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Abstract
Trajectories in human aimed movements are inherently variable. Using the concept of positional variance profiles, such
trajectories are shown to be decomposable into two phases: In a first phase, the variance of the limb position over many
trajectories increases rapidly; in a second phase, it then decreases steadily. A new theoretical model, where the aiming task is
seen as a Shannon-like communication problem, is developed to describe the second phase: Information is transmitted from
a “source” (determined by the position at the end of the first phase) to a “destination” (the movement’s end-point) over a
“channel” perturbed by Gaussian noise, with the presence of a noiseless feedback link. Information-theoretic considerations
show that the positional variance decreases exponentially with a rate equal to the channel capacityC . Two existing datasets for
simple pointing tasks are re-analyzed and observations on real data confirm our model. The first phase has constant duration,
and C is found constant across instructions and task parameters, which thus characterizes the participant’s performance. Our
model provides a clear understanding of the speed-accuracy tradeoff in aimed movements: Since the participant’s capacity
is fixed, a higher prescribed accuracy necessarily requires a longer second phase resulting in an increased overall movement
time. The well-known Fitts’ law is also recovered using this approach.

Keywords Fitts’ law · Speed-accuracy tradeoff · Information theory · Feedback · Variance · Movement · Motor control

1 Introduction

It has long been observed that people routinely adapt their
speed to perform aimedmovements in a reliablemanner: The
more accurate a movement, the slower its execution. This
so-called speed-accuracy tradeoff has been studied for more
than a century by many communities such as experimental
psychology (Woodworth 1899; Fitts 1954; Welford 1960;
Crossman and Goodeve 1983; Meyer et al. 1988; Cross-
man 1957), human–computer interaction (HCI) (Card et al.
1978; Soukoreff and MacKenzie 2004), cybernetics (Chan
and Childress 1990; Gawthrop et al. 2011), robotics (Sim-
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mons and Demiris 2005), and neuroscience (Flanagan and
Rao 1995; Khan et al. 2006).

Fitts (1954) provided a simple formula to describe the
speed-accuracy tradeoff of simple aimed movements (Fitts’
law, see Sect. 2), focusing on the variability of the movement
endpoints. Fitts’ law remains to this day heavily used in var-
ious communities, e.g., in HCI to evaluate the performance
of input devices (Soukoreff and MacKenzie 2004); unfortu-
nately, it is only a rule of thumb, initially conceived with
a vague analogy with information theory (Gori et al. 2018),
that only deals withmovement endpoints and says little about
the entire movement’s trajectory.

Since Fitts’ seminal 1954 work, many attempts have been
pursued to explain Fitts’ law as resulting from an underlying
mechanism for movement production and control. Examples
are neural dynamics models (Bullock and Grossberg 1988),
behavioral models (Elliott et al. 2017, 2010), various math-
ematically formulated models (Plamondon and Alimi 1997;
Meyer et al. 1988), and models based on control theory,
including simple closed-loop step responses (Müller et al.
2017), deterministic and stochastic optimal control (Todorov
and Jordan 2002; Tanaka et al. 2006; Harris and Wolpert
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1998; Flash and Hogan 1985; Guigon et al. 2007; Berret and
Jean 2016). This last class of models has been particularly
influential in explaining motor planning (Todorov and Jor-
dan 2002). It shows how humans choose one particular path
from the infinitely many possible (Flash and Hogan 1985)
(this is usually known as the joint-redundancy or degree of
freedom problem Rosenbaum 2009; Bullock and Grossberg
1988), and how and when they will correct deviations from
that particular path (Todorov and Jordan 2002).

Control theoretic models do suffer from several difficul-
ties. To be operational, they require estimating the impedance
of the motor system, i.e., limb and muscles inertia and visco-
elastic properties. However, modulating impedance might be
a control strategy in its own right (Hogan 1985), and even
estimating an impedance that is assumed invariant is not triv-
ial (Buchanan et al. 2004; Müller et al. 2017). Another issue
is that it is not clear which cost functions are relevant to
the central nervous system (CNS), and how they should be
combined (Franklin and Wolpert 2011) in optimal control
models.

In this paper, we circumvent these difficulties by using
an optimal information transmission model that explains the
evolution of variance over time for precise aimedmovements,
jointly maximizing speed and accuracy without relying on
motor impedance.We leverage a computationalmodel rooted
in information theory to show that the problem of aiming can
be seen as a Shannon-like communication problem (Shannon
1948) with a noisy feedforward channel and a noiseless feed-
back link. Using Shannon’s information theory is not only
a reminder of the initial rationale behind Fitts’ law (Fitts
1954; Gori et al. 2018); it mostly comes from the obser-
vation that noise is “the one key element limiting motor
performance” (Franklin and Wolpert 2011)—and that infor-
mation (communication) theory was conceived with the goal
of finding “ways of transmitting the information which are
optimal in combating noise” (Shannon 1948). In spite of the
claimed differences between our information theoretic and
other optimal control schemes, similarities do exist, such as
the use of feedback information at the emitter, and the pres-
ence of a minimum mean square error (MMSE) estimator at
the receiver. Links between control theoretic and information
theoretic formalisms have been made (Elia 2004; Tatikonda
2000), and are out of the scope of this paper.

We then introduce positional variance profiles (PVPs) as a
way to operationalize ourmodel and track the evolution of the
variability of trajectories over time.We remark that PVPs are
necessarily unimodal: A first distance-covering phase where
positional variance increases rapidly over time is followed by
a much longer second phase—which makes reliable aiming
possible. Our model explains this longer second phase of
decreasing variance, while an empirical study reveals that
the duration of the first phase is approximately constant. We

Fig. 1 Ideal two-phase positional variance profile. The transition
between the two phases occurs at (τ ; σ 2

0 )

conclude by combining the two phases, which produces a
novel derivation for Fitts’ law.

The remainder of this paper is organized as follows.
Behavioral observations relevant to our model are described
in Sect. 2. The information-theoretic model for the second
phase is derived in Sect. 3, as the result of a joint optimization
of aiming accuracy and movement time. The main theoret-
ical result is that the variance decreases exponentially over
time during the second phase. PVPs are described in Sect. 4,
and empirical evidence to support our model is provided in
Sect. 5. An empirical study of the first phase of the PVPs
with increasing variance is presented in Sect. 6. Finally, the
synthesis of the two phases leads to the recovery of the well-
known Fitts’ law in Sect. 7. Section 8 concludes.

2 Background

Our aim in this section is not to present an exhaustive review
of motor control models; instead, we present behavioral
observations on the variability ofmovements, the use of feed-
back information and the continuous and discrete nature of
the control of movements that are relevant to our model.

2.1 Variability of movements

Humanmovement is inherently variable, as recognized since
the earliest studies on human produced movement (Wood-
worth 1899). The variability of the endpoints of movement
has been of great interest to behaviorists, leading to our first
point of interest, the well-known empirical Fitts’ law. A sec-
ond point of interest is the observation that the evolution of
the variance of position over time in aiming tasks has a uni-
modal profile, of which an “ideal” is represented in Fig. 1.
Fitts law. Fitts’ law describes the time MT it takes to reach
a target of size W located D away:

MT = a + b log2
(
1 + D

W

) = a + b ID (seconds). (1)

ID = log2
(
1 + D

W

)
is known as the index of difficulty. There

is, at present, no way to predict values for a (the intercept, in
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seconds) and b (the slope, in seconds per bit), which there-
fore have to be estimated from empirical data (Soukoreff and
MacKenzie 2004; Gori et al. 2018). The inverse of the slope
(1/b, in bits per second) is often called throughput (Zhai
2004) and is interpreted as a measure of the information-
theoretic “capacity” of the human motor system, i.e., the
highest rate of information that can be transferred during
the task completion.

Fitts’ law was first stated by Fitts (1954) as a vague anal-
ogy with the Shannon capacity formula (Shannon 1948)—
that analogy having been questioned on many occasions
(Sheridan and Ferrell 1974; Gori et al. 2018). Due to the
informal nature of Fitts’ theoretical construct, many varia-
tions of the law exist1 and most of the practices surrounding
Fitts’ law are empirically guided.

A variation that is used, e.g., in HCI (Soukoreff and
MacKenzie 2004; Gori et al. 2018), known as the effective
Fitts’ law (Zhai et al. 2004), corrects for participants that
miss targets over the course of the experiment, replacing W
with the actual standard deviation of endpoints σ , estimated
from the data:

MT = a + b log2
(
1 + D

4.133σ

) = a + b IDe (2)

where IDe = log2
(
1 + D

4.133σ

)
is known as the effective

index of difficulty. This formulation is, however, based on
the heuristic that an ε = 3.88% miss rate should be pursued
and lacks a satisfying justification (Gori et al. 2018).
Unimodal positional variance. As noticed in Todorov and
Jordan (2002), trajectoryvariability has “surprisingly received
little attention from researchers”: Most studies investigating
Fitts’ law have been limited to the measure of the spread of
endpoints (Crossman 1957; Soukoreff andMacKenzie 2004)
or single movements (Meyer et al. 1988; Plamondon and
Alimi 1997). However, that humans are able to reach almost
any target reliably implies that they are able to reduce their
endpoint variability at will, which begs the question of how
exactly that variability is reduced throughout the trajectory.

