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Abstract 

In any side-channel attack, it is desirable to exploit all the available leakage 
data to compute the distinguisher’s values. The profiling phase is essential 
to obtain an accurate leakage model, yet it may not be exhaustive. As a re-
sult, information theoretic distinguishers may come up on previously un-
seen data, a phenomenon yielding empty bins. A strict application of the 
maximum likelihood method yields a distinguisher that is not even sound. 
Ignoring empty bins reestablishes soundness, but seriously limits its per-
formance in terms of success rate. The purpose of this paper is to remedy 
this situation. In this research, we propose six different techniques to im-
prove the performance of information theoretic distinguishers. We study 
them thoroughly by applying them to timing attacks, both with synthetic and 
real leakages. Namely, we compare them in terms of success rate, and show 
that their performance depends on the amount of profiling, and can be ex-
plained by a bias-variance analysis. The result of our work is that there exist 
use-cases, especially when measurements are noisy, where our novel informa-
tion theoretic distinguishers (typically the soft-drop distinguisher) perform 
the best compared to known side-channel distinguishers, despite the empty 
bin situation. 
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1. Introduction 

The field of cryptography is currently very sensitive as it deals with data protec-
tion and safety. Thus, in order to assess the security of cryptographic devices, it 
is crucial to know and test their weaknesses. For example, the Advanced Encryp-
tion Standard (AES) [1] is renowned as trustworthy from a mathematical point 
of view—there is currently no realistic way to cryptanalyze the AES-128. How-
ever, it is possible to break the 128-bit secret key byte by byte using side-channel 
analysis (SCA). SCA exploits the physical fact that the secret key leaks some in-
formation out of the device boundary through various “side-channels” such as 
power consumption or timing—number of clock cycles to perform a given oper-
ation. These leakages, correctly analyzed by SCA, yield the secret key of a device. 

A good side-channel attack needs a good leakage model. Timing, for example, 
can be modeled easily when the implementation is unbalanced: Several suc-
cessful attacks [2] [3] [4] [5] exploit a timing leakage in the conditional ex-
tra-reductions of Montgomery modular multiplications. Some conditional oper-
ations can also happen in AES, e.g. in field operations, as for instance discussed 
in ([6], Alg. 1). 

Even when the code is balanced—a recommended secure coding prac-
tice—some residual unbalances in timing can result from the hardware which 
executes the code. Indeed, processors implement speed optimization mechan-
isms such as memory caching and out-of-order execution. As a consequence, it 
is not possible to predict with certainty how timing leaks information. The at-
tacker is then led to make predictions about the way the device leaks. 

In this paper, we consider side-channel attacks that are performed in two 
phases:  

1) a profiling phase where the attacker accumulates leakage from a device with 
a known secret key;  

2) an attacking phase where the attacker accumulates leakage from the device 
with an unknown secret key. 

This type of attack is known as a template attack [7]. It has been shown [7] to 
be very efficient under three conditions: 1) leakage samples are independent and 
identically distributed (i.i.d.); 2) the noise is additive white Gaussian; and 3) the 
secret key leaks byte by byte, which enables a divide-and-conquer approach. For 
some side-channels, such as power or electromagnetic radiations, condition 4) is 
met in practice. However, for timing attacks, the noise cannot be Gaussian as 
timing is discrete. Moreover, the noise source is non-additive in this case, since 
it arises from complex replacement policies in caches and processor-specific 
on-the-fly instructions reordering. 

The first proposed profiled timing attack is the seminal timing attack of 
Kocher [8]. The same methodology can be used on AES, as noted by Bernstein 
in 2005 [9]. Further works used the same method [10] [11] [12]. To our best 
knowledge, all these works consist in profiling moments, such as the average 
timing under a given plaintext and key. However, it is known [7] that the best 
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attacks should use maximum likelihood1. 
In this paper, as illustrated in Table 1, we focus on a profiling where the dis-

tribution is characterized and used as such, and is not reduced to its moments. 
The attacker computes distributions using histogram methods. These distribu-
tions are then used to recover the correct secret key. 

The discrete nature of timing leakage leads to an empty bin issue which ap-
pears when a data value in the attacking phase has never been seen during the 
profiling phase. Based on profiling only, this data should have a zero probability, 
which can be devastating for the attack. One known workaround is to use kernel 
distribution methods [13] to estimate probabilities since the smoothing can be 
such that no empty bins remain. This method can however be seen as a post-
processing in existing information. This alters therefore the data. In addition, 
this method has very large computational complexity and its performance highly 
depends on ad-hoc choices of several parameters such as kernel type and band-
width. Moreover, the estimation via the kernel method depends on other para-
meters such as the choice of the kernel and the size of the kernel. In our paper, 
we have decided to keep information as it comes as we focus on information 
theoretic distinguishers. 

1) Contributions: In this paper, we show that even when all abovementioned 
requirements (1), (2), and (3) are not present, timing attacks with incomplete 
profiling can be achieved successfully by adapting the maximum likelihood dis-
tinguisher and keeping the histogram method for probabilities estimation. We 
build six different distinguishers, which are all good answers to the empty bin 
issue. For some of them, new histograms are built, such that the empty bin issue 
totally disappears. Furthermore, we compare these distinguishers and show 
which one of them is the best in every specific context. We underline that, in 
practice, for a moderate profiling with 256,000 offline measurements, the soft 
drop and the combined offline-online profiling approaches are clearly the two 
best strategies: the AES key is typically extracted with only about 2000 online 
measurements, i.e., a complete break in about 0.2 ms. Finally, we provide some 
theoretical results proving how optimal some of the distinguishers can be. 
 
Table 1. State-of-the-art on profiled timing attacks. 

Profiling method Reference articles 

Moments [9] [10] [11] [12] 

Distributions Our paper (Caution about empty bins) 

 

 

1We will explain in Subsec. 6.2 that in practice, maximum likelihood might not always perform bet-
ter than moment-based distinguishers in ideal situations (no noise), because the learning stage for 
probability mass functions demands too many traces; besides an imperfect profiling is very detri-
mental to maximum likelihood distinguishers, and affects less the moment-based distinguishers. 
However, in non-ideal situations, e.g., in the presence of random delay kind of noise, maximum li-
kelihood remains robust, where the model-based distinguishers collapse (since they are val-
ue-based).  
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2) Organization: The paper is organized according to the following structure. 
Section 2 provides mathematical tools to understand distinguishers and nota-
tions. Section 3 introduces new distinguishers that are suitable in the context of 
empty bins. Section 4 provides simulations for these distinguishers and Section 5 
investigates real attacks on an ARM processor. Interestingly, all proposed dis-
tinguishers work, albeit with very noticeably different performances. In Section 6, 
some interpolations of the obtained results in the presence of external measure-
ment noise are derived. Section 7 concludes. 

