
Journal of Information Security, 2021, 12, 1-33
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2021.121001 Dec. 10, 2020 1 Journal of Information Security

Information Theoretic Distinguishers
for Timing Attacks with Partial
Profiles: Solving the Empty
Bin Issue

Eloi De Chérisey1, Sylvain Guilley1,2 , Olivier Rioul1, Darshana Jayasinghe1

1LTCI, Télécom Paris, Institut Polytechnique de Paris, France
2Secure-IC S.A.S, Tour Montparnasse, Paris, France

Abstract

In any side-channel attack, it is desirable to exploit all the available leakage
data to compute the distinguisher’s values. The profiling phase is essential
to obtain an accurate leakage model, yet it may not be exhaustive. As a re-
sult, information theoretic distinguishers may come up on previously un-
seen data, a phenomenon yielding empty bins. A strict application of the
maximum likelihood method yields a distinguisher that is not even sound.
Ignoring empty bins reestablishes soundness, but seriously limits its per-
formance in terms of success rate. The purpose of this paper is to remedy
this situation. In this research, we propose six different techniques to im-
prove the performance of information theoretic distinguishers. We study
them thoroughly by applying them to timing attacks, both with synthetic and
real leakages. Namely, we compare them in terms of success rate, and show
that their performance depends on the amount of profiling, and can be ex-
plained by a bias-variance analysis. The result of our work is that there exist
use-cases, especially when measurements are noisy, where our novel informa-
tion theoretic distinguishers (typically the soft-drop distinguisher) perform
the best compared to known side-channel distinguishers, despite the empty
bin situation.

Keywords

Timing Attacks, Profiling Attacks, Dirichlet Priors, Success Rates

How to cite this paper: De Chérisey, E.,
Guilley, S., Rioul, O. and Jayasinghe, D.
(2021) Information Theoretic Distinguishers
for Timing Attacks with Partial Profiles:
Solving the Empty Bin Issue. Journal of
Information Security, 12, 1-33.
https://doi.org/10.4236/jis.2021.121001

Received: August 29, 2020
Accepted: December 7, 2020
Published: December 10, 2020

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2021.121001
https://www.scirp.org/
https://orcid.org/0000-0002-5044-3534
https://doi.org/10.4236/jis.2021.121001
http://creativecommons.org/licenses/by/4.0/

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 2 Journal of Information Security

1. Introduction

The field of cryptography is currently very sensitive as it deals with data protec-
tion and safety. Thus, in order to assess the security of cryptographic devices, it
is crucial to know and test their weaknesses. For example, the Advanced Encryp-
tion Standard (AES) [1] is renowned as trustworthy from a mathematical point
of view—there is currently no realistic way to cryptanalyze the AES-128. How-
ever, it is possible to break the 128-bit secret key byte by byte using side-channel
analysis (SCA). SCA exploits the physical fact that the secret key leaks some in-
formation out of the device boundary through various “side-channels” such as
power consumption or timing—number of clock cycles to perform a given oper-
ation. These leakages, correctly analyzed by SCA, yield the secret key of a device.

A good side-channel attack needs a good leakage model. Timing, for example,
can be modeled easily when the implementation is unbalanced: Several suc-
cessful attacks [2] [3] [4] [5] exploit a timing leakage in the conditional ex-
tra-reductions of Montgomery modular multiplications. Some conditional oper-
ations can also happen in AES, e.g. in field operations, as for instance discussed
in ([6], Alg. 1).

Even when the code is balanced—a recommended secure coding prac-
tice—some residual unbalances in timing can result from the hardware which
executes the code. Indeed, processors implement speed optimization mechan-
isms such as memory caching and out-of-order execution. As a consequence, it
is not possible to predict with certainty how timing leaks information. The at-
tacker is then led to make predictions about the way the device leaks.

In this paper, we consider side-channel attacks that are performed in two
phases:

1) a profiling phase where the attacker accumulates leakage from a device with
a known secret key;

2) an attacking phase where the attacker accumulates leakage from the device
with an unknown secret key.

This type of attack is known as a template attack [7]. It has been shown [7] to
be very efficient under three conditions: 1) leakage samples are independent and
identically distributed (i.i.d.); 2) the noise is additive white Gaussian; and 3) the
secret key leaks byte by byte, which enables a divide-and-conquer approach. For
some side-channels, such as power or electromagnetic radiations, condition 4) is
met in practice. However, for timing attacks, the noise cannot be Gaussian as
timing is discrete. Moreover, the noise source is non-additive in this case, since
it arises from complex replacement policies in caches and processor-specific
on-the-fly instructions reordering.

The first proposed profiled timing attack is the seminal timing attack of
Kocher [8]. The same methodology can be used on AES, as noted by Bernstein
in 2005 [9]. Further works used the same method [10] [11] [12]. To our best
knowledge, all these works consist in profiling moments, such as the average
timing under a given plaintext and key. However, it is known [7] that the best

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 3 Journal of Information Security

attacks should use maximum likelihood1.
In this paper, as illustrated in Table 1, we focus on a profiling where the dis-

tribution is characterized and used as such, and is not reduced to its moments.
The attacker computes distributions using histogram methods. These distribu-
tions are then used to recover the correct secret key.

The discrete nature of timing leakage leads to an empty bin issue which ap-
pears when a data value in the attacking phase has never been seen during the
profiling phase. Based on profiling only, this data should have a zero probability,
which can be devastating for the attack. One known workaround is to use kernel
distribution methods [13] to estimate probabilities since the smoothing can be
such that no empty bins remain. This method can however be seen as a post-
processing in existing information. This alters therefore the data. In addition,
this method has very large computational complexity and its performance highly
depends on ad-hoc choices of several parameters such as kernel type and band-
width. Moreover, the estimation via the kernel method depends on other para-
meters such as the choice of the kernel and the size of the kernel. In our paper,
we have decided to keep information as it comes as we focus on information
theoretic distinguishers.

1) Contributions: In this paper, we show that even when all abovementioned
requirements (1), (2), and (3) are not present, timing attacks with incomplete
profiling can be achieved successfully by adapting the maximum likelihood dis-
tinguisher and keeping the histogram method for probabilities estimation. We
build six different distinguishers, which are all good answers to the empty bin
issue. For some of them, new histograms are built, such that the empty bin issue
totally disappears. Furthermore, we compare these distinguishers and show
which one of them is the best in every specific context. We underline that, in
practice, for a moderate profiling with 256,000 offline measurements, the soft
drop and the combined offline-online profiling approaches are clearly the two
best strategies: the AES key is typically extracted with only about 2000 online
measurements, i.e., a complete break in about 0.2 ms. Finally, we provide some
theoretical results proving how optimal some of the distinguishers can be.

Table 1. State-of-the-art on profiled timing attacks.