The evolution in time of the standard deviation of trajec-
tories from a tapping task was evaluated by Lai et al. (2005)
and appeared unimodal (an increasing phasewas followed by
a decreasing phase). Other studies (Khan et al. 2006; Van der
Meulen et al. 1990) have represented positional variance at
specific kinematic markers (peak acceleration, peak velocity,
peak deceleration, movement time), which also suggests uni-
modal variance profiles. Finally, Gutman andGottlieb (1992)
and Gutman et al. (1993) proposed a feedforward model
where a primitive trajectory is rescaled in time and space
depending on the task. They found their model predicted
unimodal variance profiles, in line with empirical observa-

1 For example, at least a dozen different formulations for ID exist (Pla-
mondon and Alimi 1997), including Fitts’ original ID = log2

( 2D
W

)
.

tions.2 Thus, evidence suggests that the positional variance
has a unimodal profile in time; this was also verified in our
empirical analysis (see Sect. 6).

The model that we propose accounts for the variance
decreasing phase of movement: We namely show that the
variance, in the decreasing phase, does so at a characteristic
exponential rate.

2.2 Feedforward and feedback information

It is well known that humans cannot function properly with-
out feedback, see, e.g., Wiener’s account (Wiener 1961, p.
95) on two patients suffering from a lack of voluntary mus-
cle movement coordination known as ataxia caused by a lack
of proprioceptive feedback information at the brain. Another
illustration comes from the fact that older adults have a dimin-
ished sense of proprioception which seems to account for a
decrease in their performance compared with younger adults
(Ketcham and Stelmach 2004). Movement generation also
relies on visual feedback mechanisms: Performing precise
movements with closed eyes is near impossible, and various
experiments on occlusion and removal of light (Elliott et al.
1995; Zelaznik et al. 1983) or removal of cursor (Chua and
Elliott 1993) confirm an effect of visual feedback on virtually
all kinematic properties, including accuracy and movement
time, on movements as short as 100 ms (Elliott et al. 2010;
Carlton 1992; Zelaznik et al. 1983).

However, many works also indicate feedforward con-
trol (Mehta and Schaal 2002), in particular those with
deafferented monkeys (Polit and Bizzi 1978, 1979; Bizzi
et al. 1984). Incorporating both feedforward and feedback
mechanisms is thus necessary when designing a scheme to
explain aimed movement production (Wolpert 1997). This
was already recognized in earliest descriptions of aimed
movements by Woodworth (1899), who hypothesized that
an aimed movement is constituted of two serial components:
An initial adjustment, whose main purpose is to cover dis-
tance, followed by a homing-in phase that relies on vision
to ensure accuracy. This two-component model has been
recently refined under the impulse of Elliott et al. (2001,
2010, 2017):Afirstplanned component gets the limbclose to
the target area. This component is based on internal represen-
tations and is associated with a velocity regulation through
proprioceptive feedback. Typically high speeds and low jerk
trajectories are associated with this component. When time
permits, a second corrective portion is engaged to reduce
spatial discrepancy between limb and target. This process,
highly dependent on foveal (central) vision, involves com-

2 They did find bimodal profiles, and so did Darling and Cooke (1987)
in another study, on fast elbow only (single-joint) flexions. This differs
from our work which tackles multi-joint movements.
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puting the difference between limb and target position and
issuing discrete corrections.

Ourmodel incorporates feedback and feedforwardmecha-
nisms via a feedback and a feedforward channel.Wewill also
find many resemblances between the two aforementioned
phases of variance and the two components of Woodworth
and Elliott.

2.3 Continuous, discrete, and intermittent control

Woodworth (1899) was the first to suggest that aiming was
comprised of a first distance-covering phase followed by a
second homing-in phase, but the segmentation was never
explicitly performed, including in its modern exposition
(Elliott et al. 2001, 2010). Itwas later observed that the veloc-
ity during movement vanished multiple times before its end,
which was interpreted as the transition from one submove-
ment to another—the whole movement being composed
of concatenated submovements—which implies a discrete
type of control (Crossman and Goodeve 1983; Keele 1968;
Meyer et al. 1988). Several models have used this idea of
submovements, including Crossman and Goodeve’s (1983)
deterministic iterative control model, and its stochastic coun-
terpart due to Meyer et al. (1988), which have proved quite
popular.

There are, however, many reports of improvement of over-
all performance metrics in the presence of feedback, even
though no distinct changes occur in the kinematic profiles
(Pélisson et al. 1986; Desmurget and Grafton 2000; Elliott
et al. 1991). This would indicate continuous control, and
some successful optimal control models are indeed contin-
uous. Yet another form of control is intermittent control,
where, e.g., observations are performed continuously but
actions are taken intermittently (Gawthrop et al. 2011).

It has been suggested that training and learning leads to
the transition from discrete or intermittent control to contin-
uous control (Woodworth 1899; Proteau et al. 1987; Elliott
et al. 2010). It has also been suggested that intermittent con-
trol can appear to be continuous—so-called masquerading
(Gawthrop et al. 2011). This can lead to difficulties with
models that form predictions that are based on intermit-
tent/discrete style control strategies, e.g., if the quantity (e.g.
amplitude, frequency) or quality of submovements are pre-
dicted. Our use of variance profiles, that relies on statistical
averaging, allows us to form predictions regardless of the
actual type of control.

3 Variance-decreasing phase: Theoretical
model

Contrary to most models of movement, where initial posi-
tion is given (e.g., the optimal control theoretic framework

(Todorov and Jordan 2002; Tanaka et al. 2006; Harris and
Wolpert 1998; Flash and Hogan 1985; Guigon et al. 2007;
Berret and Jean 2016), the input to our model is a random
variable, corresponding to the position when positional vari-
ance is maximized (time t = τ in Fig. 1). In this section,
some theorems and lemmas are given. All full proofs are
delayed to Appendix A.3.

3.1 Notations

– bold lettersX andXi denote random variables which can
be indexedby i in the listXn = (X1,X2, . . . ,Xi , . . . ,Xn);

– N (μ, σ 2) is the μ-centered Gaussian distribution with
variance σ 2;

– E[X] and E[X|Y] are, respectively, the mathematical
expectation of X and the conditional expectation of X
given Y;

– H(X) and H(X|Y) are, respectively, the differential
entropy and the differential conditional entropy, defined
by H(X) = −E[log2 p(X)] and H(X|Y) = −E[log2
p(X|Y)] and are expressed in bits, were p(X) and
p(X|Y) are the probability density functions (pdf) of X
and X|Y. An important example is the Gaussian entropy
(Cover and Thomas 2012): If X ∼ N (0, σ 2), then
H(X) = 1

2 log2(2πeσ
2).

3.2 Information-theoretic model description

Our goal is to explain the reliability of human-aimed move-
ments, i.e., how the inherent variability of a set of trajectories
gets reduced over time (from τ , the time of the maximum
of the PVP, onward to the end of the movement). In con-
trast, existing models of goal-directed movements usually
predict trajectories formed between and initial position and
final position.

The position of the limb extremity (‘limb’ in short) at the
end of the first phase is random: The distance to the target is
modeled by the random variable A.

Thanks to visual and proprioceptive feedback information
the limb position is known at the brain level. Due to eye–hand
coordination and fast eye dynamics, the eye is usually point-
ing toward the target long before the end of the movement
(Elliott et al. 2010). Hence, we assume that A is known at
the brain level and can be easily evaluated.3

We take it thatA is a centered Gaussian with variance σ 2
0 :

A ∼ N (0, σ 2
0 ). We consider A to be centered, since move-

ments can undershoot and overshoot the target. In general,
movements can come from any direction (left or right in this
1D model), hence an overshoot for one is an undershoot for

3 In fact, it can be estimated by the eye if the limb is close enough to
the target. This is indeed the case since most of the distance to the target
has been covered during the first phase, see Sect. 6.
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Fig. 2 Toppanel: Information-theoreticmodel for the aiming task.Bottom left panel: Implementationof themodel.Bottom right panel: Physiological
representation

the other, symmetrizingA. Empirical evidence in Sect. 5 will
further support the Gaussian hypothesis. The first iteration of
the scheme is now explained.
First iteration of the scheme. The second phase of movement
is commensurate to sending A, the remaining algebraic dis-
tance to the target, from the brain to the limb (to be read with
the top panel of Fig. 2):

– Given A, the brain outputs an amplitude X1 to be sent to
the limb:

X1 = f(A), (3)

where f is a deterministic, yet unknown function per-
formed by the brain, known as the encoder in the
vocabulary of information theory.

– The variability of the human motor system is accounted
for by a noisy (Gaussian) transmission frombrain to limb.
The output of the channel Y1 reads

Y1 = X1 + Z1, (4)

where Z1 ∼ N (0, N ) is the “noise.” The noise is taken
as additive because the remaining distance to the target is
small; hence, the noise is largely independent from X1,
see Todorov (1998). This transmission model is the well-
knownAdditiveWhiteGaussianNoise (AWGN) channel
(Shannon 1948).

– The actual distance covered by the limb Â1 is the result of
some yet unknown function g (the decoder in the vocab-
ulary of information theory), applied by themotor organs

to the received Y1:

Â1 = g(Y1). (5)

– Â1 is returned to the brain via noiseless4 feedback (e.g.,
visual, proprioceptive) and used together with A to pro-
duce a new input: X2 = f (A, Â1)—we later show that
the best strategy is to use a comparison between A and
Â1 as the subsequent signal.