2. Mathematical Derivations 
2.1. Notations and Assumptions 

We consider a side-channel attack with a profiling stage and use the following 
notations:  
 During the profiling phase, a vector t̂  of q̂  text bytes is sent and the pro-

filer garners a vector of x̂  measurements;  
 During the attacking phase, a vector t  of q  text bytes is sent and the at-

tacker gathers a vector x  of leakage measurements—also customarily 
known as traces;  

 We use simplified notations t , q and x  when discussing either profiling 
data or attacking data;  

 The probability of a vector x  with i.i.d. components ix  is denoted by 
( ) ( )ii x=∏x  ;  

 We define the following sets:  
1) ̂ , ̂ ,   and   are the sets of possible values of components x̂ , t̂ , 

x  and t , respectively;  
2) ˆ= 

    and ˆ= 

   ;  
3)   is the set of all possible values for the key k.  

 k and t are made of n bits (in particular, they are “bytes” when 8n = ).  
Here all sample components of one vector are i.i.d. and belong to some dis-

crete set. Typically,   is a finite subset of   and   is equal to { }0,1 n . 
In the profiling stage, the secret key *k̂  is known and variable. In the attack-

ing phase, the secret key *k  is unknown but fixed. Further, we assume that ix  
depends only on it  and *k  for all 1,2, ,i q= 

, in the form:  

( ) ( )* 1, 2, ,i ix t k i qψ= ⊕ =                    (1) 

where ⊕  is the XOR (exclusive or) operator and ψ  is an unknown function 
which may contain noise, masking and other hidden parameters2. 

Furthermore, in this paper, we use of the notation ,x tn  to denote the number 
of occurrences of ( ),x t . Thus we can write  

ˆ ˆ
ˆ ˆ, ˆ ,1 1

ˆ ˆ1l , 1l ,
ii i

q q
x t x x xx x t ti i

n n == == =
= =∑ ∑                 (2) 

 

 

2The AES meets the secret and the text byte through a xor (SubBytes) executed in a fixed number of 
clock cycles. However, the rest of the AES consists in table look-ups and other miscellaneous opera-
tions which are difficult to model and need different amounts of time to execute, hence the use of 
unknown function ψ . 
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, ,1 1
1l , 1l .

ii i

q q
x t x x xx x t ti i

n n == == =
= =∑ ∑ 






                  (3) 

where 1l 1A =  if A is true, =0 otherwise. 
Definition 1 (Probabilities). We define three3 different types of probabilities 

 , ̂  and  .   is the actual (real) underlying probability distribution, but it 
is generally not available and has to be estimated by either ̂  or  .  
 ̂  is computed using the profiling data: 

( )


ˆ
,

ˆˆ ,
1

ˆ1ˆ , 1l ,
ˆ i i

q
x t

x x t t
i

n
x t

q q= =
=

= =∑                    (4) 

( )


ˆ

ˆ
1

ˆ1ˆ 1l .
ˆ i

q
x

x x
i

n
x

q q=
=

= =∑                       (5) 

   is computed using the attacking data: 

( ) ,
,

1

1, 1l ,
i i

q
x t

x x t t
i

n
x t

q q= =
=

= =∑










 

                    (6) 

( )
1

1 1l .
i

q
x

x x
i

n
x

q q=
=

= =∑








 

                      (7) 

In practice, as the secret key leaks through the function via a XOR (Equation 
(1)), we shall often consider ( ),x t k⊕ . 

For a fair comparison between distinguishers, Standaert et al. [14] have put 
forward the success rate as a measure of efficiency of a given distinguisher.  

Definition 2 (Success Rate). The success rate SR  is probability, averaged 
over all possible keys, of obtaining the correct key.  

( )*
*

2 1
*

0

1SR ,
2

n

n k
k

k k
−

=

= =∑                       (8) 

where k  is the key guess obtained by the distinguisher during the attack.  
It has been proven ([15], Theorem 1, Equation (3)]) that for equiprobable 

keys the optimal distinguisher maximizes likelihood:  

( ) ( )Optimal , arg max | .
k

k
∈

= ⊕x t x t 

 


                 (9) 

In Equation (9), we use the “arg max” operator, which is defined as follows: let 
a function :f →  , then  

( ) ( ) ( ){ }arg max such that , .
k

f k k k f k f k
∈

′ ′= ∈ ∀ ∈ ≥


   

In real life, however, the attacker does not know the leakage model perfectly 
and thus ( )| k⊕x t  is not available. In order to get an estimation of  , we 
use the profiling data to build ̂  defined in Equation (4). This is the classical 
template attack. The distinguisher becomes  

( ) ( )Template
ˆ, arg max | .

k
k

∈
= ⊕x t x t 

 


                 (10) 

This distinguisher is no longer optimal as it does not use the real distribution 

 

 

3For the sake of evading the empty bin issue, we will also introduce yet another notation “
α ” in 

Subsection 3.1 (Equation (19)).  
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 . However, if profiling tends to exhaustivity, ̂  and   will be very close 
since by the law of large numbers,  

( ) ( )ˆ
ˆ, , , .qx t x t x t→∞∀ →                  (11) 

Moreover, we notice that non-optimality is not the only issue with template 
attacks in the context of discrete leakage. The attacker also faces the problem 
that the attack is ill-formed. In practice, it is convenient to use the logarithm 

( )ˆarg max log |
k

k
∈

⊕x t


. Notice that the basis of the logarithm is arbitrary, as all 
key hypotheses scale alike when switching bases. In fact, since the samples are 
i.i.d., we have  

( ) ( )
1

| |
q

i i
i

k x t k
=

⊕ = ⊕∏x t





                   (12) 

and 

( )


( )
1

ˆ ˆ| | .
q

i i
i

k x t k
=

⊕ = ⊕∏x t 

                  (13) 

Therefore, the attacker computes  

( ) ( )Template
1

ˆ, arg max log |
q

i ik i
x t k

∈ =

= ⊕∑x t





 


            (14) 

where the logarithm is used to transform products into sums for a more relia-
ble computation. However, we would like to avoid empty bins for which 
( )ˆ | 0i ix t k⊕ =

 ; otherwise, Equation (14) would not be well defined. 

2.2. About Empty Bins 

The empty bin issue appears when there exists { }1, ,i q∈ 
  and k ∈  such 

that ( )| 0i ix t k⊕ >



  and ( )ˆ | 0i ix t k⊕ =

 . This may even happen for the 
correct key hypothesis, leading to a wrong key guess during the attack.  

Figure 1 and Figure 2 show how empty bins can look like after a profiling 
phase4. We notice that some parts of the histograms are left blank, some of them 
indicated by arrows noticed as “holes” in the figures. These timing values x are 
possible “empty bins”. When such a hole is called during the attack, meaning 
that the attacker gets a trace with corresponding with a hole, we call this an 
empty bin. Notice that no additional “binning” is needed as in the case of conti-
nuous distributions. The figures also show that the noise is not Gaussian as can 
be observed from the shape of the distribution. 