Profiling method Reference articles

Moments [9] [10] [11] [12]

Distributions Our paper (Caution about empty bins)

1We will explain in Subsec. 6.2 that in practice, maximum likelihood might not always perform bet-
ter than moment-based distinguishers in ideal situations (no noise), because the learning stage for
probability mass functions demands too many traces; besides an imperfect profiling is very detri-
mental to maximum likelihood distinguishers, and affects less the moment-based distinguishers.
However, in non-ideal situations, e.g., in the presence of random delay kind of noise, maximum li-
kelihood remains robust, where the model-based distinguishers collapse (since they are val-
ue-based).

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 4 Journal of Information Security

2) Organization: The paper is organized according to the following structure.
Section 2 provides mathematical tools to understand distinguishers and nota-
tions. Section 3 introduces new distinguishers that are suitable in the context of
empty bins. Section 4 provides simulations for these distinguishers and Section 5
investigates real attacks on an ARM processor. Interestingly, all proposed dis-
tinguishers work, albeit with very noticeably different performances. In Section 6,
some interpolations of the obtained results in the presence of external measure-
ment noise are derived. Section 7 concludes.

2. Mathematical Derivations
2.1. Notations and Assumptions

We consider a side-channel attack with a profiling stage and use the following
notations:
 During the profiling phase, a vector t̂ of q̂ text bytes is sent and the pro-

filer garners a vector of x̂ measurements;
 During the attacking phase, a vector t of q text bytes is sent and the at-

tacker gathers a vector x of leakage measurements—also customarily
known as traces;

 We use simplified notations t , q and x when discussing either profiling
data or attacking data;

 The probability of a vector x with i.i.d. components ix is denoted by
() ()ii x=∏x ;

 We define the following sets:
1) ̂ , ̂ , and are the sets of possible values of components x̂ , t̂ ,

x and t , respectively;
2) ˆ=

 and ˆ=

 ;
3) is the set of all possible values for the key k.

 k and t are made of n bits (in particular, they are “bytes” when 8n =).
Here all sample components of one vector are i.i.d. and belong to some dis-

crete set. Typically, is a finite subset of and is equal to { }0,1 n .
In the profiling stage, the secret key *k̂ is known and variable. In the attack-

ing phase, the secret key *k is unknown but fixed. Further, we assume that ix
depends only on it and *k for all 1,2, ,i q=

, in the form:

() ()* 1, 2, ,i ix t k i qψ= ⊕ = (1)

where ⊕ is the XOR (exclusive or) operator and ψ is an unknown function
which may contain noise, masking and other hidden parameters2.

Furthermore, in this paper, we use of the notation ,x tn to denote the number
of occurrences of (),x t . Thus we can write

ˆ ˆ
ˆ ˆ, ˆ ,1 1

ˆ ˆ1l , 1l ,
ii i

q q
x t x x xx x t ti i

n n == == =
= =∑ ∑ (2)

2The AES meets the secret and the text byte through a xor (SubBytes) executed in a fixed number of
clock cycles. However, the rest of the AES consists in table look-ups and other miscellaneous opera-
tions which are difficult to model and need different amounts of time to execute, hence the use of
unknown function ψ .

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 5 Journal of Information Security

, ,1 1
1l , 1l .

ii i

q q
x t x x xx x t ti i

n n == == =
= =∑ ∑

 (3)

where 1l 1A = if A is true, =0 otherwise.
Definition 1 (Probabilities). We define three3 different types of probabilities

 , ̂ and . is the actual (real) underlying probability distribution, but it
is generally not available and has to be estimated by either ̂ or .
 ̂ is computed using the profiling data:

()

ˆ
,

ˆˆ ,
1

ˆ1ˆ , 1l ,
ˆ i i

q
x t

x x t t
i

n
x t

q q= =
=

= =∑ (4)

()

ˆ

ˆ
1

ˆ1ˆ 1l .
ˆ i

q
x

x x
i

n
x

q q=
=

= =∑ (5)

 is computed using the attacking data:

() ,
,

1

1, 1l ,
i i

q
x t

x x t t
i

n
x t

q q= =
=

= =∑

 (6)

()
1

1 1l .
i

q
x

x x
i

n
x

q q=
=

= =∑

 (7)

In practice, as the secret key leaks through the function via a XOR (Equation
(1)), we shall often consider (),x t k⊕ .

For a fair comparison between distinguishers, Standaert et al. [14] have put
forward the success rate as a measure of efficiency of a given distinguisher.

Definition 2 (Success Rate). The success rate SR is probability, averaged
over all possible keys, of obtaining the correct key.

()*
*

2 1
*

0

1SR ,
2

n

n k
k

k k
−

=

= =∑ (8)

where k is the key guess obtained by the distinguisher during the attack.
It has been proven ([15], Theorem 1, Equation (3)]) that for equiprobable

keys the optimal distinguisher maximizes likelihood:

() ()Optimal , arg max | .
k

k
∈

= ⊕x t x t

 (9)

In Equation (9), we use the “arg max” operator, which is defined as follows: let
a function :f → , then

() () (){ }arg max such that , .
k

f k k k f k f k
∈

′ ′= ∈ ∀ ∈ ≥

In real life, however, the attacker does not know the leakage model perfectly
and thus ()| k⊕x t is not available. In order to get an estimation of , we
use the profiling data to build ̂ defined in Equation (4). This is the classical
template attack. The distinguisher becomes

() ()Template
ˆ, arg max | .

k
k

∈
= ⊕x t x t

 (10)

This distinguisher is no longer optimal as it does not use the real distribution

3For the sake of evading the empty bin issue, we will also introduce yet another notation “
α ” in

Subsection 3.1 (Equation (19)).

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 6 Journal of Information Security

 . However, if profiling tends to exhaustivity, ̂ and will be very close
since by the law of large numbers,

() ()ˆ
ˆ, , , .qx t x t x t→∞∀ → (11)

Moreover, we notice that non-optimality is not the only issue with template
attacks in the context of discrete leakage. The attacker also faces the problem
that the attack is ill-formed. In practice, it is convenient to use the logarithm

()ˆarg max log |
k

k
∈

⊕x t

. Notice that the basis of the logarithm is arbitrary, as all
key hypotheses scale alike when switching bases. In fact, since the samples are
i.i.d., we have

() ()
1

| |
q

i i
i

k x t k
=

⊕ = ⊕∏x t

 (12)

and

()

()
1

ˆ ˆ| | .
q

i i
i

k x t k
=

⊕ = ⊕∏x t

 (13)

Therefore, the attacker computes

() ()Template
1

ˆ, arg max log |
q

i ik i
x t k

∈ =

= ⊕∑x t

 (14)

where the logarithm is used to transform products into sums for a more relia-
ble computation. However, we would like to avoid empty bins for which
()ˆ | 0i ix t k⊕ =

 ; otherwise, Equation (14) would not be well defined.