The scheme then progresses iteratively, each step having a
constant duration of T seconds. This puts the limiting factor
for time not on the dynamics of moving the limb, but on the
delay associated with the feedback transmission.5

General form of the iterative scheme. At iteration i ∈
{1, . . . , n}, the scheme is described by the following equa-
tions (see the top panel of Fig. 2):

1. The encoder (f) producesXi fromA and all received feed-
back information Âi−1 = {Â1, Â2, . . . , Âi−1}:

Xi = f (A, Âi−1). (6)

4 We assume that in stereotypical controlled experimental tasks such
as those used in this paper, there are no perception issues. A pathology
could however be simulated by e.g., introducing on purpose a strong
deterioration of the quality of the feedback link.
5 It is equivalent to consider that all components have zero-delay except
for the feedback link, or that the delay is spread over all components. For
example, the delay taken into account for the feedback link encompasses
the delay associated with the feedforward transmission.
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2. The AWGN channel:

Yi = Xi + Zi . (7)

3. The output (Âi ) of the decoder (g) is a function of all
received channel outputsYi = {Y1,Y2, . . . ,Yi } thus far:

Âi = g(Yi ). (8)

The functions f and g are assumed to be deterministic
and are causal by definition; their exact form, however, has
yet to be specified. To actually use all previously received
signals since the start of themovement, f and g require access
to some form of memory. Although this is plausible at the
brain level for f (6), it seems less so at the limb level for
g (8). We next determine f and g by solving an optimization
problem, and we show that no memory is actually required:
The optimal solution—even when assuming the possibility
of memorization—is memoryless.

In Shannon’s communication-theoretic terms, the aiming
task in the second phase can be seen as the transmission of a
real value (distance from target at the end of the first phase)
from a “source” (CNS) to a “destination” (limb extremity)
over a noisy forward Gaussian channel with noiseless feed-
back. In human-centered terms, that phase makes sure that
the limb reliably reaches the target, once most of the distance
has been covered.

3.3 Bounds on transmitted information

We now leverage information-theoretic definitions.

– Pi = E[X2
i ] is the average power (variance) of the chan-

nel input at iteration i .
– The quadratic distortion Di = E[(A − Âi )

2] is the
mean-squared error of the estimation of A by Âi after
i iterations.

– I (A; Âi ) = H(A) − H(A|Âi ) is Shannon’s mutual
(transmitted) information (Cover and Thomas 2012)
between A and Âi .

– Shannon’s capacityC (Shannon1948;Cover andThomas
2012) of the forward AWGN Channel (for one channel
use) under the power constraint Pi ≤ P and with noise
power N is

C = 1

2
log2(1 + P/N ) (bit per channel use). (9)

Shannon’s (1948) capacity formula is a corollary to
the channel coding theorem (for AWGN channels), which
expresses a compromise between a certain measure of speed
(rate of information) and a certain measure of accuracy (reli-
ability of a transmission). Goal-directed movements, when

modeled according to Fig. 2, are shown to entail a similar
communication tradeoff through the following theorem.

Theorem 1 Consider the noisy transmission scheme with
noiseless feedback of Fig. 2. For a zero-mean Gaussian
source A with variance σ 2

0 , we have after n iterations

1

2
log

σ 2
0

Dn
≤
(a)

I (A, Ân) ≤
(b)

nC . (10)

The inequality on the left expresses the minimum amount
of information that needs to be transmitted from the brain
to the limb to reduce the positional variability from the ini-
tial variance (σ 2

0 ) to the variance after n iterations (Dn). The
inequality on the right expresses the maximum amount of
information that can be transmitted over the n times fully
exploited noisy channel (nC). Since the transmitted infor-
mation per channel use can never exceed C , and since being
more accurate requires sending larger amounts of infor-
mation, more iterations of the scheme (hence more time)
are needed for more precise tasks—in line with the speed-
accuracy tradeoff.

For a given channel capacity C and a given number n
of iterations of the scheme, maximizing accuracy is equiv-
alent to minimizing the trajectory variance Dn . Similarly,
for a given accuracy Dn , minimizing time is equivalent to
minimizing n. Optimal aiming, which we define by those
movements that achieve the best possible accuracy in the
least amount of time is thus achieved when equality holds
in (10), i.e., when:

1

2
log

σ 2
0

Dn
= I (A, Ân) = nC . (11)

The next subsection determines the conditions under which
this maximal exploitation of the channel is actually reached.

3.4 Optimal aiming (achieving capacity)

Lemma 1 Optimal aiming can be achieved if, and only if, the
following conditions hold:

1. all considered random variables A, Âi ,A − Âi , Xi , Yi ,
Zi are Gaussian;

2. all input powers are equal (to, say, P):
Pi = E[X2

i ] = P, ∀i ;
3. endpoints Âi are mutually independent;
4. channel outputs Yi and errors A − Âi are independent;
5. Âi = g(Yi ) is a sufficient statistic of Yi for A.

Optimal aiming can only be achieved if all the variables
are Gaussian (see Sect. 5 for an empirical investigation). This
Gaussianity suggests that f and g are linear functions, as the
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family ofGaussian distributions is closed under linear combi-
nations. For Gaussian variables, independence is equivalent
to decorrelation (or orthogonality), a propertywe take advan-
tage of in the proofs.

Orthogonality between channel outputs and errors, and
between updates (Conditions 3. and 4. of Lemma 1) sug-
gest MMSE estimation (similarly to the Kalman filter 1980)
heavily used in the stochastic optimal control setting). Bridg-
ing this result with the previous, it is well-known that the
MMSE estimator—which minimizes Dn—is a linear func-
tion in the Gaussian setting. The general structure of the
scheme is thus expected to be linear, with an MMSE esti-
mator on the receiver side.

Since g(Yi ) is a sufficient statistic of Yi for A, it does not
matter if the feedback comes from the endpoints Âi or from
the outputs of the channel Yi . This is particularly relevant
in the present context, since visual and proprioceptive motor
feedback information can originate from several sources in
the human body.

We now assume for the remainder of the paper that move-
ments are optimal, i.e., conditions of Lemma 1 hold. By
furtherworking out the conditions of Lemma1,we can derive
the structure of f and g. We first obtain g by using the well-
known orthogonality principle: If A is to be estimated from
the observed data Yi by the unbiased estimator Â(Yi ) then
the following statements are equivalent:

• Â(Yi ) = E[A|Yi ] = E[AYi ]tE[Yi (Yi )t ]−1Yi is the
MMSE estimator;

• E

[
(A − Â(Yi ))Yi

]
= 0, ∀i .

From condition (4), we have thatE[(A−g(Yi ))Yi ] = 0, ∀i ,
hence, the following theorem results froma direct application
of the orthogonality principle.

Theorem 2 For the optimal transmission scheme, g(Yi ) is
the MMSE estimator: g(Yi ) = E

[
A|Yi

]
.

The optimal scheme thus yields an endpoint Âi = g(Yi )

obtained as the best least-squares estimation of A from all
the current observations of the (independent) channel outputs
Yi = (Y1, . . . ,Yi ).

Theorem 3 For the optimal transmission scheme, f produces
a scaled version of the estimation error:

Xi = f(Âi−1,A) = αi (A − Âi−1) (12)

= αi (A − E

[
A|Yi−1

]
) = αi (A − g(Yi−1)), (13)

where αi is such that the power constraintE[X2
i ] = P is met.

The signal sent at the input of the channel is thus simply the
difference between the initial message A and its most recent

estimate Âi−1, rescaled to meet the power constraint. The
previous two theorems formally define the encoding function
f and decoding function g.

The encoding function f is mathematically simple and
appears biologically feasible, since the difference between
A−Âi−1 is simply the remaining distance to the target, which
can be estimated easily by the eye. In addition, scaling pro-
cesses (for theαi ’s) have been identified in the literature, e.g.,
within the basal ganglia (Rosenbaum 2009). The decoding
function g is expressed as a function of Yi , which suggests
that the motor organs memorize all channel outputs for later
use. To our knowledge, this seems unreasonable. Fortunately,
as we next show, there is no need for a memory within the
motor organs.

Theorem 4 Let Ai = Xi/αi be the unscaled version of Xi ,
with A1 = A and α1 = 1. We have:

E[A|Yi ] =
i∑

j=1

E[A|Y j ] =
i∑

j=1

E[A j |Y j ] (14)

=
i∑

j=1

1

αi
(1 + N/P)−1Y j (15)

The theorem, through (14), shows that the decoding process
is recursive: At each step, a “message” Ai that is indepen-
dent from the previous ones ({A1, . . . ,Ai−1}) is formed,
sent to the channel and estimated optimally by least-square
minimization. Say A is initially sent over the channel: The
first estimate at the decoder is E[A|Y1]; the motor organs
respond, and the limbmoves by Â1 = E[A|Y1]. The remain-
ing distance is A2 = A − E[A|Y1], and the next estimate is
E[A2|Y2]. The limb moves again, by Â2 = E[A2|Y2]. The
remainingdistance is nowA3 = A−(E[A|Y1] + E[A2|Y2]).
The estimate at each iteration is thus simply the sum of a new
estimate and the sum of all previous estimates, i.e., exactly
the total distance covered since A. This distance, and hence
the channel outputs, do not need to be stored by some internal
memory inside the motor organs—they are in fact “memo-
rized” by the limb simply remainingwhere it is in the absence
of a signal.6 The optimal procedure is thus incremental and
optimal at each step and is achieved on-line without memory.

For completeness, we finally check optimality in (11) by
evaluating the distortion; we also provide the closed form
expression for αi .

