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Abstract
A finite metric space is called here distance degree regular if its distance degree

sequence is the same for every vertex. A notion of designs in such spaces is

introduced that generalizes that of designs in Q-polynomial distance-regular graphs.

An approximation of their cumulative distribution function, based on the notion of

Christoffel function in approximation theory is given. As an application we derive

limit laws on the weight distributions of binary orthogonal arrays of strength going

to infinity. An analogous result for combinatorial designs of strength going to

infinity is given.

Keywords Distance-regular graphs � Designs � Orthogonal polynomials � Christoffel
function

Mathematics Subject Classification Primary 05E35 � Secondary O5E20 �
05E24

1 Introduction

In a celebrated paper [18] Sidelnikov proved that the weight distribution of binary

codes of dual distance d? going to infinity with the length is close deviates from the

normal law up to a term in inverse square root of the dual distance [16, Chap. 9,

§10]. Since the times of Delsarte [5], it is known that the quantity d? � 1 is the

strength of the code viewed as an orthogonal array. Further, this is a special case of

designs in so-called Q-polynomial association schemes [2, 4, 5, 16]. The name
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designs comes from the Johnson scheme where this notion coincides with that of

classical combinatorial designs [5]. Later a similar connection was found between

designs in association schemes and designs in lattices [6, 20]. These kinds of

generalized designs are popular now in view of the applications in random network

coding [8]. In view of this deep connection it is natural to seek to extend

Sidelnikov’s theorem to designs in other Q-polynomial association schemes than the

Hamming scheme. This is a vast research program which might take several years to

accomplish.

In the present paper our contribution is twofold.

Firstly, we develop a theory of designs in finite metric spaces that replaces the

concept of designs in Q-polynomial association schemes, when the considered

metric space does not afford that structure. We observe that, in contrast with

Delsarte definition of a design in a Q-polynomial association scheme, our definition

(Definition 1 below), has an immediate combinatorial meaning in terms of

distribution of distances. To wit, the combinatorial meaning of designs in certain Q-
polynomial association schemes was only derived in [20] in 1986, thirteen years

after Delsarte introduced designs in Q-polynomial association schemes in [5]. In

particular, the example of permutations with distance the Hamming metric cannot

be handled in the context of Q-polynomial association schemes, but can be treated

within our framework. This space had been studied extensively in the context of

permutations codes [3, 22]. The notion of t-design in that space is related to t-
transitive permutation groups (Theorem 8).

Secondly, we use the technique of Chebyshev–Markov–Stieltjes inequalities in

conjunction with orthogonal polynomials to control the difference between the

cumulative distribution function of weights in designs with that of weights in the

whole space. While this technique has been applied by Bannai to the weight

distribution of spherical designs [1], it has not appeared in the literature of algebraic

combinatorics so far. The bounding quantity in that setting is the Christoffel

function, the inverse of the confluent Christoffel–Darboux kernel. While it is easy to

make this quantity explicit in low strength cases, it is difficult to find asymptotic

bounds. In the present paper, we will use the bounds of Krasikov on the Christoffel–

Darboux kernel of binary Krawtchouk polynomials [13, 14] to derive an alternative

proof of the Sidelnikov Theorem. We will give a proof of an analogous result for

combinatorial designs by using the limiting behavior of Hahn polynomials.

The material is organized as follows. The next section contains background

material on metric spaces, distance-regular graphs and Q-polynomial association

schemes. Section 3 introduces the definitions that are essential to our approach.

Section 4 contains the main equivalences of our notion of designs in finite metric

spaces. Section 5 develops the bounds on the cumulative distribution functions of

designs. Section 6 contains some asymptotic results. Section 7 recapitulates the

results obtained and gives some significant open problems.
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2 Background Material

2.1 Metric Spaces

Throughout the paper we write X for a finite set equipped with a metric d, that is to

say a map X � X ! N verifying the following three axioms

1. 8x; y 2 X; dðx; yÞ ¼ dðy; xÞ
2. 8x; y 2 X; dðx; yÞ ¼ 0 iff x ¼ y
3. 8x; y; z 2 X; dðx; yÞ� dðx; zÞ þ dðz; yÞ:

In particular if X is the vertex set of a graph the shortest path distance on X is a

metric.