The shortcoming of empty bins can be seen when evaluating the likelihood. 
The attacker encounters a zero probability, which makes the product vanish for 
the probability of a given key guess, even if many traces are used. As we wrote 
earlier, the empty bin may appear even for the correct key guess in template at-
tacks, leading to a null success rate if not taken into account and not well treated. 
As an example, the number of empty bins for the practical example presented in 
Section 5 for the correct key guess is around 500 for a poor learning phase  

 

 

4Figures obtained with the STM Discovery Board presented in Section 5. The unit of x is the “clock 
cycle”. 
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Figure 1. Empirical probability ( )ˆ |x t k⊕  for 0t =  and 67k =  and ˆ 2560000q = . 
 

 

Figure 2. Empirical probability ( )ˆ |x t k⊕  for 0t =  and 149k =  and ˆ 2560000q = . 

 

(“poor” in that the amount of training data is limited) and around 50 for a good 
learning phase. This multiplication by zero is not inherent to the attack; it is ra-
ther a profiling artifact. In fact, with more profiling traces, the empty bin would 
likely be populated. Thus, the empty bin issue is a mere side-effect of insufficient 
profiling, which results in an attack failure if it is encountered in the computa-
tion of the likelihood of the correct key. 

3. Distinguishers Which Tolerate Empty Bins 
3.1. Building Distributions or Models 

Before presenting the novel distinguishers in Subsection 3.2, we need to define 
yet another type of distribution known as a Dirichlet a posteriori in a Bayesian 
approach. 

The Dirichlet A Posteriori: In order to avoid zero probabilities, we use a 
method based on Dirichlet Prior calculations ([16], Section 1). This method 
leads to a new distribution denoted by α , where 0α >  is a user-defined pa-
rameter whose value (typically = 1) will be discussed next. 
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Let   be the set of possible values for x and   be the set of possible values 
for t. For any x, we set ( ), ,x tp x t=   their joint probability and ( ), ,x t x t

p=p . 
Prior to obtaining any trace, ,x tp  is completely unknown and we consider a 
Bayesian approach to estimate ,x tp . 

1) We consider the following a priori: without further information, we sup-
pose that for all ,x t ,  

( ) ,

,,

, ,x t

x tx t

x tα

α
α ′ ′′ ′

=
∑

  

where , 0x tα >  is an a priori parameter. To simplify, we may choose ,x tα α=  
constant for all ,x t . Let us suppose that p  follows a Dirichlet (prior) distribu-
tion, whose probability density function is  

( )
( )

( )
,,, 1

,
,,,

,x tx tx t
x t

x tx tx t

f pα
α

α
−

Γ
=

Γ

∑
∏∏

p                   (15) 

where Γ  is the Gamma function defined for 0x >  as 

( ) 1
0

e d .x tx t t
+∞ − −Γ = ∫                        (16) 

The Dirichlet distribution can also be written as 

( ) , 1
,

,
,x t

x t
x t

f pα
α

−= ∏p                        (17) 

where 
( )

( )
,,

,,

x tx t

x tx t
α

α

α

Γ
=

Γ

∑
∏

  is a normalization factor. Notice that the prior dis-

tribution is uniform when , 1x tα α= =  for all ,x t . 

2) Then suppose we know x̂ , x̂ , t̂  and t . We can now compute the a 
posteriori probability  

( ) ( )ˆ ˆˆ ˆ, | , , , , , | , , , d .x t f x t p= ∫x x t t p x x t t 

   

By Bayes’ rule,  

( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ, , | , , , , | , , , , | , , , .f x t x t f=p x x t t p x x t t p x x t t  

    

As components ix  and it  are i.i.d., we can write 
( ) ( ) ( ) ( ),

ˆ ˆ ˆˆ ˆ ˆ, , | , , , , | | , , , , | , , ,x tf x t x t f t p f= ⋅ = ⋅p x x t t p p x x t t p x x t t  

   . 
Again by Bayes’ rule, 

( ) ( ) ( )
( )

( )

( ) ( )

( )

, ,

, , ,

ˆ
,,

ˆ 1
,

,

ˆˆ , , , |
ˆˆ| , , ,

ˆˆ , , ,

ˆˆ , , ,

.
ˆˆ , , ,

x t x t

x t x t x t

n n k
x tx t

n n
x t

x t

f
f

p
f

p αα

′ ′ ′ ′

′ ′ ′ ′ ′ ′

+
′ ′′ ′∈ ×

+ + −
′ ′

′ ′∈ ×

=

=

=

∏

∏

x x t t p p
p x x t t

x x t t

p
x x t t

x x t t

































 

 



 

We recognize another Dirichlet distribution with parameters  
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, , ,ˆx t x t x tn n α′ ′ ′ ′ ′ ′+ + . Let 
( )

( )
, , ,,

, , ,,

x t x t x tx t

x t x t x tx t

n

nα

α α

α α
′ ′ ′ ′ ′ ′′ ′

′
′ ′ ′ ′

Γ + +
=

Γ + +

∑
∏





  be the new normaliza-

tion constant for this distribution. We, finally, obtain  

( ) , , ,ˆ 1
, ,

,

ˆˆ, , | , , , .x t x t x tn n
x t x t

x t
f x t p p α

α
′ ′ ′ ′ ′ ′+ + −

′ ′ ′
′ ′∈ ×

= ⋅ ∏p x x t t 





 

  

Therefore, 

( ) , , ,ˆ 1
, ,

,

ˆˆ, | , , , d .x t x t x tn n
x t x t

x t
x t p p pα

α
′ ′ ′ ′ ′ ′+ + −

′ ′ ′
′ ′∈ ×

= ⋅ ∏∫x x t t 




 

  

which is known as the Dirichlet a posteriori. 
3) The integral can be easily expressed in terms of the Gamma function:  

( )
( )

( )
( )

( )
, , , , , , ,, ,

, , ,, , , , ,,

ˆˆ, | , , ,

ˆ ˆ

ˆ ˆ
x t x t x t x t x t x t x tx t x t

x t x t x tx t x t x t x t x tx t

x t

n n n n

n n n n

α α δ

α α δ

′ ′ ′ ′ ′ ′ ′ ′′ ′ ′ ′

′ ′ ′ ′′ ′ ′ ′ ′ ′′ ′

Γ + + Γ + + +
= ×

Γ + + Γ + + +

∑ ∏
∏ ∑

x x t t











 

which simplifies to  

( ) , , ,

,,

ˆˆˆ, | , , , .
ˆ

x t x t x t

x tx t

n n
x t

q q
α
α ′ ′′ ′

+ +
=

+ +∑
x x t t









  

This new distribution will now be noted:  

( ) ( ) , , ,

,,

ˆˆˆ, , | , , , .
ˆ

x t x t x t

x tx t

n n
x t x t

q qα

α
α ′ ′′ ′

+ +
= =

+ +∑
x x t t









            (18) 

It is important to notice that for all ( ),x t ∈ ×  , one has ( ), 0x tα > . In 
other words, α  has no empty bin issue. 