6 Note that we assume that the dynamics of the limbs are fast enough
with respect to T that the given distance can always be covered; this
reflects one of the main ideas behind this work, namely that for the
homing-in phase, which is exceptionally long compared with the dis-
tance covered, the limb impedance is not the limiting factor.
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Theorem 5 The quadratic distortion Di = E[(A − Âi )
2]

decreases geometrically in the number of iterations i:

Di = σ 2
0

(1 + P/N )i
. (16)

The scaling factor αi increases geometrically in the number
of iterations i:

αi = α0(1 + P/N )i/2, (17)

where α0 =
√
P

σ0
.

The capacity C is exactly achieved and the distortion
decreases geometrically (divided by 1 + P/N ) at each
iteration. An implementation of the scheme, based on the
equations given in the theorems, is presented in the bottom
left panel of Fig. 2, and a tentative mapping to physiological
components is given in the bottom right panel of Fig. 2.

The formulas for the distortion and the general scheme
have been previously obtained in an information-theoretic
context by Gallager and Nakiboglu (2010) who discussed an
older scheme by Elias (1957). To our knowledge, the con-
structive proofs of the Elias scheme given here, as well as its
application to model goal-directed movements, are novel.

3.5 From a discrete timemodel to continuous PVPs

We presented a discrete-time scheme in line with the ideas of
iterative corrections. If the iteration time is constant and equal
to T and n, iterations have been completed, then the duration
of the second phase t is given by t = nT . The profile of
variance is then a discrete set of points at time {tk = kT }nk=1,
where variance amplitudes are given by Theorem 5.

Whenweoperationalize themodel through themonitoring
of PVPs, we note:

– That T is constant might be true only on average. Differ-
ent participants may have different values of T . Given a
single participant, T may also varywith fatigue, learning,
etc.

– Even if T were constant, the uncertainty associated with
determining the starting time (and as a result τ ) would
induce iterations that are not synchronized.

The iterative corrections are thus in practice desynchro-
nized. As a result, when considering sufficiently many
trajectories during the construction of a PVP, it is likely that
any time interval, however, small, will contain at least one
new correction from one of the trajectories. Asymptotically
(i.e., considering infinitely many trajectories), we can there-
fore assume an infinitesimal feedback time δT , leading to
a continuous time formulation. This also means the number

of iterations n = t/δT goes to infinity. This does not mean
that each trajectory is obtained as the result of a continu-
ous on-line control; we posit that a set of trajectories can be
described by a continuous model where variance decreases
smoothly over time.

With n = t/δT one can rewrite (11) as

t = 1

C ′ log2
σ0

σ(t)
(18)

where the samplemean squared error (continuous time)σ 2(t)
is taken for the ensemble mean squared error (discrete time)
Dn and C ′ = C/δT is the capacity in bit per second. Note
that this local formulation holds for any time interval in the
second phase: For arbitrary Δt ≥ 0

log2 σ(t + Δt) = log2 σ(t) − C ′Δt, (19)

as long as t and t+Δt are in the second phase. In the remain-
der of this work, we do not discriminate between C ′ and C
and use invariably C for simpler notations.

The remainder of this work is almost entirely empirical:
We first validate the theoretical results just presented on the
variance decreasing phase. Then, we propose an empirical
study of the first phase, since no useful information-theoretic
scheme can predict an increasing variance. Fitts’ law is then
derived by combining the results obtained on both phases.

4 Method

4.1 Dataset presentation

Many studies of goal-directed movements having previously
been conducted, we have re-analyzed existing datasets to
provide empirical support for our model.

The first is from a study by Guiard et al. (2011), fol-
lowing a discrete protocol (Fitts and Peterson 1964). The
task of the participant was to move a cursor from a given
starting position to a given line D = 150mm away, fol-
lowing 5 different instructions: #1 maximize speed (U-Fast),
#2 emphasize speed (Fast), #3 balance speed and accuracy
(Balanced), #4 emphasize accuracy (Precise), #5 maximize
accuracy (U-Precise).

The second is pointing dynamics dataset (PD-dataset)
by Müller et al. (2017). The experiment is a replication
of Fitts’ well-known, one-dimensional 1954 reciprocal task
(Fitts 1954), where input is tracked by a mouse. Participants
have to move back and forth as fast as possible between
two targets of same width W and located D apart. D (in m)
∈ {0.212, 0.353} and ID ∈ {2, 4, 6, 8} [see Eq. (1)] were
fully crossed. The PD-dataset is already pre-processed, reg-
ularly sampled and denoised with a low-pass filter at about
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8Hz. We performed a similar interpolation and low-pass fil-
tering process on the G-dataset. Full details are available in
the original publications.

In both datasets, position is a one-dimensional real signal.
As explained below, the two paradigms provide a general
picture of the speed-accuracy tradeoff in precise aimedmove-
ments:

– Manipulating speed and accuracy. For the PD-dataset,
accuracy is an independent variable, manipulated via a
visual target of size W . In the G-dataset, the participants
do not aim toward a target but to a point in space. They
are in charge of balancing the speed and accuracy of
movements to conform to the instruction given by the
experimenter: Bothmovement time and accuracy are thus
dependent measures.

– Discrete or reciprocal task. The G-dataset was acquired
using a discrete task (Fitts and Peterson 1964), where the
cursor is repositioned at the start after each movement,
whereas the PD-dataset was acquired using a reciprocal
task (Fitts 1954).

– Multi-joint movements. In both experiments, the move-
ments solicited several joints: Fingers, wrist, elbow,
shoulder, and sometimes even elicited movement from
the back. These should be differentiated from single-joint
movements (e.g., wrist-only movements Meyer et al.
1988) because the latter eliminate the redundancy of the
degrees of freedom, i.e., the issue at the heart of variabil-
ity in aimed movements (Guigon et al. 2008; Todorov
and Jordan 2002).

4.2 Positional variance profiles (PVPs)

Tracking the evolution of variance over time is achieved via
so-called positional variance profiles (PVP). The first step in
computing PVPs is to identify individual movements from
the time series of the position. This is achieved using a home-
made segmentation algorithm, described in Appendix A.1.

PVPs are then computed, considering all the trajectories
produced for a given condition, using following operations:

1. The trajectories are synchronized by using the starting
time as the new time origin.

2. Each trajectory is extended by paddingwith the final value
of position so that all movements last the same amount
of time (say 2 s). Indeed, while movements may stop at
some point, the position signal remains constant as long
as there is no movement, just as if the participant paused
longer before going on to the next movement7;

7 There are thus practically 3 phases; the 2 phases discussed previously,
and a third stationary phase, where position is conserved and nothing
happens.
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Fig. 3 The set of trajectory for Participant X performing under con-
dition #3 (Balanced) for the G-dataset. All trajectories have been
time-shifted so as to start at the origin; after about 1 s, the trajecto-
ries are all stationary

3. Once the set of trajectories has been synchronized and
extended, compute the variance of the position for this
set. This time-series representing the evolution of variance
over time is what we call a PVP.

Figure 3 displays a set of synchronized trajectories for
a participant of the G-dataset, and Fig. 4 displays several
example PVPs computed from empirical data. We asserted
the unimodality of PVPs for both datasets. 94% (75 out of
80) of PVPs were found unimodal in the G-dataset; 92%
(88 out of 96) in the PD-dataset. Non-unimodal profiles had
small secondary peaks due to trajectory outliers. Hence, as
expected from Sect. 2, variance profiles for both datasets can
be considered unimodal.

4.3 Calculations performed

For each dataset, we segmented trajectories as described
in Sect. 4. MT was computed (black diamonds on, respec-
tively, the top and bottom left panel of Fig. 6), and Fitts’
law evaluated (results deferred to Sect. 7), to verify that our
segmentation procedure produced results in accordance with
what is expected from the literature (Soukoreff andMacKen-
zie 2004).

We then computed the PVPs for each block. The decreas-
ing and increasing phases of variances were straightfor-
wardly identified by locating the mode (τ, σ 2

0 ) of the PVP.
To evaluate our model, the decreasing phase of variance was
fitted with a spline, as described in Sect. 5. To study the
increasing phase of variance, we systematically observed the
effect of the different experimental conditions on σ0 and τ ,
as well as Dτ , the distance covered at t = τ , since our
theoretical model in Sect. 3 builds heavily on the position
signal.

A box-plot representation of τ (See Appendix A.2) with
data grouped per participant revealed a large disparity in the
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average τ per participant (ranging from τ = 0.2 for P2 to
τ = 0.45 for P9 in the PD-Dataset). Similarly, the value
of C , the capacity in our theoretical model, is by definition
dependent on each participant. Hence, we fitter mixed linear
model with random intercepts clustered by participant in our
regression models when analyzing the PD-dataset and used
one-way repeated measures (RM) ANOVA when analyzing
the G-dataset. Greenhouse–Geisser correction, indicated by
theGG subscript,was appliedwhen the sphericity assumption
was broken.

5 Exponentially decreasing variance phase:
Empirical validation

Theorem 5 and its continuous counterpart (19) forecast a
decrease in the positional standard deviation at an exponen-
tial rate C . The parameter C is a constant that characterizes
the channel, is inherent to each participant and should
therefore be unrelated to external constraints, such as task
geometry. This makes for the following predictions:

Prediction 1 The rate at which the positional standard devi-
ation decreases is exponential.

Prediction 2 That exponential rate C is constant and does
not depend (within limits) on the task parameters (i.e., D,
W , ID, speed-accuracy strategies).