The diameter of a finite metric space is the largest value the distance may take. A

finite metric space is Distance Degree Regular (DDR) if for every integer i less than
the diameter the number jfy 2 X j dðx; yÞ ¼ igj is a constant vi that does not depend
of the choice of x 2 X:

Example Consider the symmetric group on n letters Sn with metric

dSðr; hÞ ¼ n� Fðrh�1Þ;

where FðmÞ denotes the number of fixed points of m: The space ðSn; dSÞ is a DDR

metric space. If Dm ¼ m!
Pm

j¼1
ð�1Þj
j! denotes the number of fixed-point-free per-

mutations of Sm; (the so-called dérangement number), then

vi ¼
n

i

� �
Di:

Note that dS is not a shortest path distance since dSðr; hÞ ¼ 1 is impossible.

Codes in ðSn; dSÞ were studied in [22] by using the conjugacy scheme of the group

Sn: However, in contrast with the next two subsections, this scheme is neither

induced by a graph nor Q-polynomial.

2.2 Distance-Regular Graphs

All graphs in this article are finite, undirected, connected, without multiple edges.

The neighborhood CðxÞ is the set of vertices connected to x. The degree of a vertex x
is the size of CðxÞ. A graph is regular if every vertex has the same degree. The i-
neighborhood CiðxÞ is the set of vertices at geodetic distance i to x. The diameter of
the graph, denoted by d is the maximum i such that for some vertex x the set CiðxÞ is
nonempty. A graph is distance degree regular (DDR for short) if all graphs Ci; for
i ¼ 1; . . .; d are regular. A graph is distance regular (DR for short) if for every two

vertices u and v at distance i from each other the values bi ¼ jCiþ1ðuÞ \ CðvÞj,
ci ¼ jCi�1ðuÞ \ CðvÞj depend only on i and do not depend on the choice of u and v.
In this case, the graphs Ci are regular of degree vi and we will refer to the vis as the
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valencies of C; the sequence fb0; . . .; bdiam�1; c1; . . .; cdiamg is usually called the

intersection array of C: Thus every DR graph is DDR but not conversely.

Example For background material on the following two examples we refer to

[4, 5, 16].

1. The Hamming graph H(n, q) is a graph on Fnq two vertices being connected if

they differ in exactly one coordinate. This graph is DR with valencies

vi ¼
n

i

� �
ðq� 1Þi:

2. The Johnson graph Jðm; dÞ is a graph on the subsets of cardinality d of a set of

cardinality m: (Assume 2d� m). Two subsets are connected iff they intersect in

exactly d � 1 elements. This graph is DR with valencies

vi ¼
d

i

� �
m� d

i

� �

:

Note that Jðm; dÞ can be embedded in Hðm; 2Þ by identifying subsets and

characteristic vectors.

2.3 Q-Polynomial Association Schemes

An association scheme on a set X with s classes is a partition of the cartesian

product X � X ¼ [s
i¼0Ri with the following properties

1. R0 ¼ fðx; xÞ j x 2 Xg
2. ðx; yÞ 2 Rk; iff ðy; xÞ 2 Rk;
3. if ðx; yÞ 2 Rk; the number of z 2 X such that ðx; zÞ 2 Ri; and ðz; yÞ 2 Rj; is an

integer pkij that depends on i, j, k but not on the special choice of x and y

A consequence of axiom 3 is that each graph Ri is regular of degree vi; say. It can be

shown that the adjacency matrices Dk of the relations Rk span a commutative

algebra over the complex with idempotents Jj [16, Chap. 21]. Let lj ¼rankðJjÞ: The
first eigenvalues pkðiÞ of the scheme are defined by DkJi ¼ pkðiÞJi: Considering the

matrix P ¼ ðpkðiÞÞ and writing PQ ¼ jXjI; with I an identity matrix defines the

second eigenvalues qkðiÞ of the scheme by the relation Qik ¼ qkðiÞ: A scheme is said

to be Q-polynomial if there are numbers z0; z1; . . .; zs such that qkðiÞ ¼ UkðziÞ for

some polynomials Uk of degree k. In view of the orthogonality relation [16, Chap

21, (17)]