4) With ( ),x tα  we can calculate  

( ) ( ) , , ,

,,

,

,,

ˆ
,

ˆ

ˆ ˆ
,

ˆ ˆ

x t x t x t

x x x tx t

t t x tt t t t

x t xx t x

n n
t x t

q q

n n n n
q q q q

α α

α
α

α α
α α

′ ′′ ′

′ ′ ′′ ′ ′

+ +
= =

+ +

+ + + +
= =

+ + + +

∑ ∑ ∑
∑

∑ ∑









 

 

 

where ,t x txα α= ∑ . The resulting conditional probability5 is  

( ) ( )
( )

, , ,ˆ,
| .

ˆ
x t x t x t

t t t

n nx t
x t

t n n
α

α
α

α
α

+ +
= =

+ +









               (19) 

The Learned MIA Model: When q̂  is small, the model cannot be profiled 
accurately, and ̂  is a bad approximation of  . However, these profiled values 
x  and t  can still be useful, yet they require a more robust distinguisher. 

Distinguishers that compute models using profiling have already been pro-
posed. For example, [17] [18] compute a correlation on moments. However, 
correlations analysis may be sensitive to model errors [19]. Mutual Information 
Analysis (MIA) yields a distinguisher that can be robust when models are not 

 

 

5We should normally have used the notation ˆ
α

  instead of 
α , but we found this too heavy and 

confusing; hence the use of 
α . 
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perfectly known ([19], Section 4), but it requires at least a vague estimation of 
the leakage model. 

Since our function ψ  is unknown, we can create a first-order model ψ̂  with 
the profiled data as  

( ) ( )*

ˆs.t.

1ˆˆ ˆStep .
i

i
i t tt

t k x t
n

ψ
=

 
⊕ = ∀ ∈ 

 
∑               (20) 

The Step function is a function that ensures the non-injectivity of the model. 
The simplest way to define Step is the following:  

( ) ( )Step
d x

x x
d
⋅  = ∈  

where 0d > —the greater d, the smaller the step size. This parameter d has to be 
small enough in order to make the model non-injective ([20], Section 4.1). In 
our case, we choose, for all our experiments, 1d = . With such a model, it is 
possible to compute a MIA, which successfully distinguishes the correct key. 

3.2. Robust Distinguishers 

In this subsection, we present six distinguishers that tackle null probabilities. 
Some of these solutions seem quite obvious while others are deduced from the 
notions presented in the preceding Subsection 3.1. 

① Hard Drop Distinguisher: The first naive method consists in removing 
all the traces which, for any key guess, have a zero probability. 

Definition 3 (Hard Drop Distinguisher). The hard drop distinguisher is de-
fined as followed:  

( ) ( )Hard
ˆ, arg max log | ,i ik i

x t k
∈ ∈

= ⊕∑x t 

 
 

             (21) 

where set   is defined as 

{ } ( ){ }ˆ1, , | , | 0 .i ii q k x t k= ∈ ∀ ∈ ⊕ >

 
             (22) 

Recall that ̂ , defined in Equation (4), is an empirical histogram estimated 
on profiled data x̂  (along with corresponding texts t̂ ). 

The Hard Drop Distinguisher, as the name indicates, drops some data. In very 
noisy cases, it may even drop most of the data. 

② Soft Drop Distinguisher: The second possibility is to drop values only for 
some keys. However, it has to be done carefully because dropping a value in a 
product implicitly implies a probability value of one. For this reason, instead of 
removing the trace, we replace the zero probability by a constant which is small-
er than the smallest probability. 

Definition 4 (Soft Drop Distinguisher). We define the Soft Drop Distinguish-
er as  

( )
( )

( )
( )

Soft
ˆ ˆs.t. | 0 s.t. | , 0

ˆ, arg max log | log ,
i i i i

i ik i x t k i x t k

x t k γ
∈

⊕ > =

= ⊕ +∑ ∑x t
 

 




 

 



  (23) 

where γ ∗
+∈  is a constant such that { }, 1, ,i k q∀ ∈ ×  , ( )ˆ |i ix t kγ ≤ ⊕ . 

This means that we penalize data with zero probability. The smaller γ , the 
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harder the penalty.  
The choice of parameter γ  is thus important in order to get a fair result for 

the distinguisher. If we choose 1
q̂

γ ≥ , the penalty may be greater than the smal-

lest strictly positive probability. This case would mean that the penalty is  
less important than some licit probabilities. On the other hand, choosing γ   

smaller than 1
q̂

 means a very strong penalty. In this case, the limit when  

0γ →  is a distinguisher for which only the number of empty bins is really mat-
ters. This leads to the Empty Bin Distinguisher presented next in Definition 8.  

③ The Dirichlet Prior Distinguisher: The Dirichlet Prior Distinguisher uses 
the Dirichlet a posteriori distributions presented in Subsection 3.1. 

Definition 5 (The Dirichlet Distinguisher). We define the Dirichlet Distin-
guisher as:  

( ) ( )Dirichlet , arg max | .
k

kα∈
= ⊕x t x t 

 


               (24) 

Remark 1. As can be seen in the construction of the Dirichlet a posteriori, the 
Dirichlet distinguisher is α -dependent. It is important to evaluate the influence 
of α  over the success rate. In practice, 1α =  seems a natural choice since the 
corresponding prior is uniform, which minimizes the impact of the a priori. In 
contrast, another value of α  like 1/2 can be interpreted as an a priori bin count. 
We may also consider scenarios where 0α ≈  to have the least possible impact 
to the modified values of the histogram.  

④ Offline-Online Profiling: The Dirichlet Prior Distinguisher is set by α . 
As we discussed in Remark 1, we can choose any α  so long as it is strictly posi-
tive (the Dirichlet distribution would not be defined if 0α = ). However, it is 
interesting to study its asymptotical behavior as α  vanishes:  

( ) , ,

0

ˆ
lim | .

ˆ
x t x t

t t

n n
x t

n nαα→

+
=

+





  

This distribution can be denoted as ( )0 |x t  and resembles a profiling stage 
that would start offline and continue online. 

Definition 6 (Offline-Online Profiling). The Offline-Online Profiled (OOP) 
distinguisher is defined as: 

( ) ( )OOP 0, arg max |
k

k
∈

= ⊕x t x t 

 


                (25) 

The OOP distinguisher seems easier than the Dirichlet prior distinguisher 
since α  is no longer in use. Of course, it also solves the empty bin issue since 
for all ( ),x t ∈ ×  , one has ( )0 , 0x t > . 

⑤ Learned MIA Distinguisher: The Learned MIA Distinguisher is con-
structed with the profiled model function ψ̂  presented in Equation (20) of 
Subsection 3.1.  

Definition 7 (The Learned MIA Distinguisher)  
The Learned MIA Distinguisher is defined as:  
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( )( )MIA_Learned ˆarg max ; ,
k

I kψ
∈

= ⊕x t






               (26) 

where I  is the empirical mutual information [20].  
⑥ Empty Bin Distinguisher: The empty bin Distinguisher is yet another in-

tuitive solution based on the idea that instead of avoiding null probabilities, we 
may take only these into account. It is the key guess with the least number of 
null probabilities that “should” be the correct key. 