Both predictions are tested on the PD and G-datasets. It is
instructive to look at empirical PVPs in log-lin scale before
any statistical analysis, see Fig. 4; the left panel represents
the 8 PVPs for a single participant of the PD-dataset, per-
forming all 8 conditions, the middle panel represents the 5
PVPs for a single participant of the G-dataset, performing
all 5 conditions, and the right panel is a single PVP taken
from the G-dataset with the corresponding spline fit. One
sees that, as expected from (19), the second phase is close
to linear and that the slopes are all more or less confounded.
This suggests that values of C for each PVP are about equal,
suggesting that Predictions 1 and 2 hold.

5.1 Prediction 1: Exponential decrease in standard
deviation

As shown in (19), an exponential decrease in the standard
deviation will appear linear in a log-lin scale. Hence, in a log-
lin scale, the PVP is theoretically composed of the following
three phases:

1. a first phase of duration τ ;
2. a second phase which decreases linearly, from standard

deviation σ0 until some value, say σ∞;

3. a third stationary phase where standard deviation is con-
stant and equal to σ∞, which lasts as long as the duration
of the extended trajectories used to construct the PVP.

A piecewise linear model (spline) was fit to the second
and third phase of the PVP (log-lin, see the red spline in the
right panel of Fig. 4):

– a first-order polynomial for the second phase. The inter-
cept log2 σ̂0 is in theory located at (τ, log2 σ0), and the
algebraic value of the slope is −C ;

– the constant log2 σ̂∞ for the stationary phase.

The spline has a single knot, defined at (Ω, log2 σ̂∞); equa-
tions of the spline are:

log2 σ(t) = log2 σ̂0 − C(t − τ) if τ ≤ t ≤ Ω, (20)

= log2 σ̂0 − C(t − Ω) = log2 σ̂∞ else. (21)

The fit was computed by ordinary least squares (OLS) on
the logarithm of the PVP. This minimization was performed
straightforwardly with numerical optimization.

A fit is illustrated in the right panel of Fig. 4, where the
empirical PVP is displayed in black and the piecewise linear
fit (spline) is displayed in red. The first phase of the PVP lasts
about 300ms (τ = 302ms); from there the PVP drops quasi-
linearly until Ω = 1.7s, which defines the knot of the spline
at which the PVP levels off. The slope is estimated at C =
4.6bit/second; the endpoint accuracy (stationary phase) is
estimated at σ̂∞ = 1.6e−4 m. A coefficient of determination,
computed only on the second phase, is also given (r2 =
0.9973).8

The coefficients of determination were computed on all
PVPs, see Table 1. For the PD-dataset, the quality of fits are
mostly equivalent, except for the 2 conditions with ID = 2.
Generally, all goodness of fits computed are high, with an
average r2 for the G-dataset of 0.95 and an average r2 for
the PD-dataset of 0.97. For the G-dataset, the quality of fit
increases with the precision requirement: The mean value
of r2 increases, and its standard deviation decreases when
participants are instructed to emphasize accuracy.

This can be explained by observing the left and middle
panels of Fig. 4, which show that for the conditions that
require low precision (Conditions #1 and #2 in the G-dataset
and ID = 2 in the PD-dataset), the second phase is short
and the edges of the PVPs are rounded off (likely due to the

8 It can seem surprising that we give a r2 value computed on the second
phase, whereas the model was fit simultaneously on the second and
third phase. But notice that by construction, the positional variance is
necessarily constant after all movements have terminated. If one were
to fit a linear model on the constant phase, one would invariably get
a null slope and a perfect fit (r2 = 1), so that the r2 would increase
mechanically with longer extension times.
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Table 1 Mean and Standard deviation Summary for the PD-dataset (left) and G-dataset (right)

W (D × ID) Ω (μ/σ) C (μ/σ) r2 (μ/σ) Instruction Ω (μ/σ) C (μ/σ) r2 (μ/σ)

0.8 (212 × 8) 1.378/0.214 6.22/1.18 0.98/0.01 1—U-Fast 0.432/0.145 4.274/3.18 0.87/0.13

1.4 (353 × 8) 1.373/0.172 6.41/0.91 0.99/0.00 2—Fast 0.713/0.206 4.20/1.51 0.94/0.05

3.3 (212 × 6) 1.050/0.195 6.95/0.97 0.99/0.01 3—Balanced 0.851/0.249 5.43/1.61 0.96/0.05

5.5 (353 × 6) 1.077/0.158 6.93/1.18 0.99/0.01 4—Precise 0.999/0.365 5.23/0.984 0.97/0.03

14.1 (212 × 4) 0.814/0.144 6.15/1.59 0.97/0.02 5—U-Precise 1.310/0.389 5.29/0.814 0.98/0.02

23.6 (353 × 4) 0.808/0.141 6.83/1.64 0.98/0.01

70.7 (212 × 2) 0.429/0.130 6.04/3.97 0.93/0.11

117.8 (353 × 2) 0.527/0.143 4.82/2.76 0.95/0.03

(μ/σ) 0.932/0.368 6.30/2.00 0.97/0.04 0.861/0.405 4.89/1.86 0.95/0.08

Fig. 4 Various PVPs in log-lin scale, where time and positional stan-
dard deviations are given in standard units. Left panel: PVPs for all
conditions of P8 from the PD-dataset. Each condition should be read
as D (mm) × ID. Middle panel: PVPs for all conditions of P8 from

the G-dataset. Right panel: PVP for condition U-Precise (#5) of the G-
dataset in log-lin scale with corresponding fit and estimated values of
C and σ̂∞

regularity of human produced movements). We suppose that
this rounding off of the edges has more effect the shorter the
second phase, leading to a degradation of the r2.

5.2 Prediction 2: Invariance of C

Effect of D and W on C . Average and standard deviation
values of C are given Table 1; values of C are between 6
and 7bit/second except for the condition W = 117.8. The
standard deviations are particularly high for ID = 2 (coeffi-
cient of variation > 1/2), indicating that the estimates of the
slopes are unreliable in that condition.

Amixed linear regressionwith random interceptwas com-
puted for C with fixed effects D (μ = 12.7, σ = 23.5, cv =
1.85), W (μ = 2.76, σ = 2.99, cv = 1.08) and inter-
action term D:W (μ = −83.7, σ = 72.1, cv = 0.86)
to estimate the effect of each factor, all giving coefficients
of variations (cv) close to 1, except for the fixed intercept
(μ = 5.9, σ = 0.93, cv = 0.15).
Effect of instructions on C . Average and standard devia-
tion values of C are given Table 1. Average values of C
are between 4.20 and 5.43bit/second, the maximum being
attained for the balanced condition (#3). Instructions to

emphasize accuracy lead to lower standard deviations for
C : From σ(C) = 3.18 for the condition U-Fast, down to
σ(C) = 0.814 for the condition U-Precise. Hence, more pre-
cise movements lead to more reliable estimates, likely due to
the increase in the duration of the second phase.

To evaluate the effect of instruction on C , a one-way
repeatedmeasuresANOVAwas computed (F(1.88, 28.25) =
22, pGG = 0.17, η2g = 0.08).

Both analyses show that these two datasets present very
little to no effect of instruction or D andW on themean value
of C , thereby supporting the hypothesis that C is a constant
that does not depend on the task parameters. However, reli-
able estimation of C seems possible only when the accuracy
requirement of the task is stringent.

5.3 Gaussian trajectories

The Gaussian assumption, i.e., that observed samples at any
given time follow a Gaussian distribution is central to our
model. We asserted the Gaussianity of the position signal
throughout the movement for both datasets by:

1. repeating the first three steps of the PVP construction;
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Fig. 5 Quantile–Quantile plots for theG-dataset (left panel) and thePD-
dataset (right panel). Data considered are the reunion of the normalized
data per participant and per condition computed for all sampling instants

2. starting from t = τ , pooling position data into a vec-
tor for each participants for each condition and for each
timestamp to create a so-called position slice;

3. normalizing each position slice.

The normalized position slices were pooled, from which a
quantile–quantile plot (qqplot) was drawn with a standard
normal distribution for comparison, see Fig. 5. The left panel
represents the qqplot for the G-dataset, whereas the right
panel represents the qqplot for thePD-dataset. Figure 5 shows
the empirical distribution to be almost symmetrical, but has
heavier tails than the normal distribution in both cases. For
about 96%of the data, however, (in the rangewhere points are
less than 2 standard deviations away from the mean value),
the empirical qqplot is an almost exact fit, see Fig. 5. The
Gaussian assumption thus seems safe.

While our theoretical model of the second phase shows
promising results, an equivalent model for the first phase is
required tomake sense of thewholemovement. As explained
previously, however, a useful information-theoretic model
cannot lead to an increasing variance. Rather than proposing
a model for the first phase that draws from a different field,
we prefer at this point to present an empirical analysis of
the first phase. The surprising result that we find is that the
duration of the first phase is almost constant.

6 Variance increasing phase: Empirical study

D, W , ID and speed-accuracy strategy were varied, and
its effect on the features of the first phase σ0, Dτ and τ

was observed. We find that movements in this first, variance
increasing phase are affected primarily by D. We also find
that the duration (and its variations even more) of this first
phase is small in comparison with the total movement time.