Xs

k¼0

vkqiðkÞqjðkÞ ¼ jXjlidij;

we see that the
UiðzÞffiffiffi

li
p form a system of orthonormal polynomials for the scalar product
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hf ; gi ¼
Xs

k¼0

vk
jXj f ðzkÞgðzkÞ:

Example In both Hamming and Johnson schemes we have zk ¼ k:

1. If C ¼ Hðn; qÞ then UkðzÞ ¼ KkðzÞffiffiffi
vk

p ; where Kk is the Krawtchouk polynomial of

degree k given by the generating function

Xn

k¼0

KkðxÞzk ¼ ð1þ ðq� 1ÞxÞn�xð1� zÞx:

2. If C ¼ Jðm; nÞ then UkðzÞ ¼ HkðzÞffiffiffi
vk

p ; where Hk is the Hahn polynomial of degree k

given, as per [7, (19) p. 2481], by the formula

HkðzÞ ¼ mk

Xk

j¼0

ð�1Þj
k
j

� �
mþ1�k

j

� �

n
j

� �
m�n
j

� �
z

j

� �

;

where mk ¼ m
k

� �
� m

k�1

� �
:

3 Preliminaries

For any integer N [ 0; denote by ½0::N � the set of integers in the range ½0;N �: A
finite metric space (X, d) is distance degree regular (DDR) if its distance degree

sequence is the same for every point. Assume (X, d) to be of diameter n. In that case
(X, d) is DDR iff for each 0� i� n the graph Ci ¼ ðX;EiÞ which connects vertices

at distance i in (X, d) is regular of degree vi: Thus E0 ¼ fðx; xÞ j x 2 Xg is the

diagonal of X2: Note that the Ei’s form a partition of X2:
If D is any non void subset of X we define its frequencies as

8i 2 ½0::n�; fi ¼
jD2 \ Eij
jDj2

:

Thus f0 ¼ 1
jDj ; and

Pn

i¼0

fi ¼ 1: Note also that if D ¼ X; then fi ¼ vi
jXj : Consider the

random variable aD defined on D2 with values in [0..n] which affects to an

equiprobably chosen ðx; yÞ 2 D2 the only i such that ðx; yÞ 2 Ei: Thus the fre-

quencies fi ¼ ProbðaD ¼ iÞ: Denote by EðÞ mathematical expectation. Thus

EðaiDÞ ¼
Xn

j¼0

fjj
i; EðaiXÞ ¼

Xn

j¼0

vj
jXj j

i:

Definition 1 The set D � X is a t-design for some integer t if

123

Graphs and Combinatorics



EðaiDÞ ¼ EðaiXÞ

for i ¼ 1; . . .; t:

(Note that trivially Eð1Þ ¼ 1 so that we do not consider i ¼ 0:) Thus, distances in
t-designs are very regularly distributed. For a 2-design, for instance, the average and

variance of the distance coincide with that of the whole space. We will see in the

next section that in the case of Hamming and Johnson graphs, we obtain classical

combinatorial objects: block designs, orthogonal arrays.

Lemma 1 We define a scalar product on R½x� attached to D by the relation

hf ; giD ¼
Xn

i¼0

fif ðiÞgðiÞ:

Thus, in the special case of D ¼ X we have

hf ; giX ¼ 1

jXj
Xn

i¼0

vif ðiÞgðiÞ:

We shall say that a sequence UiðxÞ of polynomials of degree i is orthonormal of
size N þ 1 if it satisfies

8i; j 2 ½0::N�; hUi;UjiX ¼ dij;

where N� n; the letter d denotes the Kronecker symbol. That sequence is uniquely

defined if we assume the leading coefficient of all UiðxÞ for i ¼ 0; 1; . . .;N to be

positive.

For a given DDR metric space (X, d), we shall denote by N(X) the largest

possible such N. For instance if X is an n-class P- and Q-polynomial association

scheme, it is well-known that NðXÞ ¼ n: This fact is extended to DDR graphs in the

next Proposition.