Definition 8. The Empty Bin Distinguisher is defined as:  

( ) ( )ˆEmpty_Bin | 0
1

, arg max 1l .
i i

q

x t kk i
⊕ =∈ =

= ∑x t











              (27) 

The Empty Bin Distinguisher assumed that missing data contain more infor-
mation than actual (measured) data. More precisely, a drop should normally not 
happen unless the guessed key is wrong; hence, the key guess with the least 
drops should be the correct key. Obviously, this distinguisher is not effective 
anymore if no drop occurs for at least two key guesses. 

Further Remarks: All these distinguishers use a profiling phase. Before com-
paring them, we would like to make a priori discussion about their respective ef-
ficiency. As the Hard Drop Distinguisher does not take into account some data, 
we may suppose that it will be the one with the least success rate for a given 
number of traces. The OOP Distinguisher takes into account two types of data: 
profiling and attacking data. Therefore, it should be more efficient than other 
distinguishers. Lastly, we build the Learned MIA Distinguisher in order to pre-
vent model errors, such as inaccurate profiling. In that case, we suppose that 
Learned MIA should work better with few data during the profiling stage. 

4. Simulated Results 

In this section, we present the results obtained on a simulated model. With these 
results, we can give a comparison of the proposed distinguishers. 

4.1. Presentation of the Simulated Model 

The simulated model is built as follows:  

( )( ) ( ) ( )* * *SubBytes ,i w i i i i i ix H t k u t k u y k uφ= ⊕ + = ⊕ + = +     (28) 

where iu  is a discrete uniformly distributed noise ( ),iu σ σ− , SubBytes is 
the AES substitution box function, and wH  is the Hamming weight of a byte. 

This very simple leakage is used to compare distinguishers in the case the at-
tacker has no information about the model.  

Remark 2 (Optimal Distinguisher). The optimal distinguisher (9) can be easi-
ly calculated if the model is perfectly known, as  

( ) ( )( )( )Optimal
1

, arg max SubBytes ,
q

i w ik i
x H t kσδ∈ =

= − ⊕∏x t





 


      (29) 

where σδ  is defined such that ( ) 1xσδ =  if x σ≤  and 0 otherwise. In Fig-
ures 3-5, we include the optimal distinguisher for reference, to show how far the 
other curves are from the fundamental limit of performance. 

https://doi.org/10.4236/jis.2021.121001


E. De Chérisey et al. 
 

 

DOI: 10.4236/jis.2021.121001 13 Journal of Information Security 
 

 

Figure 3. SR for ˆ 320q =  and 24σ =  on synthetic measurements. 
 

 

Figure 4. SR for ˆ 1600q =  and 24σ =  on synthetic measurements. 
 

 

Figure 5. SR for ˆ 4000q =  and 24σ =  on synthetic measurements. 
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By construction, the leakage simulation (28) generates some traces with zero 
probability, but notice that there is no i such that ( )| , 0i ix t k =  for the correct 
key guess. This academic example is useful to compare the distinguishers de-
fined in Section 3. 

4.2. Attack Results 

We computed the success rates (8) of the various attacks (namely attacks ①, ②, 
④, ⑤ and ⑥—attack ③ being less efficient than its limit ④) for 24σ = , 

4n =  bits, and q̂  ranging from small to high values. 
The only difference between Figures 3-5, is that we have increased the num-

ber of data during the profiling stage. When profiling is bad (Figure 3), the best 
distinguisher is the Offline-Online profiling distinguisher, while the Learned 
MIA Distinguisher is not as good as was expected. When ˆ 1600q =  (Figure 4), 
all distinguishers improve. Finally, when profiling is good ( ˆ 4000q = , Figure 5), 
the best distinguisher is now the Empty Bin distinguisher, followed by the Soft 
Drop distinguisher and the Offline-Online profiling. 

Remark 3. In this very special case, we can show that the Empty Bin Distin-
guisher can accurately approximate the Optimal Distinguisher. Indeed, the ac-
tual probability is such that for all ( ),x t ∈ ×  ,  

( )( ) ( )1 if ,
| 2 1

0 otherwise,

x t k
x y k

σ φ σ
σ

 − ≤ − ⊕ ≤= +


          (30) 

which is constant if x is in the appropriate interval. For the Empty Bin Distin-
guisher,  

( )( ) ( )( ) 1ˆ | 0 |
2 1

x y k x y k
σ

> ⇒ =
+

   

due to the leakage model. Therefore, we can predict that at least  

( ) ( )
1ˆ 2 1 3920

min
q

y
σ= + =


  profiling traces are needed to make sure that  

the Empty Bin Distinguisher becomes as efficient as the Optimal Distinguisher. 
As profiling consists in random draws with replacement, the Empty_Bin  distin-
guisher is found very close to the Optimal  distinguisher with ˆ 4000q =  profil-
ing traces.  

5. Results on Real Devices 

We have chosen to carry out a timing attack on an STM32F4 discovery board 
[21]. One interesting aspect is that we do not make any assumption on the mod-
el. In real life, the leakage model happens to be much more complex than the 
one employed in simulations (e.g., Equation (28)). As will be seen, in practice 
empty bins appear even for the correct key guess and for a “good” profiling 
phase. This observation differs from the ideal case of our simulations carried out 
in the preceding Section 4. 
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5.1. The ARM Processor 

We used a STM32F4 discovery board by STMicroelectronics6. It contains an 
STM32F407VGT6 microcontroller, which has an ARM cortex-M4 MCU with 1 
MB flash memory for instructions and data, and a 192 KB Random Access 
Memory (RAM). The RAM is divided into three sections: one of 16 KB, another 
one of 112 KB, and the last one consisting of 64 KB Core Coupled Memory 
(CCM). The CCM has a zero flash wait state and is often used to store critical 
data such as data from the operating system. Since the RAM is divided into three 
regions, the users are unable to make use of the 192 KB RAM as a continuous 
memory block. 

STM32F4 microcontrollers contain a proprietary prefetch module (Adaptive 
Real-Time memory accelerator - ART accelerator). ART accelerator contains an 
instruction cache which has 64 lines and a data cache which contains 8 lines. The 
line size of both instruction cache and data cache is 128-bits. The precise details 
about ART accelerator (cache replacement policy and cache associativity) are 
not mentioned as the module is an intellectual property of STMicroelectronics  

The STM32F407VGT6 microcontroller does not have either a CPU cycle 
counter or a performance register to measure a cycle accurate time. However, 
the Data Watchpoint and Trace (DWT) unit has a cycle accurate 32 bit counter 
(DWT_CYCCNT register), which can be used for measuring the duration of 
critical operations. When processor runs at 168 MHz, the DWT_CYCCNT reg-
ister will overflow at every 25.5 seconds providing enough time window to 
measure the encryption/decryption time for an adversary to measure the elapsed 
time without timer overflowing. In practice, we collected timing data repeatedly 
within the ARM, and then dump it as large data buffers sporadically. This mod-
us operandi allowed us to reach about 10,000 measurements per second. 