6.1 Effect of D andW on �

Values of τ are given in Table 2 and plotted in the top left
panel of Fig. 6 (Table 3). Results of the regression are given in
Table 4, where the estimated mean value/standard deviation,

as well as the coefficient of determination, is given for each
fixed effect parameter.

6.2 Effects of D andW on D�

Average values of Dτ are plotted with bars in the top middle
panel of Fig. 6. For comparison purposes, factor level D was
also plotted on the top middle panel of Fig. 6 with a thick
black line. Higher levels of D lead to larger Dτ :

– For D = 0.212m, Dτ ranges from 0.126m (ID = 2) to
0.151m (ID = 6). The average Dτ over all ID levels is
0.141m, (67% of D).

– For D = 0.353m, Dτ ranges from 0.216m (ID = 2) to
0.242m (ID = 6). The average Dτ over all ID levels is
0.228m (69% of D).

Results of the regression are given Table 4, confirming the
effect of D on Dτ .

6.3 Effects of D andW on�0

Average values of σ0 are plotted with bars in the top right
panel of Fig. 6, which shows an increase in σ0 with levels of
D (σ 0 = 0.019m for D = 0.212m and σ 0 = 0.029m for
D = 0.353m). This is confirmedby the regression inTable 4.
The sharp “drop” in σ0 for ID = 2, evident from Fig. 6
could indicate that aimed movement in the ID = 2 regime is
different from other, more precise movements, in line with
Crossman’s (1983, Fig. 1) analysis for low ID movements.

Keeping only factors with a great effect size9, the regres-
sions of the PD-dataset (Table 4) are condensed to:

τ = 0.225 + 0.343D + ε; (22)

Dτ = 0.765D + ε′; (23)

σ0 = 0.079D + ε′′. (24)

where ε, ε′, and ε′′ are error terms. This shows that τ , Dτ ,
and σ0 of the first phase of the PVP depend primarily on the
level of D.

6.4 Effect of instructions on �, D� and�0

The average values of τ , Dτ , and σ0 for the G-dataset are rep-
resented, respectively, on the left, middle, and right bottom
panels of Fig. 6 and Table 5.

9 As measured by a coefficient of variation much smaller than 1, where
the coefficient of variation for a set of sampleswith observedmeanμ and
standard deviation σ is defined as the ratio σ/μ. There is no difficulty
in choosing the cut-off rate, since coefficients of variation obtained are
clear cut above or below 1. Significance testing with p-values gives
identical results (α = 0.05).
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Fig. 6 Top: Effects of D, ID and W on τ (top left panel), Dτ (top
middle) and σ0 (top right) for the PD-dataset. Bars are grouped by D
condition, with the 4 bars on the left corresponding to D = 0.212 m
and the 4 bars on the right corresponding to D = 0.353 m. Each bar is
labeled with its corresponding level of ID. Bottom: Effects of instruc-

tion on τ (bottom left panel), Dτ (bottommiddle) and σ0 (bottom right)
for the G-dataset. On the τ panels, total movement time is represented
with black diamonds, and on the Dτ panels, D is represented in a black
thick line

Table 2 Mean (μ) and standard
deviation (σ ) summary for τ ,
Dτ and σ0 for the PD-dataset

W (D × ID) τ (μ/σ) Dτ (μ/σ) σ0 (μ/σ)

0.8 (212 × 8) 0.296/0.089 0.150/0.020 0.016/0.004

1.4 (353 × 8) 0.347/0.063 0.262/0.020 0.025/0.006

3.3 (212 × 6) 0.291/0.085 0.151/0.031 0.019/0.005

5.5 (353 × 6) 0.340/0.084 0.264/0.028 0.028/0.009

14.1 (212 × 4) 0.295/0.074 0.137/0.021 0.023/0.008

23.6 (353 × 4) 0.333/0.075 0.227/0.033 0.039/0.006

70.7 (212 × 2) 0.252/0.057 0.126/0.024 0.017/0.006

117.8 (353 × 2) 0.276/0.062 0.216/0.032 0.024/0.005

(μ/σ) 0.305/0.078 0.193/0.059 0.024/0.010

The left column indicates the task conditions, where W and D are expressed in mm. All other units are
standard

Table 3 Mean (μ) and standard
deviation (σ ) summary for τ ,
Dτ and σ0 for the G-dataset

# Instruction τ (μ/σ) Dτ (μ/σ) σ0 (μ/σ)

1—U-Fast 0.167/0.041 0.115/0.014 0.019/0.006

2—Fast 0.181/0.039 0.111/0.019 0.016/0.003

3—Balanced 0.199/0.046 0.103/0.011 0.019/0.005

4—Precise 0.228/0.063 0.103/0.009 0.021/0.005

5—Precise 0.261/0.081 0.096/0.009 0.020/0.006

(μ/σ) 0.208/0.065 0.106/0.014 0.020/0.005

All units are standard

Table 4 Regression of τ , Dτ

and σ0
τ (μ/σ) Dτ (μ/σ) σ0 (μ/σ)

W −0.667/0.526 −0.256/0.362 −0.012/0.111

D 0.343∗∗∗/0.067 0.765∗∗∗/0.046 0.079∗∗∗/0.015
W : D 0.217/1.617 −0.319/1.114 −0.092/0.345

Intercept 0.225∗∗∗/0.027 −0.014/0.014 0.003/0.004

r2m/r2c 0.14/0.79 0.78/0.82 0.28/0.33

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Table 5 One-way repeated
measures ANOVA for effect of
Instruction on τ , Dτ and σ0

Observation F(d fGG , d fGG) p η2g εGG

τ F(1.7, 25.48) = 32.4 pGG < 10−6 0.28 0.47

Dτ F(2.02, 30.33) = 5.8 pGG = 0.007 0.22 0.51

σ0 F(2.44, 36.67) = 2.48 pGG = 0.087 0.08 0.61

– Effect on τ : Grand mean for τ is τ = 0.208 s (min =
0.167 s for condition U-Fast (#1), max = 0.261 s for
condition U-Precise (#5). Results of the one-way RM
ANOVA with factor Instruction are given in Table 5,
showing a moderate effect (η2g = 0.28) on τ . Instruc-
tions to emphasize Accuracy increase the value of τ .

– Effect on Dτ : Grand mean for Dτ is Dτ = 0.106m
(min = 0.096m for condition U-Precise #5, max =
0.115m for condition U-Fast #1). Results of the one-
way RM ANOVA with factor Instruction are given in
Table 5, showing a moderate effect (η2g = 0.22) on Dτ .
Instructions to emphasize speed lead to larger values of
Dτ . Target distance D is represented in thick black line
for comparison on the bottom middle panel of Fig. 6.

– Effect on σ0: Grand mean for σ0 is σ0 = 0.02m (min =
0.016m for condition Fast #2, max = 0.021m for con-
dition Precise #4). Results of the one-way RM ANOVA
with factor Instruction are given in Table 5, showing a
very small effect (η2g = 0.08) on σ0. We also re-ran the
ANOVA by excluding the Fast condition (pGG = 0.44),
giving η2g close to null.

6.5 Discussion

Variations on τ can be considered negligible for precise
aimed movements. D being the primary factor that affects
τ , it is informative to compute the actual variations induced
by D on τ : For D = 0.212m, τ = 0.298ms, while for
D = 0.353m, τ = 0.346ms. The two levels of D thus induce
about 50ms variation in τ , which is less than the standard
deviation associated with any one condition. In comparison,
the average MT ranges from about 0.5 s to 1.5 s between
conditions. Hence, at the level of change induced in MT,
variations in τ are relatively negligible (5%). In other words,
the variations in τ account very little in explaining the varia-
tions in observedMT. This comparison is reflected in the top
left panel of Fig. 6, where variations in τ are hardly visible
at the scale of MT (black diamonds).

In the case of the effect of instruction,we similarly observe
that variations of τ are small compared to variations of total
MT, see bottom left panel of Fig. 6, even though the effect
of instruction is moderate on τ (η2g = 0.28). The difference
in average τ it at most about 100ms, i.e., about 10% of the

average totalmovement time. If one excludes the two extreme
conditions, under which humans rarely perform in daily life,
the difference in τ comes down to about 5% of the average
total movement time, similarly to the PD-dataset. This sug-
gests that τ can be considered constant, leading to simpler
results for a comparatively small loss in modeling power in
most practical cases.

The coefficients of determination computed for the mixed
effect model on τ (r2m = 0.14 and r2c = 0.79) indicate that
most of the variability of τ is actually due to differences
between participants. This observation implies that if one is
willing to predict τ , models linking τ to participant charac-
teristics need to be conceived. Conversely, if one if willing
to correlate participants characteristics to PVP parameters,
τ should be a good candidate (e.g., older participants can be
hypothesized to have, say, a larger τ ).
On Dτ and the isochrony of movements. The finding that
Dτ scales with D is not surprising: Assuming a constant
τ , an increase in Dτ translates to an increase in average
speed (Dτ /τ ). The observation that average speed increases
with D is in line with the so-called isochrony of movements
(Guiard 2009). The findings of the G-dataset show that Dτ

(and thus speed) increases with the instruction to emphasize
speed (from 0.35m/s for #5 U-precise to 0.7m/s for #1 U-
fast), in agreement with the experimental protocol.

In both datasets, the average value of Dτ had the same ratio
to D, about 70% (67% and 69% for two levels of D in the
PD-dataset, 71% on average for the G-dataset). Furthermore,
most of the variability of Dτ is captured by the fixed effect
model (r2m = 0.78), indicating low participant differences
in Dτ . It would thus be interesting to test in further work
whether this proportion of about 70% continues to hold for
larger variations of D, including very short and very long
movements.