2.2. About Empty Bins

The empty bin issue appears when there exists { }1, ,i q∈
 and k ∈ such

that ()| 0i ix t k⊕ >

 and ()ˆ | 0i ix t k⊕ =

 . This may even happen for the
correct key hypothesis, leading to a wrong key guess during the attack.

Figure 1 and Figure 2 show how empty bins can look like after a profiling
phase4. We notice that some parts of the histograms are left blank, some of them
indicated by arrows noticed as “holes” in the figures. These timing values x are
possible “empty bins”. When such a hole is called during the attack, meaning
that the attacker gets a trace with corresponding with a hole, we call this an
empty bin. Notice that no additional “binning” is needed as in the case of conti-
nuous distributions. The figures also show that the noise is not Gaussian as can
be observed from the shape of the distribution.

The shortcoming of empty bins can be seen when evaluating the likelihood.
The attacker encounters a zero probability, which makes the product vanish for
the probability of a given key guess, even if many traces are used. As we wrote
earlier, the empty bin may appear even for the correct key guess in template at-
tacks, leading to a null success rate if not taken into account and not well treated.
As an example, the number of empty bins for the practical example presented in
Section 5 for the correct key guess is around 500 for a poor learning phase

4Figures obtained with the STM Discovery Board presented in Section 5. The unit of x is the “clock
cycle”.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 7 Journal of Information Security

Figure 1. Empirical probability ()ˆ |x t k⊕ for 0t = and 67k = and ˆ 2560000q = .

Figure 2. Empirical probability ()ˆ |x t k⊕ for 0t = and 149k = and ˆ 2560000q = .

(“poor” in that the amount of training data is limited) and around 50 for a good
learning phase. This multiplication by zero is not inherent to the attack; it is ra-
ther a profiling artifact. In fact, with more profiling traces, the empty bin would
likely be populated. Thus, the empty bin issue is a mere side-effect of insufficient
profiling, which results in an attack failure if it is encountered in the computa-
tion of the likelihood of the correct key.

3. Distinguishers Which Tolerate Empty Bins
3.1. Building Distributions or Models

Before presenting the novel distinguishers in Subsection 3.2, we need to define
yet another type of distribution known as a Dirichlet a posteriori in a Bayesian
approach.

The Dirichlet A Posteriori: In order to avoid zero probabilities, we use a
method based on Dirichlet Prior calculations ([16], Section 1). This method
leads to a new distribution denoted by α , where 0α > is a user-defined pa-
rameter whose value (typically = 1) will be discussed next.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 8 Journal of Information Security

Let be the set of possible values for x and be the set of possible values
for t. For any x, we set (), ,x tp x t= their joint probability and (), ,x t x t

p=p .
Prior to obtaining any trace, ,x tp is completely unknown and we consider a
Bayesian approach to estimate ,x tp .

1) We consider the following a priori: without further information, we sup-
pose that for all ,x t ,

() ,

,,

, ,x t

x tx t

x tα

α
α ′ ′′ ′

=
∑

where , 0x tα > is an a priori parameter. To simplify, we may choose ,x tα α=
constant for all ,x t . Let us suppose that p follows a Dirichlet (prior) distribu-
tion, whose probability density function is

()
()

()
,,, 1

,
,,,

,x tx tx t
x t

x tx tx t

f pα
α

α
−

Γ
=

Γ

∑
∏∏

p (15)

where Γ is the Gamma function defined for 0x > as

() 1
0

e d .x tx t t
+∞ − −Γ = ∫ (16)

The Dirichlet distribution can also be written as

() , 1
,

,
,x t

x t
x t

f pα
α

−= ∏p (17)

where
()

()
,,

,,

x tx t

x tx t
α

α

α

Γ
=

Γ

∑
∏

 is a normalization factor. Notice that the prior dis-

tribution is uniform when , 1x tα α= = for all ,x t .

2) Then suppose we know x̂ , x̂ , t̂ and t . We can now compute the a
posteriori probability

() ()ˆ ˆˆ ˆ, | , , , , , | , , , d .x t f x t p= ∫x x t t p x x t t

By Bayes’ rule,

() () ()ˆ ˆ ˆˆ ˆ ˆ, , | , , , , | , , , , | , , , .f x t x t f=p x x t t p x x t t p x x t t

As components ix and it are i.i.d., we can write
() () () (),

ˆ ˆ ˆˆ ˆ ˆ, , | , , , , | | , , , , | , , ,x tf x t x t f t p f= ⋅ = ⋅p x x t t p p x x t t p x x t t

 .
Again by Bayes’ rule,

() () ()
()

()

() ()

()

, ,

, , ,

ˆ
,,

ˆ 1
,

,

ˆˆ , , , |
ˆˆ| , , ,

ˆˆ , , ,

ˆˆ , , ,

.
ˆˆ , , ,

x t x t

x t x t x t

n n k
x tx t

n n
x t

x t

f
f

p
f

p αα

′ ′ ′ ′

′ ′ ′ ′ ′ ′

+
′ ′′ ′∈ ×

+ + −
′ ′

′ ′∈ ×

=

=

=

∏

∏

x x t t p p
p x x t t

x x t t

p
x x t t

x x t t

We recognize another Dirichlet distribution with parameters

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 9 Journal of Information Security

, , ,ˆx t x t x tn n α′ ′ ′ ′ ′ ′+ + . Let
()

()
, , ,,

, , ,,

x t x t x tx t

x t x t x tx t

n

nα

α α

α α
′ ′ ′ ′ ′ ′′ ′

′
′ ′ ′ ′

Γ + +
=

Γ + +

∑
∏

 be the new normaliza-

tion constant for this distribution. We, finally, obtain

() , , ,ˆ 1
, ,

,

ˆˆ, , | , , , .x t x t x tn n
x t x t

x t
f x t p p α

α
′ ′ ′ ′ ′ ′+ + −

′ ′ ′
′ ′∈ ×

= ⋅ ∏p x x t t

Therefore,

() , , ,ˆ 1
, ,

,

ˆˆ, | , , , d .x t x t x tn n
x t x t

x t
x t p p pα

α
′ ′ ′ ′ ′ ′+ + −

′ ′ ′
′ ′∈ ×

= ⋅ ∏∫x x t t

which is known as the Dirichlet a posteriori.
3) The integral can be easily expressed in terms of the Gamma function:

()
()

()
()

()
, , , , , , ,, ,

, , ,, , , , ,,

ˆˆ, | , , ,

ˆ ˆ

ˆ ˆ
x t x t x t x t x t x t x tx t x t

x t x t x tx t x t x t x t x tx t

x t

n n n n

n n n n

α α δ

α α δ

′ ′ ′ ′ ′ ′ ′ ′′ ′ ′ ′

′ ′ ′ ′′ ′ ′ ′ ′ ′′ ′

Γ + + Γ + + +
= ×

Γ + + Γ + + +

∑ ∏
∏ ∑

x x t t

which simplifies to

() , , ,

,,

ˆˆˆ, | , , , .
ˆ

x t x t x t

x tx t

n n
x t

q q
α
α ′ ′′ ′

+ +
=

+ +∑
x x t t

This new distribution will now be noted:

() () , , ,

,,

ˆˆˆ, , | , , , .
ˆ

x t x t x t

x tx t

n n
x t x t

q qα

α
α ′ ′′ ′

+ +
= =

+ +∑
x x t t

 (18)

It is important to notice that for all (),x t ∈ × , one has (), 0x tα > . In
other words, α has no empty bin issue.