5.2. Weaknesses—Non Constant AES Time 

We use OpenSSL (version 1.0.2) AES as the cryptographic library, where the 
SubBytes function is implemented with large 1 KB T-boxes (see [22], Section 
5.2.1, page 18). Interestingly, the OpenSSL code (copied in Appendix A) does 
not contain any conditional statement, hence can be considered constant-time 
by a code review. However, once programmed on the STM32F4 processor, one 
notices that the execution duration depends on the inputs. The AES timing ac-
quisition is illustrated in Figure 6. Before each encryption, we reset DWT_CYCCNT 
register. This yields the exact timing of the AES execution (which is about 2600 
clock cycles on average—recall Figure 1 and Figure 2). In a real attack, an at-
tacker would measure a noisy timing using an external “chronometer”. However, 
our attack models the best case for an attacker; hence, bounds the security of the 
analyzed implementation. In particular, we underline that our measurement me-
thodology is fully non invasive: the timing measurement is performed in parallel 

 

 

6We emphasize that the attacks we present are not due to a flaw in ARM or STMicroelectronics pro-
cessors. Instead, as we will discuss next, the CCM feature of STM32F4 processors allows to protect 
the implementation against timing attacks by granting a constant execution time.  
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Figure 6. Measuring elapsed time for AES encryption. 
 
to the AES computation, thereby keeping the victim circuit run at full speed, 
without interference.  

Time deviations for different configurations of Instruction Cache (IC) and 
Data Cache (DC) are shown in Figure 7. We observe a huge time difference 
when data cache is turned Off/On. When DC is turned off, there is no timing 
leakage as AES is constant time. Yet, when DC is turned on, AES is not time 
constant. This non-constant time on AES leads to the following conclusions: 
 This is a weakness for the security of the processor as two different plaintexts 

lead to two different time clocks to compute AES.  
 Following Figure 7, it seems the enabling or not Instruction Cache, does not 

modify the behaviour of the leakages.  
 Data presented Figure 7 are obtained using a fixed key and varying one byte 

of the plaintext. 
Figure 7 instructs us that caches shall be disabled to reduce the leakage in 

timing. However, we emphasize that such decision has a strongly negative im-
pact on the AES performance: with DC off, the overall AES execution time is 
about 27% longer. 

Therefore, in a realistic context, we shall assume that both DC and IC are 
enabled, which we will do in the sequel (see next Section 6 for some indications 
of how well attacks perform when caches are disabled).  

5.3. Characterizing the Leakages for Data Cache on 

As seen earlier, when the Data Cache is enabled, the AES computation is not 
time constant. This can be due to the T-boxes called during the computation. 
Indeed, calling a value in a table also stores this in the Data Cache. If this value is 
called within the eight next calls, the load will be faster. In Appendix A, we have 
copied the OpenSSL source code for the AES encryption with a 128 bits key. In 
this code, we notice that there are 160 calls to the T-boxes. 

In order to find a model of the leakage, we inferred the cache policy of 
STM32F4 ARM micro-controllers based on a thorough study of their timing re-
sponse to some adaptively constructed requests. We discovered that it is actually 
a FIFO (First-In, First Out) cache. If one requests a particular table lookup 
within last eight cache accesses, then the access is a hit (if not, it is a miss). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Time deviations for different configurations of Instruction Cache (IC) and Data 
Cache (DC). (a) IC ON and DC ON; (b) IC OFF and DC ON; (c) IC ON and DC OFF; 
(d) IC OFF and DC OFF. 
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In case of a hit, the time to access such register is 5 or 6 clock cycles faster 
than a miss. To show this behaviour, we have done a very simple experiment:  
 We generate a table of length 256;  
 We generate 16 random values between 0x00 and 0xff;  
 We call 16 elements of the table corresponding to the 16 values generated 

previously;  
 We measure the time to call these 16 elements of the table.  

We have plotted in Figure 8 the histogram of the clock cycles. The negative 
number in the x axis is due to the fact that we have set the 0 at the maximum 
value of the clock cycles, which is the obtained value for not hit at all7. We notice 
that when a hit occurs, the time is faster by 5 or 6 clock cycles. For two hits, 
there are three possible values: 10, 11 or 12 clock cycles. 

Figure 8 has to be compared with a full AES encryption timing in order to see 
if this model is relevant. Therefore, we have plotted in Figure 9 the histogram 
for a full AES encryption. Once more, the 0 in the x axis is set to the maximum. 

Very interestingly, we can observe in this figure high density levels corres-
ponding to the hits: 

1) One hit at −5 and −6;  
2) Two hits at −10 and −11;  
3) Three hits at −15 and −16.  
Below −16 clock cycles, the hits are lost into the noise. 
The comparison of these two figures show that the FIFO model for table hits 

is correct, but does not explain all the time leakage due to the cache policy of the 
processor. 

5.4. Attack Results 

As already noticed above, the leakage model is mostly unknown. We only sup-
pose that the text byte is mixed with the key through a XOR operation. As a  

 

 

Figure 8. Distribution of the clock cycles for a simple example. 

 

 

7This is a voluntary choice as we only focus on the gap between two picks of distribution. The abso-
lute value has no real sense since we are comparing two computations that are not the same.  
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Figure 9. Distribution of the clock cycles for a full AES encryption. 
 
consequence, the optimal distinguisher (giving the limit of performance) is not 
known. The SNR of the leakage is ( )( ) ( )( )Var | Var | 0.4x t x t =  . 

In Figure 10, we notice that Learned MIA is the best distinguisher in the case 
of poor profiling. The Hard Drop Distinguisher is not succeeding at all since it 
drops about 90% of the data. 

Figure 11 presents the success rate for a better profiling stage. We notice the 
following interesting improvements:  
 The Learned MIA distinguisher is only slightly better than in Figure 10. To 

reach 80% success rate, 1100 traces are needed as compared to 1250 traces 
previously. 

 The Soft Drop and Offline-Online distinguishers are the best distinguishers 
in this scenario, with a small advantage for the Soft Drop distinguisher. 

 The Hard Drop distinguisher remains unsuccessful. 
We notice that the Soft Drop Distinguisher has been established using the γ  

parameter defined in Equation (23) such that 1 qγ =  . 
Figure 12 is the continuation of Figure 11 with much more traces in the pro-

filing stage. The resulting profiling is very good and one may consider that the 
approximation of   is tight. In this case, Soft Drop and OOP Distinguishers 
are both very successful, which seems natural regarding the fact that ̂  has 
converged to the actual probability  . For this attack, we recall that the timing 
of 10,000 traces can be acquired in one second. Therefore, the attack is success-
fully in about 0.2 second using Soft Drop or OOP distinguishers. 

As a conclusion to this study on the STM32F4 discovery board, we have 
learned the following comparisons between the proposed distinguishers:  
 When the profiling stage is poor, the best distinguisher is the Learn MIA Dis-

tinguisher;  
 When there is enough data in the profiling stage, the best distinguisher is the 

Soft Drop Distinguisher, closely followed by the OOP Distinguisher;  
 The Empty Bin Distinguisher converges to the optimal success rate, but is not 

as efficient as previously in Section 4. This can be explained by the fact that 
we skip a lot of data in the computation; 
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Figure 10. SR for ˆ 25600q =  on real-world measurements. 
 