7 Synthesis of the two phases: Recovering
Fitts’ law

A combination of the two phases provides a full description
of the variability of aimed movements. For consistency, it
should lead to both versions of Fitts’ law (1) and (2), when
applied in Fitts’ paradigm.We intend to show thatΩ and σ̂∞
as defined in Sect. 5 (see also see Fig. 4) can, (respectively),
be mapped to MT and σ of Fitts’ law.
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7.1 Synthesis of the two phases

Movement duration Ω̃ is obtained as the sum of the durations
of the two phases:

Ω̃ = τ + 1

C
log2

(
σ0

σ∞

)
. (25)

In Sect. 6, it was shown that σ0 � 0.079 D
σ∞ for the PD-dataset,

giving

Ω̃ = τ + 1

C
log2

(
0.079 D

σ∞

)
, (26)

and playing with constants, one has

Ω̃ = τ + 1

C
log2(0.079 × 4.133) + 1

C
log2

(
D

4.133σ∞

)

(27)

Ω̃ = τ ′ + 1

C
log2

(
D

4.133σ∞

)
(28)

giving an expression close to (2).
To obtain the so-called nominal Fitts’ law (2), we use the

Gaussianity of the Âi s and link the miss rate ε to the standard
deviation of endpoints σ∞ = [2√2erf−1(1−ε)]−1W , where
erf−1(x) is the inverseGaussianError Function, and plug this
in (25) to obtain Ω̆

Ω̆ = τ + 1

C
log2

(
0.079 × 2

√
2erf−1(1 − ε)

)
+ 1

C
log2

(
D

W

)

(29)

Ω̆ = τ ′′(ε) + 1

C
log2

(
D

W

)
(30)

Miss rates ε are usually small, and the standardized
methodology considers a constant 4% miss rate.10

The obtained equations for movement time (30) and (28)
are consistent with the nominal and effective Fitts’ law (1)
and (2), except for the “+1” term that is missing in formu-
lations for Ω̃ and Ω̆ . This term has been discussed several
times in the literature (Soukoreff andMacKenzie 2004;Hoff-
mann 2013) and is actually of little interest—the changes it
induces are sensible only for very low values of the ratio
D/W , where Fitts’ law is known to be a poor model (Cross-
man and Goodeve 1983), and where the estimation of C is
unreliable anyway.

10 In fact, the standard methodology advocated in ISO (2000) uses a
constant miss rate of 3.88% (see Soukoreff and MacKenzie 2004, but
see alsoGori et al. 2018 for a critique), inwhich case 2

√
2erf−1(1−ε) =

4.133.

Fig. 7 Fitts’ law evaluated for extracted values ofΩ . Left panel: Results
of Fitts’ law (2) fitted on data of the G-dataset. Right panel: Results of
Fitts’ law (1) fitted on data of the PD-dataset. The black dots are the
per-condition averages, as typically used for regression in most Fitts’
law studies (see Soukoreff and MacKenzie 2004)

We evaluated Fitts’ law on the set of extracted Ω and σ̂∞,
see Fig. 7. Parameters obtained this way should be compared
to those of Ω̃ and Ω̆ , evaluated from (28) and (30) for the
G-dataset as well as the PD-dataset.
PD-dataset. The overall miss rate is ε = 2.86%. Using the
average value of C = 6.3 (Table 2), one has

Ω̆ = 0.07 + 0.16 log2

(
D

W

)
. (31)

For comparison, the fitted Fitts’ law using the measured
Ω gives Ω = 0.2 + 0.15 ID, see the left panel of Fig. 7
(r2e = 0.81, r2 = 99).11

G-dataset. With the average value of C = 4.89, one has

Ω̃ = −0.12 + 0.20 log2

(
D

4.133σ∞

)
. (32)

For comparison, the fitted Fitts’ law usingΩ and σ̂∞ gives
Ω = 0.05+0.19 ID (r2 = 0.74), see the right panel of Fig. 7.

It thus appears that, while the intercept is a little bit under-
estimated, the estimation of the slope is in line with empirical
data. A more precise estimate for the intercept could be
obtained by using a more refined model for the first phase.
However, this would require many more empirical investi-
gations, and possibly a model of some sort, which is out of
the scope of this paper. A second point is that the spline does
not factor in the observation that around the maximum vari-
ance point, the profiles are smooth, which further induces a
bias in the intercept calculation. Furthermore, the most use-
ful parameter in Fitts’ law is the slope and not the intercept
(Zhai et al. 2004).

7.2 Traditional Fitts’ law evaluation

A comparison with Fitts’ law parameters (34) and (33)
obtained only from endpoints, with the traditional method-
ology confirms the consistency of our novel method.

11 r2e and r2 have been defined before in this paper.
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PD-Dataset. Grand mean for movement time across all con-
ditions was MT = 0.96s. Fitts’ law parameters (1) were
estimated via simple linear regression (r2e = 0.742, r2 =
0.989)

MT = 0.13 + 0.17 log2
(
1 + D

W

)
, (33)

where r2e is the coefficient of determination obtained from all
MTs, and r2 the coefficient of determination obtained after
averaging MT for each condition.12

G-Dataset.Grand mean for movement time across all condi-
tions was MT = 1.04s. Fitts’ law parameters were obtained
by simple linear regression (r2e = 0.69)13 on (2)

MT = 0.28 + 0.17 log2
(
1 + D

4.133σ

)
. (34)

As in the previous case, slopes are accurately pre-
dicted and intercepts are a bit underestimated, showing
the validity of our method compared to the traditional
approach.

8 Conclusion

The outcome of our theoretical model, Formula (19), is a
large improvement over the existing quantitative descrip-
tions of the speed-accuracy tradeoff. It relates accuracy to
speed throughout the movement and actually results from
a joint minimization of speed and accuracy (see Theo-
rem 1 and (11)). This is in contrast to, e.g., Fitts’ law that
can only describe endpoints, or optimal control models for
goal-directed, which often require the time horizon to be pre-
selected (Todorov 1998) (but see Harris and Wolpert 1998;
Guigon et al. 2008; Berret and Jean 2016; Tanaka et al. 2006)
and which function with various cost functions (Todorov
1998; Ning Qian et al. 2013; Flash and Hogan 1985) that
can be considered ad hoc. It also has a direct operational
implication: The variance decreases exponentially at a con-
stant rate C during the second phase, and this is what largely
predicts the movement time.

As discussed by Tanaka et al. (2006), two movement
expressed as the solutions of an optimization problem where
(1) the duration of movement is fixed and the variability is
minimized, or (2) the variability is fixed and the duration of

12 The r2 is included for comparison purposes with figures from the
literature—most Fitts’ law studies average data prior to regression and
usually only r2’s are given.
13 The averaged coefficient of determination r2 cannot be computed
here as there is a different level of IDe for each block, even between
blocks performed in the same condition.

movement is minimized are not a priori equivalent.14 The
minimization of mutual information that we propose in this
work, jointly optimizing for speed and accuracy, actually
makes that equivalence.

The functions f and g were not defined beforehand, but
left unspecified, to be determined as part of the optimiza-
tion problem. It turns out that the resulting optimal scheme
is linear, surprisingly simple and does not require memory
beyond the obvious fact that the limbmaintains its position in
the steady state. This finding provides support for the many
linear schemes found in the motor control literature.

As afinal observation, let us recall that originally Fitts’ law
was conceived via a vague analogy with Shannon’s capacity
formula (1948), since then deemed flawed (see, e.g., Gori
et al. 2018 for a brief history). The information-theoretic
framework appears naturally here to solve the aiming prob-
lem, upholding that information theory can be a useful tool to
model human performance (Chan and Childress 1990; Sheri-
dan and Ferrell 1974). In addition, the relevant signal never
actually needs to be transformed into the vague notion of
ID (Guiard and Olafsdottir 2011), measured in bits; mutual
information is here expressed as a tangible ratio of two spatial
variances.

A final advantage comes from the method of PVPs
described here. Segmenting movements correctly is noto-
riously hard (Teasdale et al. 1993). Specifically, determining
when a movement (or submovement) ends is particularly
difficult, since movements performed with high levels of
accuracy usually end very smoothly.15 The method of PVPs
dispenses the experimenter of the complicated task of pre-
cisely determining stopping times. It also handles trajectories
indifferently of the associated control, be it discrete contin-
uous or intermittent.

This work provides a new theoretical model for voluntary
movements, based on the study of positional variance pro-
files (PVPs), which takes into account: (a) The variability
of human produced movements; (b) a feedback mechanism,
essential for reliable aiming; and (c) intermittent control that
becomes continuous at the limit. Empirical evidence shows
that multi-joint goal-directed movements lead to unimodal
PVPs: A first variance-increasing phase of approximately
constant duration is followed by a variance-decreasing sec-
ond phase that lasts until an appropriate accuracy level is
reached. We established that:

14 Interestingly, these two partial optimizations correspond to the two
different empirical paradigmsof Schmidt andFitts, see, e.g., Plamondon
and Alimi (1997).
15 In fact, a movement never truly ends, as keeping the position station-
ary over time requires a control of some sort.
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1. The problem of aiming, during the second component,
can be reduced to that of transmitting information from
a source (position at the end of the first component) to a
destination (limb extremity, cursor) over a channel per-
turbed by Gaussian noise with the presence of a noiseless
feedback link.