Proposition 1 If none of the vi’s are zero, then h; iX admits an orthonormal system
of polynomials of size nþ 1: In particular, the metric space of a DDR graph admits
an orthonormal system of polynomials of size nþ 1:

Proof By Lagrange interpolation we see that the functions 1; x; . . .; xn are linearly

independent on [0..n]. The sequence of the Ui’s for i ¼ 0; 1; . . .; n is then

constructed by the usual Gram-Schmidt orthogonalization process. Note that this

is possible because the bilinear form h; iX is then nondegenerate: hf ; f iX ¼ 0 )
f ¼ 0: By properties of the shortest path distance, the property of non vanishing of

the vi’s holds in particular for the metric space of a DDR graph. h

Definition 2 For a given D � X the dual frequencies are defined for i ¼
0; 1; . . .;NðXÞ as
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bfi ¼
Xn

k¼0

UiðkÞfk:

Definition 3 For a given D � X the cumulative distribution function (c.d.f.) is

defined as

FDðxÞ ¼ ProbðaD � xÞ ¼
X

i� x

fi:

Example

1. If D is a linear code of H(n, q), with weight distribution

Ai ¼ jfx 2 D j wHðxÞ ¼ igj;

then FDðxÞ ¼
P

i� x
Ai

jDj :

2. If D is a set of points in Jðm; kÞ; with Hamming distance distribution B2i in

Hðm; 2Þ; then FDðxÞ ¼
P

i� x
B2i

jDj :

4 Structure Theorems

First, we give a characterization of t-designs in terms of dual frequencies.

Proposition 2 Let t be an integer 2 ½1::NðXÞ�: The set D � X is a t-design iff bfi ¼ 0

for i ¼ 1; . . .; t:

Proof Note first that

EðaiDÞ ¼ hxi; 1iD; EðaiXÞ ¼ hxi; 1iX:

Moving the basis of R½x� from the Ui’s to the basis of monomials we see that D is a

t-design if and only if for i ¼ 1; 2; . . .; t; we have

hUi; 1iD ¼ hUi; 1iX :

Now, by definition, the dual frequency bfi ¼ hUi; 1iD: By orthogonality of the Ui’s

for the scalar product h:; :iX; we see that hUi; 1iX ¼ 0 for i ¼ 1; 2. . .; t: Thus, the

condition bfi ¼ 0 for i ¼ 1; 2; . . .; t; is equivalent to the fact that D is a t-design.
h

Next, we connect the notion of designs in Q-polynomial association schemes

with our notion of designs in metric spaces.
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Theorem 1 If (X, d) is the metric space induced by a Q-polynomial DR graph C;
with zk ¼ k for k ¼ 0; 1; . . .; n; then a t-design in (X, d) is exactly a t-design in the
underlying association scheme of C:

Proof In that situation the frequencies are proportional to the inner distribution (see

[4, p. 54]) of D in the scheme of the graph, and the dual frequencies are proportional

to the dual inner distribution since the second eigenvalues of the scheme, by the Q-
polynomiality condition, are orthogonal polynomials w.r.t. the distribution vi

jXj : The

result follows. h

Example The following two examples of interpretation of t-designs as classical

combinatorial objects were observed first in [5] and can be read about in [16, chap.

21].

1. If C is the Hamming graph H(n, q) then a t-design is an orthogonal array of

strength t. That means that every row induced by a t-uple columns of D sees the

qt possible values a constant number of times.

2. If C is the Johnson graph Jðm; nÞ then a t-design D is a combinatorial design of

strength t. This means the following. Consider D as a collection of subsets of

size n, traditionally called blocks. That means that every t-uple of elements of

the groundset is contained in the same number g of blocks. One says that D is a

t � ðm; n; gÞ design.

Now, we give an example of t-design in a metric space that is not a DR graph, or

even a DDR graph.

Theorem 2 If D � Sn is a t-transitive permutation group then it is a t-design in
ðSn; dSÞ:

Proof The moments of order i� t of the number of fixed points of the permutations

in D coincide with those of a Poisson law of parameter one. This is a result of

Frobenius [24]. A modern exposition is in [12, Chap. 5.5]. The result follows by the

definition of dS: h

5 Distribution Functions

In this section we show that the distribution function of designs are close to that of

the whole space. The proof of the following result follows the philosophy of [1].