 

Figure 11. SR for ˆ 256000q =  on real-world measurements. 
 

 

Figure 12. SR for ˆ 2560000q =  on real-world measurements. 
 

 The Hard Drop Distinguisher is the slowest to converge to 100% success rate.  
Remark 4. When comparing Figure 11 and Figure 12, we notice that the 

Empty Bin distinguisher does not improve as the number of profiling traces in-
creases. An explanation is that there are no more empty bins to be filled between 
these two situations; then only a more precise estimation of the probability 
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would make the difference.  
Remark 5. As discussed in Definition 4, the value of γ  is important. We  

have run the same experience as in Figure 11 with 10

1
ˆ 10q

γ =
×

. The results, we  

obtained, are presented in Figure 13. When comparing this figure with Figure 
11, we notice that the performance of the Soft Drop Distinguisher has dropped 
and is now much closer to that of the Empty Bin Distinguisher, as we had forecast.  

5.5. Nature of Empty Bins 

Defined in Subsection 2.2, Empty Bins can appear under two circumstances. The 
first possibility is insufficient profiling: some rare occurrences are not encoun-
tered by lack of training measurements. The second possibility is what we call 
Structural Empty Bins. They are present whatever the profiling under fixed key 
and do not depend on the number of traces q̂  in the profiling stage. In order to 
explain the reason of Empty Bins, we have drawn the number of empty bins for 
a given key according to the number of traces in the profiling stage. 

Figure 14 presents this study obtained with the STMicroelectronics Discovery 
Board. We considered ˆ 1280000q = , and define the number of empty bins as: 
 

 

Figure 13. SR for ˆ 256000q =  with 10

1
ˆ 10q

γ =
×

. 

 

 

Figure 14. Empirical number of empty bins. 
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ˆ ˆ

1 1
ˆ ˆ ˆmin , , max ,such that , .

q q

q q qq q
x x x q x x

= =

  ∈ ∃ =   
  


 

We can see that the number of empty bins decreases, but never reaches 0. At 
the beginning, the high number of empty bins is due to both poor profiling and 
structural empty bins. With a good profiling, we only keep the structural empty 
bins.  

5.6. Study on the Mean-Square Error 

An interesting point noticed in Figures 10-12 is that the Learned MIA distin-
guisher is working better than the Soft Drop Distinguisher for a poor learning 
phase (i.e., ˆ 25600q = ). However, with a better learning phase (i.e., ˆ 256000q =  
and ˆ 2560000q = ), the Soft Drop Distinguisher has a much better success rate. 
In order to understand why the Learned MIA Distinguisher does not improve 
that much with a better learning phase, we have computed the Mean-Square Er-
ror of these two distinguishers for the three learning phases (i.e.,  

{ }ˆ 25600,256000,2560000q∈ ). 
Definition 9 (MSE, Bias and Variance). Let us consider a random variable X 

and its expectation [ ]Xθ =  . An estimator of the random variable is noted X. 
The MSE is defined as follows: 

( )2MSE .X θ = −   

The bias of the estimator is the expectation of the difference between the esti-
mator and the mean of the random variable:  

[ ]Bias .X θ= −  

At last, the variance of the estimator is:  

[ ]22Variance X X = −    

From these definitions, we have the following relation between MSE, bias and 
variance: 

2MSE Bias Variance= +                     (31) 

The Mean-Square Error (MSE) is computed using the following method:  
1) For the secret key *k , we calculate the value of the distinguisher i.e. the 

value of ( )*ˆ | k⊕x t  for the Soft Drop and ( )( )*ˆ;I kφ ⊕x t  for the Learned 
MIA. We compute this value for different number of traces q . This gives an es-
timation of the normalized distinguisher for the correct key.  

2) The most accurate estimation is obtained for the highest value of q . 
Therefore, taking the average over a large number of experiences for this highest 
value of q  gives a good estimation of the Expectation of the estimator.  

3) Then we calculate, for every value of q  the bias and the variance of the es-
timator, and the Average MSE is obtained using the formula:  

2MSE Bias Variance= + . 
We have plotted in Figure 15 and Figure 16 the Average MSE for the two  

https://doi.org/10.4236/jis.2021.121001


E. De Chérisey et al. 
 

 

DOI: 10.4236/jis.2021.121001 23 Journal of Information Security 
 

 

Figure 15. Average MSE for the learned MIA distinguisher. 
 

 

Figure 16. Average MSE for the soft drop distinguisher. 
 
distinguishers. In order to be more relevant, we have plotted the logarithm of the 
MSE. Furthermore, we have chosen to plot the MSE separately as the distin-
guishers are not comparable. 

The MSE for the Learned MIA Distinguisher stays almost constant with the 
improvement of the learning phase whereas the MSE of the Soft Drop Distin-
guisher is much smaller. This means that a better learning phase gives a much 
better estimator of the distinguisher. 

To understand more deeply this MSE, we separate bias and variance for these 
two distinguishers. The results are computed in Figure 17 for the Learned MIA 
Distinguisher and Figure 18 for the Soft Drop Distinguisher. 

We notice the following aspects: 
 For the Soft Drop Distinguisher, the bias is almost equal to zero. In fact, the 

MSE is the variance. 
 For the Learned MIA Distinguisher, it is mainly the opposite: the biggest part 

of the MSE is the bias. 
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Figure 17. Variance and bias of the learned MIA distinguisher. 
 

 

Figure 18. Variance and bias of the soft drop distinguisher. 
 
To conclude with the MSE, the Soft Drop Distinguisher improves because the 

estimator has a much smaller variance with a better learning phase. Meanwhile, 
the Learned MIA Distinguisher does not improve because it is a biased estimator 
and a better learning phase does not reduce this bias. 

6. Success Rate in Presence of External Noise 

The measurement setup used in simulation (Section 4) and on real-world traces 
(Section 5) is ideal. Indeed, the only considered noise is said algorithmic, i.e., it 
consists in the varying timing which arises from the parts of the algorithm not 
under study. In this section, we analyze the effect of noise external to the moni-
tored cryptographic algorithm. Subsection 6.1 discusses in general terms the ef-
fect of noise addition, and Subsection 6.2 details quantitatively how distribu-
tion-based distinguishers cope efficiently with noise (while moment-based dis-
tinguishers fail to resist noise).  
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6.1. Effect of Measurement Noise 

However, in practice, timing measurements contain a noisy part. Let us give 
three examples:  

1) Measure of a difference of timing between request and response from the 
AES (over a network of unknown latency);  

2) Use of a side-channel signal (such as the power or the electromagnetic field) 
to observe the AES computation; the beginning and the end of an AES are easy 
to identify, as they consist of sixteen consecutive operations (namely sixteen 
XOR making up the AddRoundKey operations). As these patterns have a re-
markable signature, they can be extracted with great accuracy thanks to a mere 
cross-correlation. Still, the AES itself might not be executed in constant time, 
hence some alignments issues;  

3) Use of a cache attack, which would disclose that the program flows entered 
and exited the AES function. However, the timing for access to cache is non de-
terministic.  