2. Using an optimal scheme, in the sense that the transmit-
ted information fromsource to destination ismaximized at
each step,we showed that positional variance candecrease
at best exponentially during the second phase, as summa-
rized by (19), at a constant rate C .

Beyond the theoretical implications of this work, we
believe that our model can have a direct impact on the cur-
rent practices in the evaluation of pointing devices in HCI.
Indeed, this work suggests an alternative to Fitts’ law for the
evaluation of pointing devices, by:

1. instructing users to point exactly on a line as fast as they
can (i.e., the case when C is the most reliably estimated),

2. computing PVPs and estimating C .

C being constant across speed-accuracy instructions and lev-
els of D andW , there is no need for repetitive measurements
over several D and W conditions. This new method would
have several practical advantages over a traditional Fitts’ law
style evaluation.

– the model provides a description throughout most of the
trajectory, whereas Fitts’ law can only inform about end-
points, allowing finer analyses (e.g., rather than asking if
one group is faster than the other, one can for investigate
whether some group composed of a special population
displays a reduction in variance that is subexponential);

– the evaluation of pointing performance with PVPs does
not require a predefined width as in Fitts’ task; allowing
evaluation in new cases (e.g., for users with strong motor
impairment, a predefinedwidth is unfeasible Davies et al.
2014);

– there is no need to determine the (difficultly tractable)
stoppage time of a movement; this point may be particu-
larly useful with motor-impaired populations;

– since the slope can be estimated from a single experimen-
tal condition, using PVPs to estimate Fitts’ law parame-
ters saves the experimenter two factors (D andW ), saving
valuable time. More experimental and methodological
work needs to be conducted, however, to understand how
variability in the estimation of C can be reduced.

Further practical work should determinewhether thismethod
is indeed applicable, particularly whether the accuracy of the
estimation of C can be further enhanced.

It would also be interesting to observe the effect on
the kinematics if one modified some part of the scheme.
For example, what would happen were the feedback non-
ideal? Can this serve to model the movement of some motor
impaired patients, e.g., for pathologies which have afflicted
the peripheral nervous system?Similarly,whatwould happen
if there were no scaling αi ’s or if they were poorly “chosen”?
Could this serve to model tremors (e.g., with αi ’s much too
large)?

A Appendix

A.1 Segmentation algorithm

The algorithm works in the following steps (using the pre-
processed time series as presented in Sect. 4):

1. Identify time instants {t0,i }ni=1 when position crosses half
of the distance between start and target while maintaining
a positive speed, thereby identifying n movements16;

2. Compute the velocity profile (from the position profile),
normalize it with respect to its maximum value, to deter-
mine the start of eachmovement via thresholding (go back
in time from t0,i until the normalized velocity reaches, say,
1%);

3. Look for “dwell periods” after t0,i , i.e., intervals where
the absolute value of the normalized velocity is below 1%
and when the current position is above the one obtained
at t0,i . The latest instant of the last dwell period is the end
of the movement.17

A.2 � Box-plot for each participant

The Box plot for τ for each participant is displayed Fig. 8.

16 In the case of the reciprocal paradigm, this amounts to removing all
movements going right to left and keeping only movements going left
to right. The other half of movements can be retrieved by inverting the
trajectory and performing the exact same operations. In this paper, we
only keep movements going left to right, to eliminate potential differ-
ences between left to right and right to left movements which we are
not concerned with.
17 Right after this instant, either a newmovement begins (in a reciprocal
task), or the cursor ismoved back to the start position (in a discrete task).
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Fig. 8 τ (s) plotted for each participant of the PD-dataset

A.3 Mathematical proofs

In the proofs, we use the natural logarithm (log) rather than
its base-2 form (log2), for simplicity and consistency with
information-theoretic textbooks and is equivalent barring the
change of units from bits (log2) to nats (log) (Cover and
Thomas 2012).

Proof of Theorem 1 We use well-known ingredients from
information-theory (Cover andThomas 2012). For inequality
(10a):

I (A; Ân) = H(A) − H(A|Ân) (35)

= H(A) − H(A − Ân|Ân) (36)

≥ H(A) − H(A − Ân) (37)

≥ H(A) − 1

2
log

(
2πeE[(A − Ân)

2]
)

(38)

= 1

2
log

σ 2
0

Dn
, (39)

where (35) is by definition of mutual information; (36)
because of the conditioning by Ân ; (37) because conditioning
reduces entropy; (38) because theGaussian distributionmax-
imizes entropy under power constraints and by the entropy
formula for a Gaussian distribution; (39) by definition of the
distortion and the entropy formula for a Gaussian distribu-
tion.
For inequality (10b):

I (A; Ân) ≤ I (A;Yn) (40)

= H(Yn) − H(Yn|A) (41)

=
∑n

i=1

[
H(Yi |Yi−1) − H(Yi |Yi−1,A)

]
(42)

=
∑ [

H(Yi |Yi−1) − H(Yi |Xi )
]

(43)

≤
∑

[H(Yi ) − H(Zi )] (44)

≤
∑ [

1

2
log(2πe(Pi + N )) − 1

2
log(2πeN )

]

(45)

≤
∑n

i=1

[
1

2
log(1 + Pi/N )

]
≤ nC (46)

where (40) is by the data processing inequality (Cover and
Thomas 2012) applied the Markov chainA −→ Yi −→ g
(Yi ) = Âi ; (41) by definition; (42) by applying the chain
rule (Cover and Thomas 2012) to both terms; (43) by design
of the feedback scheme; (44) because conditioning reduces
entropy for the first term a,d by virtue of the AWGN model
for the second term; (45) because the Gaussian distribution
maximizes entropy and Xi and Zi are independent; (46) by
the concavity of the logarithm function. �
Proof of Lemma 1 The proof consists of finding the condi-
tions that make the inequalities in the proof of Theorem 1
equalities. Equality in (37) is equivalent to condition (4);
Equality in (38) is equivalent to A − Âi Gaussian; Equal-
ity in (40) is equivalent to H(A|Yi ) = H(A|Yi , g(Yi )) =
H(A|g(Yi )), so thatYi −→ g(Yi ) −→ A form a Markov
chain (Cover and Thomas 2012), leading to condition (5);
Equality in (44) is equivalent to condition (3); Equality in (45)
means the Yi ’s are Gaussian; Equality in (46) leads to condi-
tion (2) by concavity of the logarithm. Finally,Xi is Gaussian
as the result of the sum of two Gaussians Yi and Zi , and so
is Âi as the sum of A and A − Âi . This finally yields condi-
tion (1). �
Proof of Theorem 3 Westart by consideringXi = f(Yi−1,A),
which should be independent of Yi−1, ∀i by condition (4)
of Lemma 1. This implies the decorrelation

E[f(Yi−1,A)(Yi−1)] = 0, ∀i . (47)

Since Xi is a function of two Gaussians A and Yi−1, the
conditional expectationXi = E[Xi |A,Yi−1] is linear, hence
Xi = αi (A − f̃(Yi−1)). Plugging this in (47) makes for a
direct application of the orthogonality principle, showing that
f̃ = E[A|Yi−1] = g(Yi−1). �
Proof of Theorem 4 The goal of the proof is to evaluate
E[A|Yi−1]. We first use the operational formula from
the orthogonality principle E[A|Yi−1] = E[A(Yi−1)t ]
E[Yi−1(Yi−1)t ]−1Yi−1. Because the channel outputs are
independent [conditions (3) and (5) from Lemma 1], and
input powers are identical (conditions 2 from Lemma 1),
E[Yi−1(Yi−1)t ]−1 = (P + N )−1

I, where I is the identity
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matrix of size i − 1. Then, let Ai = Xi/αi be the unscaled
version of Xi and notice that A − Ai = g(Yi−1). As the
channel outputs are independent, we immediately have that
E[(A − Ai )Yi ] = 0, hence E[AYi ] = E[Ai Yi ].

Combining both results, we get

E[A|Yi−1] = (P + N )−1
E[A(Yi−1)t ]IYi−1 (48)

= (P + N )−1
i−1∑

j=1

E[AY j ]Y j (49)

= (P + N )−1
i−1∑

j=1

E[A jY j ]Y j (50)

=
i−1∑

j=1

E[A j |Y j ] (51)

where

E[Ai |Yi ] = (P + N )−1
E[AiYi ]Yi (52)

= (P + N )−1
E[Xi/αi · (Xi + Zi )]Yi (53)

= 1

αi

P

P + N
Yi (54)

�

Proof of Theorem 5 First, notice that we can write Di as

Di = E[(A − E[A|Yi ])2] (55)

= E[(A − (E[A|Yi−1] + E[A|Yi ]))2] (56)

= Di−1 − E[(E[A|Yi ])2] (57)

Using (54), one has

Di = Di−1 − 1

α2
i

P2

P + N
.

Finally, notice that Di−1 = E[(A − E[A|Yi−1])2] =
E[(Ai )

2] = P/α2
i , to see that

Di = Di−1

(
1 − P

P + N

)
= Di−1

1 + P/N

The closed form for the distortion is obtained by applying
this equation recursively, starting from D0 = E[A2] = σ 2

0 :

Di = σ 2
0

(1 + P/N )i
. (58)

Finally, we evaluate αi (with α0 =
√
P

σ0
):

αi =
√

P

Di
=

√
P

σ0
(1 + P/N )i/2 = α0(1 + P/N )i/2. (59)

�
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