Theorem 3 Let D be a t-design in (X, d), with t�NðXÞ: Put j ¼ b t
2
c: Denote by

kðxÞ the Christoffel function given by kðxÞ ¼ ð
Pj

i¼0 UiðxÞ2Þ�1: Then we have the

bound

jFDðxÞ � FXðxÞj � kðxÞ:

Proof By Definition 1, we have
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hxi; 1iX ¼ hxi; 1iD for i ¼ 0; 1; 2; . . .; t:

The orthonormal polynomials for h; iX exist for degrees � t by the hypothesis

t�NðXÞ: A coincidence of moments up to order t entails a coincidence of

orthonormal polynomials up to degree j by Chebyshev determinant for orthonormal

polynomials [11, Lemma 2.1] (see also [21, (2.2.6), p. 27]). By the same formula,

the orthonormal polynomials for h; iD are well-defined for degrees � j; since the

orthonormal polynomials up to degree j attached to X exist. By [11, Th. 4.1] or [18,

Th. 7.2] we have the Markov–Stieltjes inequalities

X

xi\x

kðxiÞ�FDðxÞ�
X

xi\x

kðxiÞ þ kðxÞ; ð1Þ

where the xi’s are the j zeros of UjðtÞ: Similarly we have

X

xi\x

kðxiÞ�FXðxÞ�
X

xi\x

kðxiÞ þ kðxÞ: ð2Þ

The result follows upon combining equations (1) and (2). h

As a bound uniform in x, we have the following result.

Corollary 1 If D is a binary orthogonal array of strength at least five, then its c.d.f.
is close to that of the binomial distribution as

jFDðxÞ � FXðxÞj\
2ðn� 1Þ
3n� 2

Proof We compute explicit lower bounds on 1=k by using the first three

Krawtchouk polynomials [16, Chap. 5 §7] given by

K0 ¼ 1; K1ðxÞ ¼ n� 2x; K2ðxÞ ¼ 2x2 � 2nxþ n

2

� �
:

We are seeking a lower bound for

1þ K1ðxÞ2

n
þ K2ðxÞ2

n
2

� � ;

when x 2 ½0; n�: Making the change of variable y ¼ n� 2x 2 ½�n; n�; we obtain

K2ðxÞ ¼
y2 � n

2
;

and, therefore

1=k ¼ 1þ y2

n
þ ðy2 � nÞ2

2nðn� 1Þ ¼
3n2 � 2nþ ðy2 � 1Þ2 � 1

2nðn� 1Þ ;

an increasing function of y2 that takes its minimum over ½0; n2� at y ¼ 0: h
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Example If D is the extended Hamming code of length n ¼ 16; dual distance 8,
the weight distribution is, in Magma notation [15], equal to

½\0; 1[ ;\4; 140[ ;\6; 448[ ;\8; 870[ ;\10; 448[ ;\12; 140[ ;\16; 1[ �:

For x ¼ 8; we get FDðxÞ ¼ 1þ140þ448þ870
211

� 0:712; and FXðxÞ ¼

P8

j¼0

n
jð Þ

211
� 0:598: The

difference is � 0:112\ 3�15
46

� 0:652:

We give three bounds that are not uniform in x. First, for orthogonal arrays.

Corollary 2 If D is a q-ary orthogonal array of strength at least two, then its c.d.f. is
as close to that of the binomial distribution as

jFDðxÞ � FXðxÞj\
n

nþ ðnðq� 1Þ � qxÞ2
:

Proof Immediate from the data of the first two Krawtchouk polynomials:

K0 ¼ 1; K1ðxÞ ¼ nðq� 1Þ � qx:

h

Example If D is a binary Simplex code of length n ¼ 2m � 1; there is a unique

nonzero weight, namely nþ1
2

that appears jDj � 1 ¼ n times. If we compute the

bound for x ¼ nþ1
2
, its right hand side is n

nþ1
; which is also the value of FDðxÞ while

FXðxÞ[ 0:5:

Next, we consider combinatorial designs.