Let us denote the variance of the added noise as 2σ . 
Now, it is known that any additive distinguishers (which is the case of our dis-

tinguishers), the number of traces to recover the secret for a given success rate is 
inversely proportional to the inverse of the signal-to-noise ratio (see e.g. Corol-
lary 2 of [23]). 

As a direct consequence, we can predict the complexity of the attacks when IC 
and DC are disabled. It can be seen in Figure 7 that the timing variation is about 
divided by three (from ≈20 to ≈8) when the DC is disabled. Therefore, the 
number of required traces to recover the key is about multiplied by three. 

In addition, we can approximate the required number of traces to extract the 
key in presence of external noise of standard deviation σ . In our case-study of 
OpenSSL AES on ARM, the algorithmic noise has standard deviation about 20 
clock cycles (see Figure 1 and Figure 2). 

So, if the external noise has standard deviation 20σ < , the impact is small. 
But when 20 1σ > , the influence of the external noise becomes preponderant. 
As the algorithmic noise and the external noise are independent, the number of 
traces required to extract the key will actually grow linearly with σ  as soon as 

20 1σ  . 

6.2. Comparison with Existing Methods in the Presence of Noise 

In this subsection, we aim at comparing our distribution-based method with the 
existing methods (moment-based method mentioned in Table 1). In particular, 
we focus on the representative Bernstein correlation [9] with a learned model 
[the timing expectation for each value of the target AES byte], that we refer to as 
“CPA”. This “CPA” between timing measurements and the learned average of 
timing per byte of the key does not suffer from the empty bin issue. We start by 
a comparison with little external noise. In this case, we have plotted in Figure 19 
the success rate for both the soft drop distinguisher and the CPA. The x axis  
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Figure 19. Comparison between CPA and soft drop distinguisher at 80% of success rate. 
 
represents the number of traces for the profiling phase while the y axis is the 
number of traces needed during the attack to reach 80% of success rate. We no-
tice that the CPA performs better than the soft drop method, for any profiling 
(even when learning with several million of traces). This can be due to bias be-
tween the profiled distribution and the attack distribution. 

However, in a practical case, we encounter noisy timing leakages. In order to 
compare our methods with the existing methods (such as CPA) in the presence 
of external noise, we plotted Figure 20. In this figure, we took a good profiling 
phase ( 6ˆ 3 10q = × ), i.e., profiling is performed on sufficiently enough traces. 
This figure is obtained for a noisy timing, which is the nominal time to compute 
AES (as in Subsection 2.2), where the noise follows the following law: 

( )
0 added time with probability 50%,

added , a number of clock periods ,with probability 50%.T T

 ∈ 

   (32) 

This models the interruption of the CPU from a peripheral when AES is bare 
metal, or a descheduling of the AES process during one time slot on systems 
with an operating system (OS). Indeed, such events have the consequence, when 
they occur, to add a long period of time (often as long or even longer than the 
duration of the AES) to the encryption time, so that the interruption can be 
served, or so that the OS re-schedules the AES process. We notice that, in such 
case, it is more interesting to compute one of our methods, rather than pre-
viously existing methods such as CPA. Indeed, distribution-based profiling is 
more accurate than CPA estimation with noisy signals. For instance, the results 
from Hassan Aly and Mohammed ElGayyar [24] show that 222 encryptions are 
required for a key extraction on more recent processors (Pentium Dual-Core 
and Core 2 Duo), which is significantly more than that used by Bernstein CPA  
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(a) 

 
(b) 

Figure 20. Success rate for soft drop versus CPA for small noise and noise of standard 
deviation 50T =  (recall (32)). (a) Standard deviation = 5; (b) Standard deviation = 50. 
 
in his original attack [25]. The authors of this paper remark incidentally that the 
best method is not to use correlation with the means of each class, but with the 
minimum value in each class. This confirms that the complexity of the distribu-
tions is better suited for distinguishing that simply the average per class. This 
justifies that our study focuses on distribution-based distinguishers (more robust 
to binary noise situations encountered while measuring durations) rather than 
moment-based distinguishers (recall Table 1).  

7. Conclusion and Perspectives 

We have derived several “information-theoretic” distinguishers as possible solu-
tions to the empty bin issue. Some of them, like the Dirichlet Prior and the Of-
fline-Online distinguishers, required the computation of novel distributions. We 
have shown in particular that the empty bins, previously believed to be an an-
noyance and dropped accordingly, can turn out to be valuable assets for the at-
tacker as long as they are treated carefully. Throughout the paper, real timing 
data are used, making the results very practical. 
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We have also compared the various distinguishers under two frameworks: a 
simulated test with synthetic leakage and real-world timing attacks. In both cases, 
we noticed that the outcome of the attacks depends on the quality of the profil-
ing stage. A good profiling improves the results, where the best distinguisher 
seems to be the Soft Drop Distinguisher. A poor profiling makes the traditional 
distinguishers break down. More sophisticated solutions like Offline-Online 
Profiling and Learned MIA distinguishers are very useful in this case. A possible 
way to investigate more on this aspect is to use more powerful statistical tools in 
order to extract the most precise model for the Learned MIA Distinguisher. 

The interesting aspect of the studied timing attack is that one does not have to 
make any assumption on the leakage model. In addition to this, the main ad-
vantage of the new distinguishers is that the empty bin issue is completely solved. 
We also introduced distinguishers which can jointly exploit offline and online 
side-channel measurements. As an interesting perspective, our approach could 
advantageously be analyzed using the “perceived information” metric recently 
introduced by Standaert et al. in ([26], Equation (1)). 

Another perspective would be to compare our information-theoretic attacks 
with attacks based on machine learning techniques. Surprisingly and contrary to 
results reported in other papers, our preliminary results show that SCA based on 
support vector machines [27] has poor performance, even when profiling with 
very few traces ( q̂  is small), which may be due to the univariate nature of the 
leakage. 

An interesting observation is that writing cryptographic code robust to timing 
attacks is challenging. While the OpenSSL code for AES has no obvious flaw 
(such as unbalanced branches which depend on sensitive data), the timing of 
AES is data-dependent, due to microarchitectural features of the studied ARM 
core. There seem to exist two classes of solutions against timing attacks: The first 
aims at randomizing the execution timing, as studied for instance in [6]. Such an 
implementation can still be attacked with high-order distinguishers, albeit with 
more traces than without any protection. The second would attempt to balance 
the timing, yet this requires some hardware support such as the CCM feature of 
the STM32F4 processors. 
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Appendix 

We have copied here the OpenSSL C code for the encryption function. We no-
tice that this is a straight line code, and that there is a use of Look Up Tables (the 
T boxes) that may cause the non constant time. 
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