4) With (),x tα we can calculate

() () , , ,

,,

,

,,

ˆ
,

ˆ

ˆ ˆ
,

ˆ ˆ

x t x t x t

x x x tx t

t t x tt t t t

x t xx t x

n n
t x t

q q

n n n n
q q q q

α α

α
α

α α
α α

′ ′′ ′

′ ′ ′′ ′ ′

+ +
= =

+ +

+ + + +
= =

+ + + +

∑ ∑ ∑
∑

∑ ∑

where ,t x txα α= ∑ . The resulting conditional probability5 is

() ()
()

, , ,ˆ,
| .

ˆ
x t x t x t

t t t

n nx t
x t

t n n
α

α
α

α
α

+ +
= =

+ +

 (19)

The Learned MIA Model: When q̂ is small, the model cannot be profiled
accurately, and ̂ is a bad approximation of . However, these profiled values
x and t can still be useful, yet they require a more robust distinguisher.

Distinguishers that compute models using profiling have already been pro-
posed. For example, [17] [18] compute a correlation on moments. However,
correlations analysis may be sensitive to model errors [19]. Mutual Information
Analysis (MIA) yields a distinguisher that can be robust when models are not

5We should normally have used the notation ˆ
α

 instead of
α , but we found this too heavy and

confusing; hence the use of
α .

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 10 Journal of Information Security

perfectly known ([19], Section 4), but it requires at least a vague estimation of
the leakage model.

Since our function ψ is unknown, we can create a first-order model ψ̂ with
the profiled data as

() ()*

ˆs.t.

1ˆˆ ˆStep .
i

i
i t tt

t k x t
n

ψ
=

⊕ = ∀ ∈

∑ (20)

The Step function is a function that ensures the non-injectivity of the model.
The simplest way to define Step is the following:

() ()Step
d x

x x
d
⋅ = ∈

where 0d > —the greater d, the smaller the step size. This parameter d has to be
small enough in order to make the model non-injective ([20], Section 4.1). In
our case, we choose, for all our experiments, 1d = . With such a model, it is
possible to compute a MIA, which successfully distinguishes the correct key.

3.2. Robust Distinguishers

In this subsection, we present six distinguishers that tackle null probabilities.
Some of these solutions seem quite obvious while others are deduced from the
notions presented in the preceding Subsection 3.1.

① Hard Drop Distinguisher: The first naive method consists in removing
all the traces which, for any key guess, have a zero probability.

Definition 3 (Hard Drop Distinguisher). The hard drop distinguisher is de-
fined as followed:

() ()Hard
ˆ, arg max log | ,i ik i

x t k
∈ ∈

= ⊕∑x t

 (21)

where set is defined as

{ } (){ }ˆ1, , | , | 0 .i ii q k x t k= ∈ ∀ ∈ ⊕ >

 (22)

Recall that ̂ , defined in Equation (4), is an empirical histogram estimated
on profiled data x̂ (along with corresponding texts t̂).

The Hard Drop Distinguisher, as the name indicates, drops some data. In very
noisy cases, it may even drop most of the data.

② Soft Drop Distinguisher: The second possibility is to drop values only for
some keys. However, it has to be done carefully because dropping a value in a
product implicitly implies a probability value of one. For this reason, instead of
removing the trace, we replace the zero probability by a constant which is small-
er than the smallest probability.

Definition 4 (Soft Drop Distinguisher). We define the Soft Drop Distinguish-
er as

()
()

()
()

Soft
ˆ ˆs.t. | 0 s.t. | , 0

ˆ, arg max log | log ,
i i i i

i ik i x t k i x t k

x t k γ
∈

⊕ > =

= ⊕ +∑ ∑x t

 (23)

where γ ∗
+∈ is a constant such that { }, 1, ,i k q∀ ∈ × , ()ˆ |i ix t kγ ≤ ⊕ .

This means that we penalize data with zero probability. The smaller γ , the

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 11 Journal of Information Security

harder the penalty.
The choice of parameter γ is thus important in order to get a fair result for

the distinguisher. If we choose 1
q̂

γ ≥ , the penalty may be greater than the smal-

lest strictly positive probability. This case would mean that the penalty is
less important than some licit probabilities. On the other hand, choosing γ

smaller than 1
q̂

 means a very strong penalty. In this case, the limit when

0γ → is a distinguisher for which only the number of empty bins is really mat-
ters. This leads to the Empty Bin Distinguisher presented next in Definition 8.

③ The Dirichlet Prior Distinguisher: The Dirichlet Prior Distinguisher uses
the Dirichlet a posteriori distributions presented in Subsection 3.1.

Definition 5 (The Dirichlet Distinguisher). We define the Dirichlet Distin-
guisher as:

() ()Dirichlet , arg max | .
k

kα∈
= ⊕x t x t

 (24)

Remark 1. As can be seen in the construction of the Dirichlet a posteriori, the
Dirichlet distinguisher is α -dependent. It is important to evaluate the influence
of α over the success rate. In practice, 1α = seems a natural choice since the
corresponding prior is uniform, which minimizes the impact of the a priori. In
contrast, another value of α like 1/2 can be interpreted as an a priori bin count.
We may also consider scenarios where 0α ≈ to have the least possible impact
to the modified values of the histogram.

④ Offline-Online Profiling: The Dirichlet Prior Distinguisher is set by α .
As we discussed in Remark 1, we can choose any α so long as it is strictly posi-
tive (the Dirichlet distribution would not be defined if 0α =). However, it is
interesting to study its asymptotical behavior as α vanishes:

() , ,

0

ˆ
lim | .

ˆ
x t x t

t t

n n
x t

n nαα→

+
=

+

This distribution can be denoted as ()0 |x t and resembles a profiling stage
that would start offline and continue online.