Corollary 3 If D is a 2� ðm; n; kÞ design, then its c.d.f. is as close to that of the
hypergeometric distribution as

jFDðxÞ � FXðxÞj\
ðm� nÞ3

ðm� nÞ3 þ nðm� 1Þ2
:

Proof From the data of the first two Hahn polynomials:

H0 ¼ 1; H1ðxÞ ¼ ðm� 1Þð1� mx
nðm� nÞÞ;

we obtain

1=k ¼ 1þ H1ðxÞ2

nðm� nÞ ¼ 1þ ðm� 1Þ2 ðn
2 � nmþ mxÞ2

n3ðm� nÞ2
;

a monotonic function of x. h
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Eventually, we consider permutation groups. Exceptionally, we do not consider

the distance but the codistance n� ds:

Corollary 4 If D is a 2-transitive permutation group on n letters, then the c.d.f. of its

fixed points GDðxÞ is as close to that of the Poisson law of parameter one PðxÞ ¼
P

1� i� x

1
i! as

jGDðxÞ � PðxÞj\ n

nþ ð1� xÞ2
:

Proof Immediate from the data of the first two Charlier polynomials C0 ¼
1; C1ðxÞ ¼ 1� x; obtained from the generating series

etð1� tÞx ¼
X1

n¼0

CnðxÞ
tn

n!

of [17, (1.12.11)]. h

6 Asymptotic Results

6.1 Orthogonal Arrays

In this section we give an alternative proof of a result of Sidelnikov on the weight

enumerator of long codes [18]. We prepare for the proof by a form of the Central

Limit Theorem for the binomial distribution. Denote by WðxÞ ¼ 1ffiffiffiffi
2p

p
R x
�1 expð� t2

2
Þdt

the cumulative distribution function of the centered normal law of variance unity.

Let BnðxÞ ¼
P

i� x

n
ið Þ
2n

denote the cumulative distribution function of the binomial

law (sum of n Bernoulli trials).

Theorem 4 For some absolute constant C[ 0; we have

jBnðxÞ �WðxÞj� C
ffiffiffi
n

p :

Proof Immediate by Berry–Essen theorem [9]. h

Recall the binary entropy function [16] defined as

HðxÞ ¼ �x log2 x� ð1� xÞ log2ð1� xÞ:

A tedious but straightforward consequence of Stirling formula is
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N

aN

� �

	 2NHðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pað1� aÞ

p ð3Þ

for N ! 1 and 0\a\1: See (1) in [10].

Theorem 5 Let n ! 1; and let k be an integer such that k	 hn; with 0\h\1 a

real constant. Assume x ¼ n
2
þ Oð

ffiffiffi
n

p
Þ: Then any binary orthogonal array D with n

columns, of strength 
 2k þ 1; satisfies

jFDðxÞ � BnðxÞj ¼ Oð 1
ffiffiffi
n

p Þ:

Proof (sketch) We use [13, Th. 1.1] or [14, Lemma 4] to claim the lower bound

1

kðxÞ ¼ X
ðkþ1Þ

2 n
k

� �GkðxÞ
 !

;

where

GkðxÞ ¼
2kð2xþ pk � nÞðn� kÞ2CðxÞCðn� xÞ

n3ðpk þ 2ÞCðn
2
þ 1ÞCðn

2
� 1Þ

n=2

k=2

� �2

;

where pk ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðn� kÞ

p
(note that lk tends to a constant in n).

To derive the said bound, divide numerator and denominator by n4 and simplify.

Observe that pk 	 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1� hÞ

p
: For the term n=2

k=2

� �
we use the entropic estimate

mentioned above. We write CðxÞCðn� xÞ ¼ ðn�2Þ!
n�2
x�1ð Þ : We use the Moivre-Laplace

formula to get

n
x

� �

2n
	

exp � ðx�n=2Þ2
n=2

� �

ffiffiffiffiffiffiffiffiffiffi
pn=2

p ¼ O
1
ffiffiffi
n

p
� �

;

where the constant implied by O() is independent of x. The result follows after

tedious but straightforward manipulations. h

We are now ready for the main result of this section.

