4] −0.8861 56 20 31
[12, 6, 4] −0.9194 54 6 31
[13, 7, 4] −0.9462 116 10 46
[14, 7, 4] −0.9631 114 0 48
[15, 8, 4] −0.9743 240 0 63
[16, 8, 5] −0.9628 242 0 42
[9, 3, 4] −0.8261 4 1 7
[11, 4, 5] −0.9310 12 5 7
[13, 4, 6] −0.9577 12 4 14
[14, 5, 6] −0.9319 26 7 27
[15, 5, 7] −0.9444 28 15 15

Tab. 1 contains the results of binary codes. It shows the eigenvalue bounds and
the LP bounds for the same binary codes as those used in Fig. 1 and 2. Because
Thm. 5 and 6 hold only when n > 2d, some codes in Fig. 1 and 2 that do not satisfy
this condition are not presented in this table.
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As we can see from the table, the LP bound is more precise in general than
the eigenvalue bound. However, for some values (namely [5,3,2] and [9,3,4]), the
eigenvalue method leads to a tighter upper bound. We should notice that compared
to the LP bound, the eigenvalue bound has one more constraint: the dual distance of
the code should be no less than 3.

6 Conclusions and perspectives

The kissing number is an important invariant of codes.We illustrate several situations
where it is the dominating factor influencing system’s properties. Namely, it is in-
strumental in determining codes performances, with applications in implementation-
level security leveraging code-based masking to thwart side-channel attacks. We
compute its values for some important codes, and derive upper and lower bounds
in general, using linear programming techniques. We provide both analytical and
numerical bounds. To the best of our knowledge, such compilation has never been
carried out previously.

As a perspective, we note it would be beneficial to relate the code design to its
kissing number (especially since codes with structures are, in general, not those with
small kissing number). Besides, there is a need to build codes of optimal minimum
distance while at the same time featuring a small kissing number.

There are two main open problems.
Firstly, the definition of the kissing number should be extended to other metrics

that have been used in Coding Theory, like the Lee metric, or, more recently, the
posetmetrics [17, Ch. 22]. One technical difficulty is that the Lee association scheme,
unlike the Hamming association scheme is not P-polynomial [24]. This makes the
LP bounds less easy to establish.

Secondly, the results described so far have been about exact values of the kissing
number. It would be insightful to give asymptotic lower and upper bounds of Ad

when the code considered ranges over a family of codes of relative distance δ ∈ (0,1),
with d ∼ δn for n→ ∞. The existence result of [2] maximizes the kissing number,
when our security application demands to minimize it.

Recent results on graph eigenvalues [19] might turn out to be relevant. The
asymptotic properties of zeros of Krawtchouk polynomials may play a role in the
LP bound similar to their use in the bound of McEliece, Rodemich, Rumsey, and
Welch [21].
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