Definition 6 (Offline-Online Profiling). The Offline-Online Profiled (OOP)
distinguisher is defined as:

() ()OOP 0, arg max |
k

k
∈

= ⊕x t x t

 (25)

The OOP distinguisher seems easier than the Dirichlet prior distinguisher
since α is no longer in use. Of course, it also solves the empty bin issue since
for all (),x t ∈ × , one has ()0 , 0x t > .

⑤ Learned MIA Distinguisher: The Learned MIA Distinguisher is con-
structed with the profiled model function ψ̂ presented in Equation (20) of
Subsection 3.1.

Definition 7 (The Learned MIA Distinguisher)
The Learned MIA Distinguisher is defined as:

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 12 Journal of Information Security

()()MIA_Learned ˆarg max ; ,
k

I kψ
∈

= ⊕x t

 (26)

where I is the empirical mutual information [20].
⑥ Empty Bin Distinguisher: The empty bin Distinguisher is yet another in-

tuitive solution based on the idea that instead of avoiding null probabilities, we
may take only these into account. It is the key guess with the least number of
null probabilities that “should” be the correct key.

Definition 8. The Empty Bin Distinguisher is defined as:

() ()ˆEmpty_Bin | 0
1

, arg max 1l .
i i

q

x t kk i
⊕ =∈ =

= ∑x t

 (27)

The Empty Bin Distinguisher assumed that missing data contain more infor-
mation than actual (measured) data. More precisely, a drop should normally not
happen unless the guessed key is wrong; hence, the key guess with the least
drops should be the correct key. Obviously, this distinguisher is not effective
anymore if no drop occurs for at least two key guesses.

Further Remarks: All these distinguishers use a profiling phase. Before com-
paring them, we would like to make a priori discussion about their respective ef-
ficiency. As the Hard Drop Distinguisher does not take into account some data,
we may suppose that it will be the one with the least success rate for a given
number of traces. The OOP Distinguisher takes into account two types of data:
profiling and attacking data. Therefore, it should be more efficient than other
distinguishers. Lastly, we build the Learned MIA Distinguisher in order to pre-
vent model errors, such as inaccurate profiling. In that case, we suppose that
Learned MIA should work better with few data during the profiling stage.

4. Simulated Results

In this section, we present the results obtained on a simulated model. With these
results, we can give a comparison of the proposed distinguishers.

4.1. Presentation of the Simulated Model

The simulated model is built as follows:

()() () ()* * *SubBytes ,i w i i i i i ix H t k u t k u y k uφ= ⊕ + = ⊕ + = + (28)

where iu is a discrete uniformly distributed noise (),iu σ σ− , SubBytes is
the AES substitution box function, and wH is the Hamming weight of a byte.

This very simple leakage is used to compare distinguishers in the case the at-
tacker has no information about the model.

Remark 2 (Optimal Distinguisher). The optimal distinguisher (9) can be easi-
ly calculated if the model is perfectly known, as

() ()()()Optimal
1

, arg max SubBytes ,
q

i w ik i
x H t kσδ∈ =

= − ⊕∏x t

 (29)

where σδ is defined such that () 1xσδ = if x σ≤ and 0 otherwise. In Fig-
ures 3-5, we include the optimal distinguisher for reference, to show how far the
other curves are from the fundamental limit of performance.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 13 Journal of Information Security

Figure 3. SR for ˆ 320q = and 24σ = on synthetic measurements.

Figure 4. SR for ˆ 1600q = and 24σ = on synthetic measurements.

Figure 5. SR for ˆ 4000q = and 24σ = on synthetic measurements.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 14 Journal of Information Security

By construction, the leakage simulation (28) generates some traces with zero
probability, but notice that there is no i such that ()| , 0i ix t k = for the correct
key guess. This academic example is useful to compare the distinguishers de-
fined in Section 3.

4.2. Attack Results

We computed the success rates (8) of the various attacks (namely attacks ①, ②,
④, ⑤ and ⑥—attack ③ being less efficient than its limit ④) for 24σ = ,

4n = bits, and q̂ ranging from small to high values.
The only difference between Figures 3-5, is that we have increased the num-

ber of data during the profiling stage. When profiling is bad (Figure 3), the best
distinguisher is the Offline-Online profiling distinguisher, while the Learned
MIA Distinguisher is not as good as was expected. When ˆ 1600q = (Figure 4),
all distinguishers improve. Finally, when profiling is good (ˆ 4000q = , Figure 5),
the best distinguisher is now the Empty Bin distinguisher, followed by the Soft
Drop distinguisher and the Offline-Online profiling.

Remark 3. In this very special case, we can show that the Empty Bin Distin-
guisher can accurately approximate the Optimal Distinguisher. Indeed, the ac-
tual probability is such that for all (),x t ∈ × ,

()() ()1 if ,
| 2 1

0 otherwise,

x t k
x y k

σ φ σ
σ

 − ≤ − ⊕ ≤= +

 (30)

which is constant if x is in the appropriate interval. For the Empty Bin Distin-
guisher,

()() ()() 1ˆ | 0 |
2 1

x y k x y k
σ

> ⇒ =
+

due to the leakage model. Therefore, we can predict that at least

() ()
1ˆ 2 1 3920

min
q

y
σ= + =

 profiling traces are needed to make sure that

the Empty Bin Distinguisher becomes as efficient as the Optimal Distinguisher.
As profiling consists in random draws with replacement, the Empty_Bin distin-
guisher is found very close to the Optimal distinguisher with ˆ 4000q = profil-
ing traces.

5. Results on Real Devices

We have chosen to carry out a timing attack on an STM32F4 discovery board
[21]. One interesting aspect is that we do not make any assumption on the mod-
el. In real life, the leakage model happens to be much more complex than the
one employed in simulations (e.g., Equation (28)). As will be seen, in practice
empty bins appear even for the correct key guess and for a “good” profiling
phase. This observation differs from the ideal case of our simulations carried out
in the preceding Section 4.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 15 Journal of Information Security

5.1. The ARM Processor

We used a STM32F4 discovery board by STMicroelectronics6. It contains an
STM32F407VGT6 microcontroller, which has an ARM cortex-M4 MCU with 1
MB flash memory for instructions and data, and a 192 KB Random Access
Memory (RAM). The RAM is divided into three sections: one of 16 KB, another
one of 112 KB, and the last one consisting of 64 KB Core Coupled Memory
(CCM). The CCM has a zero flash wait state and is often used to store critical
data such as data from the operating system. Since the RAM is divided into three
regions, the users are unable to make use of the 192 KB RAM as a continuous
memory block.