Theorem 6 Let n ! 1; and let k be an integer such that k	 hn; with 0\h\1 a

real constant. Assume x ¼ n
2
þ Oð

ffiffiffi
n

p
Þ: Then any binary orthogonal array D with n

columns, of strength 
 2k þ 1; satisfies

jFDðxÞ �WðxÞj ¼ O
1
ffiffiffi
n

p
� �

:

Proof Immediate by combining Theorem 4 with Theorem 5. h
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6.2 Designs

Note, before doing asymptotics on the strength of designs, that t designs exist for all
t [23].

Let HkðxÞ denote the Hahn polynomial of degree k of the variable x, as defined in

[7]. Let vk ¼ n
k

� �
m�n
k

� �
be the valency of order k of the Johnson graph Jðm; nÞ: We

normalize dHkðxÞ ¼ HkðxÞffiffiffi
vk

p :

Theorem 7 Assume both m and n go to infinity with n=m ! p 2 ð0; 1Þ: Put q ¼
1� p: Let z ¼ nx with x 2 ð0; 1Þ: Then, we have for fixed k, and n ! 1 the limit

dHkðzÞ !
ð1� x=qÞk

ffiffiffiffiffiffiffiffiffi
pkqk

p :

Proof First, note that mk 	 mk
k! 	 nk

pkk! : Next, observe that vk 	
nkðm�nÞk

k!2 	 n2k

ðk!Þ2 ðq=pÞ
k:

This yields
ffiffiffiffi
vk

p 	 nk

k! ð
ffiffiffiffiffiffiffiffi
q=p

p
Þk: Combining we obtain mkffiffiffi

vk
p 	 1=

ffiffiffiffiffiffiffiffiffi
pkqk

p
: Similar

calculations give the term of order j of HkðxnÞ to have the limit

ð�1Þj k

j

� �
ðmjÞnjxj

njðm� nÞj
! ð�1Þj k

j

� �

ðx=qÞj;

and, summing on j yield

HkðxnÞ !
Xk

j¼0

k

j

� �

ð�x=qÞj ¼ ð1� x=qÞk:

The result follows upon writing dHkðxnÞ ¼ mkffiffiffi
vk

p HkðxnÞ: h

We can now derive the main result of this section.

Theorem 8 Let D be a t � ðm; n; gÞ design with m; n; t ! 1; and t fixed and n	 pm
with 0\p\1 real constants. Put q ¼ 1� p; and k ¼ bt=2c: Let Jðm; n; xÞ ¼
P

i� x
vi
m
nð Þ
: Then

jFDðxÞ � Jðm; n; xÞj � kkðnÞ;

where

lim
n!1

kkðnÞ ¼
1� aðxÞ

1� aðxÞkþ1
:

and aðxÞ ¼ ð1�x=qÞ2ffiffiffiffi
pq

p :
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Proof Immediate by taking the limit of the Christoffel–Darboux kernel of order k
given by

Xk

j¼0

dHjðxnÞ2 ¼
Xk

j¼0

HjðxnÞ2

vj

and summing the geometric series of ratio a(x) coming from Theorem 7. h

7 Conclusion

In this paper we have used a probabilistic approach to approximate the c.d.f. of

designs in various finite metric spaces. The key tool is the Christoffel–Darboux

kernel attached to the orthonormal polynomials w.r.t. the valencies of the space. We

have used some strong analytic bounds on this quantity for binary Krawtchouk

polynomials derived in [13, 14]. It would be desirable to extend these analytical

results to other families of polynomials, beginning with q-ary Krawtchouk

polynomials. This special case would yield an alternative proof of the q-ary version

of Sidelnikov theorem proved by us in [19]. Further, it is a worthwhile project to

derive analogous results for the polynomials relevant to the eight types of designs in

[20]. A first step in that direction would be to extend or adapt Theorem 7 to Q-
polynomial schemes where zk is not always equal to k. Regarding more general

DDR metric spaces, it would be nice to have examples of t-designs in the space of

permutations that are not t-transitive permutation groups.
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