STM32F4 microcontrollers contain a proprietary prefetch module (Adaptive
Real-Time memory accelerator - ART accelerator). ART accelerator contains an
instruction cache which has 64 lines and a data cache which contains 8 lines. The
line size of both instruction cache and data cache is 128-bits. The precise details
about ART accelerator (cache replacement policy and cache associativity) are
not mentioned as the module is an intellectual property of STMicroelectronics

The STM32F407VGT6 microcontroller does not have either a CPU cycle
counter or a performance register to measure a cycle accurate time. However,
the Data Watchpoint and Trace (DWT) unit has a cycle accurate 32 bit counter
(DWT_CYCCNT register), which can be used for measuring the duration of
critical operations. When processor runs at 168 MHz, the DWT_CYCCNT reg-
ister will overflow at every 25.5 seconds providing enough time window to
measure the encryption/decryption time for an adversary to measure the elapsed
time without timer overflowing. In practice, we collected timing data repeatedly
within the ARM, and then dump it as large data buffers sporadically. This mod-
us operandi allowed us to reach about 10,000 measurements per second.

5.2. Weaknesses—Non Constant AES Time

We use OpenSSL (version 1.0.2) AES as the cryptographic library, where the
SubBytes function is implemented with large 1 KB T-boxes (see [22], Section
5.2.1, page 18). Interestingly, the OpenSSL code (copied in Appendix A) does
not contain any conditional statement, hence can be considered constant-time
by a code review. However, once programmed on the STM32F4 processor, one
notices that the execution duration depends on the inputs. The AES timing ac-
quisition is illustrated in Figure 6. Before each encryption, we reset DWT_CYCCNT
register. This yields the exact timing of the AES execution (which is about 2600
clock cycles on average—recall Figure 1 and Figure 2). In a real attack, an at-
tacker would measure a noisy timing using an external “chronometer”. However,
our attack models the best case for an attacker; hence, bounds the security of the
analyzed implementation. In particular, we underline that our measurement me-
thodology is fully non invasive: the timing measurement is performed in parallel

6We emphasize that the attacks we present are not due to a flaw in ARM or STMicroelectronics pro-
cessors. Instead, as we will discuss next, the CCM feature of STM32F4 processors allows to protect
the implementation against timing attacks by granting a constant execution time.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 16 Journal of Information Security

Figure 6. Measuring elapsed time for AES encryption.

to the AES computation, thereby keeping the victim circuit run at full speed,
without interference.

Time deviations for different configurations of Instruction Cache (IC) and
Data Cache (DC) are shown in Figure 7. We observe a huge time difference
when data cache is turned Off/On. When DC is turned off, there is no timing
leakage as AES is constant time. Yet, when DC is turned on, AES is not time
constant. This non-constant time on AES leads to the following conclusions:
 This is a weakness for the security of the processor as two different plaintexts

lead to two different time clocks to compute AES.
 Following Figure 7, it seems the enabling or not Instruction Cache, does not

modify the behaviour of the leakages.
 Data presented Figure 7 are obtained using a fixed key and varying one byte

of the plaintext.
Figure 7 instructs us that caches shall be disabled to reduce the leakage in

timing. However, we emphasize that such decision has a strongly negative im-
pact on the AES performance: with DC off, the overall AES execution time is
about 27% longer.

Therefore, in a realistic context, we shall assume that both DC and IC are
enabled, which we will do in the sequel (see next Section 6 for some indications
of how well attacks perform when caches are disabled).

5.3. Characterizing the Leakages for Data Cache on

As seen earlier, when the Data Cache is enabled, the AES computation is not
time constant. This can be due to the T-boxes called during the computation.
Indeed, calling a value in a table also stores this in the Data Cache. If this value is
called within the eight next calls, the load will be faster. In Appendix A, we have
copied the OpenSSL source code for the AES encryption with a 128 bits key. In
this code, we notice that there are 160 calls to the T-boxes.

In order to find a model of the leakage, we inferred the cache policy of
STM32F4 ARM micro-controllers based on a thorough study of their timing re-
sponse to some adaptively constructed requests. We discovered that it is actually
a FIFO (First-In, First Out) cache. If one requests a particular table lookup
within last eight cache accesses, then the access is a hit (if not, it is a miss).

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 17 Journal of Information Security

(a)

(b)

(c)

(d)

Figure 7. Time deviations for different configurations of Instruction Cache (IC) and Data
Cache (DC). (a) IC ON and DC ON; (b) IC OFF and DC ON; (c) IC ON and DC OFF;
(d) IC OFF and DC OFF.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 18 Journal of Information Security

In case of a hit, the time to access such register is 5 or 6 clock cycles faster
than a miss. To show this behaviour, we have done a very simple experiment:
 We generate a table of length 256;
 We generate 16 random values between 0x00 and 0xff;
 We call 16 elements of the table corresponding to the 16 values generated

previously;
 We measure the time to call these 16 elements of the table.

We have plotted in Figure 8 the histogram of the clock cycles. The negative
number in the x axis is due to the fact that we have set the 0 at the maximum
value of the clock cycles, which is the obtained value for not hit at all7. We notice
that when a hit occurs, the time is faster by 5 or 6 clock cycles. For two hits,
there are three possible values: 10, 11 or 12 clock cycles.

Figure 8 has to be compared with a full AES encryption timing in order to see
if this model is relevant. Therefore, we have plotted in Figure 9 the histogram
for a full AES encryption. Once more, the 0 in the x axis is set to the maximum.

Very interestingly, we can observe in this figure high density levels corres-
ponding to the hits:

1) One hit at −5 and −6;
2) Two hits at −10 and −11;
3) Three hits at −15 and −16.
Below −16 clock cycles, the hits are lost into the noise.
The comparison of these two figures show that the FIFO model for table hits

is correct, but does not explain all the time leakage due to the cache policy of the
processor.

5.4. Attack Results

As already noticed above, the leakage model is mostly unknown. We only sup-
pose that the text byte is mixed with the key through a XOR operation. As a

Figure 8. Distribution of the clock cycles for a simple example.

7This is a voluntary choice as we only focus on the gap between two picks of distribution. The abso-
lute value has no real sense since we are comparing two computations that are not the same.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 19 Journal of Information Security

Figure 9. Distribution of the clock cycles for a full AES encryption.

consequence, the optimal distinguisher (giving the limit of performance) is not
known. The SNR of the leakage is ()() ()()Var | Var | 0.4x t x t = .

In Figure 10, we notice that Learned MIA is the best distinguisher in the case
of poor profiling. The Hard Drop Distinguisher is not succeeding at all since it
drops about 90% of the data.

Figure 11 presents the success rate for a better profiling stage. We notice the
following interesting improvements:
 The Learned MIA distinguisher is only slightly better than in Figure 10. To

reach 80% success rate, 1100 traces are needed as compared to 1250 traces
previously.

 The Soft Drop and Offline-Online distinguishers are the best distinguishers
in this scenario, with a small advantage for the Soft Drop distinguisher.

 The Hard Drop distinguisher remains unsuccessful.
We notice that the Soft Drop Distinguisher has been established using the γ

parameter defined in Equation (23) such that 1 qγ = .
Figure 12 is the continuation of Figure 11 with much more traces in the pro-

filing stage. The resulting profiling is very good and one may consider that the
approximation of is tight. In this case, Soft Drop and OOP Distinguishers
are both very successful, which seems natural regarding the fact that ̂ has
converged to the actual probability . For this attack, we recall that the timing
of 10,000 traces can be acquired in one second. Therefore, the attack is success-
fully in about 0.2 second using Soft Drop or OOP distinguishers.

As a conclusion to this study on the STM32F4 discovery board, we have
learned the following comparisons between the proposed distinguishers:
 When the profiling stage is poor, the best distinguisher is the Learn MIA Dis-

tinguisher;
 When there is enough data in the profiling stage, the best distinguisher is the

Soft Drop Distinguisher, closely followed by the OOP Distinguisher;
 The Empty Bin Distinguisher converges to the optimal success rate, but is not

as efficient as previously in Section 4. This can be explained by the fact that
we skip a lot of data in the computation;

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 20 Journal of Information Security

Figure 10. SR for ˆ 25600q = on real-world measurements.

Figure 11. SR for ˆ 256000q = on real-world measurements.

Figure 12. SR for ˆ 2560000q = on real-world measurements.

 The Hard Drop Distinguisher is the slowest to converge to 100% success rate.
Remark 4. When comparing Figure 11 and Figure 12, we notice that the

Empty Bin distinguisher does not improve as the number of profiling traces in-
creases. An explanation is that there are no more empty bins to be filled between
these two situations; then only a more precise estimation of the probability

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 21 Journal of Information Security

would make the difference.
Remark 5. As discussed in Definition 4, the value of γ is important. We

have run the same experience as in Figure 11 with 10

1
ˆ 10q

γ =
×

. The results, we

obtained, are presented in Figure 13. When comparing this figure with Figure
11, we notice that the performance of the Soft Drop Distinguisher has dropped
and is now much closer to that of the Empty Bin Distinguisher, as we had forecast.

5.5. Nature of Empty Bins

Defined in Subsection 2.2, Empty Bins can appear under two circumstances. The
first possibility is insufficient profiling: some rare occurrences are not encoun-
tered by lack of training measurements. The second possibility is what we call
Structural Empty Bins. They are present whatever the profiling under fixed key
and do not depend on the number of traces q̂ in the profiling stage. In order to
explain the reason of Empty Bins, we have drawn the number of empty bins for
a given key according to the number of traces in the profiling stage.

Figure 14 presents this study obtained with the STMicroelectronics Discovery
Board. We considered ˆ 1280000q = , and define the number of empty bins as:

Figure 13. SR for ˆ 256000q = with 10

1
ˆ 10q

γ =
×

.

Figure 14. Empirical number of empty bins.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 22 Journal of Information Security

ˆ ˆ

1 1
ˆ ˆ ˆmin , , max ,such that , .

q q

q q qq q
x x x q x x

= =

 ∈ ∃ =

We can see that the number of empty bins decreases, but never reaches 0. At
the beginning, the high number of empty bins is due to both poor profiling and
structural empty bins. With a good profiling, we only keep the structural empty
bins.

5.6. Study on the Mean-Square Error

An interesting point noticed in Figures 10-12 is that the Learned MIA distin-
guisher is working better than the Soft Drop Distinguisher for a poor learning
phase (i.e., ˆ 25600q =). However, with a better learning phase (i.e., ˆ 256000q =
and ˆ 2560000q =), the Soft Drop Distinguisher has a much better success rate.
In order to understand why the Learned MIA Distinguisher does not improve
that much with a better learning phase, we have computed the Mean-Square Er-
ror of these two distinguishers for the three learning phases (i.e.,

{ }ˆ 25600,256000,2560000q∈).
Definition 9 (MSE, Bias and Variance). Let us consider a random variable X

and its expectation []Xθ = . An estimator of the random variable is noted X.
The MSE is defined as follows:

()2MSE .X θ = −

The bias of the estimator is the expectation of the difference between the esti-
mator and the mean of the random variable:

[]Bias .X θ= −

At last, the variance of the estimator is:

[]22Variance X X = −

From these definitions, we have the following relation between MSE, bias and
variance:

2MSE Bias Variance= + (31)

The Mean-Square Error (MSE) is computed using the following method:
1) For the secret key *k , we calculate the value of the distinguisher i.e. the

value of ()*ˆ | k⊕x t for the Soft Drop and ()()*ˆ;I kφ ⊕x t for the Learned
MIA. We compute this value for different number of traces q . This gives an es-
timation of the normalized distinguisher for the correct key.

2) The most accurate estimation is obtained for the highest value of q .
Therefore, taking the average over a large number of experiences for this highest
value of q gives a good estimation of the Expectation of the estimator.

3) Then we calculate, for every value of q the bias and the variance of the es-
timator, and the Average MSE is obtained using the formula:

2MSE Bias Variance= + .
We have plotted in Figure 15 and Figure 16 the Average MSE for the two

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 23 Journal of Information Security

Figure 15. Average MSE for the learned MIA distinguisher.

Figure 16. Average MSE for the soft drop distinguisher.

distinguishers. In order to be more relevant, we have plotted the logarithm of the
MSE. Furthermore, we have chosen to plot the MSE separately as the distin-
guishers are not comparable.

The MSE for the Learned MIA Distinguisher stays almost constant with the
improvement of the learning phase whereas the MSE of the Soft Drop Distin-
guisher is much smaller. This means that a better learning phase gives a much
better estimator of the distinguisher.

To understand more deeply this MSE, we separate bias and variance for these
two distinguishers. The results are computed in Figure 17 for the Learned MIA
Distinguisher and Figure 18 for the Soft Drop Distinguisher.

We notice the following aspects:
 For the Soft Drop Distinguisher, the bias is almost equal to zero. In fact, the

MSE is the variance.
 For the Learned MIA Distinguisher, it is mainly the opposite: the biggest part

of the MSE is the bias.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 24 Journal of Information Security

Figure 17. Variance and bias of the learned MIA distinguisher.

Figure 18. Variance and bias of the soft drop distinguisher.

To conclude with the MSE, the Soft Drop Distinguisher improves because the

estimator has a much smaller variance with a better learning phase. Meanwhile,
the Learned MIA Distinguisher does not improve because it is a biased estimator
and a better learning phase does not reduce this bias.

6. Success Rate in Presence of External Noise

The measurement setup used in simulation (Section 4) and on real-world traces
(Section 5) is ideal. Indeed, the only considered noise is said algorithmic, i.e., it
consists in the varying timing which arises from the parts of the algorithm not
under study. In this section, we analyze the effect of noise external to the moni-
tored cryptographic algorithm. Subsection 6.1 discusses in general terms the ef-
fect of noise addition, and Subsection 6.2 details quantitatively how distribu-
tion-based distinguishers cope efficiently with noise (while moment-based dis-
tinguishers fail to resist noise).

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 25 Journal of Information Security

6.1. Effect of Measurement Noise

However, in practice, timing measurements contain a noisy part. Let us give
three examples:

1) Measure of a difference of timing between request and response from the
AES (over a network of unknown latency);

2) Use of a side-channel signal (such as the power or the electromagnetic field)
to observe the AES computation; the beginning and the end of an AES are easy
to identify, as they consist of sixteen consecutive operations (namely sixteen
XOR making up the AddRoundKey operations). As these patterns have a re-
markable signature, they can be extracted with great accuracy thanks to a mere
cross-correlation. Still, the AES itself might not be executed in constant time,
hence some alignments issues;

3) Use of a cache attack, which would disclose that the program flows entered
and exited the AES function. However, the timing for access to cache is non de-
terministic.

Let us denote the variance of the added noise as 2σ .
Now, it is known that any additive distinguishers (which is the case of our dis-

tinguishers), the number of traces to recover the secret for a given success rate is
inversely proportional to the inverse of the signal-to-noise ratio (see e.g. Corol-
lary 2 of [23]).

As a direct consequence, we can predict the complexity of the attacks when IC
and DC are disabled. It can be seen in Figure 7 that the timing variation is about
divided by three (from ≈20 to ≈8) when the DC is disabled. Therefore, the
number of required traces to recover the key is about multiplied by three.

In addition, we can approximate the required number of traces to extract the
key in presence of external noise of standard deviation σ . In our case-study of
OpenSSL AES on ARM, the algorithmic noise has standard deviation about 20
clock cycles (see Figure 1 and Figure 2).

So, if the external noise has standard deviation 20σ < , the impact is small.
But when 20 1σ > , the influence of the external noise becomes preponderant.
As the algorithmic noise and the external noise are independent, the number of
traces required to extract the key will actually grow linearly with σ as soon as

20 1σ .

6.2. Comparison with Existing Methods in the Presence of Noise

In this subsection, we aim at comparing our distribution-based method with the
existing methods (moment-based method mentioned in Table 1). In particular,
we focus on the representative Bernstein correlation [9] with a learned model
[the timing expectation for each value of the target AES byte], that we refer to as
“CPA”. This “CPA” between timing measurements and the learned average of
timing per byte of the key does not suffer from the empty bin issue. We start by
a comparison with little external noise. In this case, we have plotted in Figure 19
the success rate for both the soft drop distinguisher and the CPA. The x axis

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 26 Journal of Information Security

Figure 19. Comparison between CPA and soft drop distinguisher at 80% of success rate.

represents the number of traces for the profiling phase while the y axis is the
number of traces needed during the attack to reach 80% of success rate. We no-
tice that the CPA performs better than the soft drop method, for any profiling
(even when learning with several million of traces). This can be due to bias be-
tween the profiled distribution and the attack distribution.

However, in a practical case, we encounter noisy timing leakages. In order to
compare our methods with the existing methods (such as CPA) in the presence
of external noise, we plotted Figure 20. In this figure, we took a good profiling
phase (6ˆ 3 10q = ×), i.e., profiling is performed on sufficiently enough traces.
This figure is obtained for a noisy timing, which is the nominal time to compute
AES (as in Subsection 2.2), where the noise follows the following law:

()
0 added time with probability 50%,

added , a number of clock periods ,with probability 50%.T T

 ∈

 (32)

This models the interruption of the CPU from a peripheral when AES is bare
metal, or a descheduling of the AES process during one time slot on systems
with an operating system (OS). Indeed, such events have the consequence, when
they occur, to add a long period of time (often as long or even longer than the
duration of the AES) to the encryption time, so that the interruption can be
served, or so that the OS re-schedules the AES process. We notice that, in such
case, it is more interesting to compute one of our methods, rather than pre-
viously existing methods such as CPA. Indeed, distribution-based profiling is
more accurate than CPA estimation with noisy signals. For instance, the results
from Hassan Aly and Mohammed ElGayyar [24] show that 222 encryptions are
required for a key extraction on more recent processors (Pentium Dual-Core
and Core 2 Duo), which is significantly more than that used by Bernstein CPA

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 27 Journal of Information Security

(a)

(b)

Figure 20. Success rate for soft drop versus CPA for small noise and noise of standard
deviation 50T = (recall (32)). (a) Standard deviation = 5; (b) Standard deviation = 50.

in his original attack [25]. The authors of this paper remark incidentally that the
best method is not to use correlation with the means of each class, but with the
minimum value in each class. This confirms that the complexity of the distribu-
tions is better suited for distinguishing that simply the average per class. This
justifies that our study focuses on distribution-based distinguishers (more robust
to binary noise situations encountered while measuring durations) rather than
moment-based distinguishers (recall Table 1).

7. Conclusion and Perspectives

We have derived several “information-theoretic” distinguishers as possible solu-
tions to the empty bin issue. Some of them, like the Dirichlet Prior and the Of-
fline-Online distinguishers, required the computation of novel distributions. We
have shown in particular that the empty bins, previously believed to be an an-
noyance and dropped accordingly, can turn out to be valuable assets for the at-
tacker as long as they are treated carefully. Throughout the paper, real timing
data are used, making the results very practical.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 28 Journal of Information Security

We have also compared the various distinguishers under two frameworks: a
simulated test with synthetic leakage and real-world timing attacks. In both cases,
we noticed that the outcome of the attacks depends on the quality of the profil-
ing stage. A good profiling improves the results, where the best distinguisher
seems to be the Soft Drop Distinguisher. A poor profiling makes the traditional
distinguishers break down. More sophisticated solutions like Offline-Online
Profiling and Learned MIA distinguishers are very useful in this case. A possible
way to investigate more on this aspect is to use more powerful statistical tools in
order to extract the most precise model for the Learned MIA Distinguisher.

The interesting aspect of the studied timing attack is that one does not have to
make any assumption on the leakage model. In addition to this, the main ad-
vantage of the new distinguishers is that the empty bin issue is completely solved.
We also introduced distinguishers which can jointly exploit offline and online
side-channel measurements. As an interesting perspective, our approach could
advantageously be analyzed using the “perceived information” metric recently
introduced by Standaert et al. in ([26], Equation (1)).

Another perspective would be to compare our information-theoretic attacks
with attacks based on machine learning techniques. Surprisingly and contrary to
results reported in other papers, our preliminary results show that SCA based on
support vector machines [27] has poor performance, even when profiling with
very few traces (q̂ is small), which may be due to the univariate nature of the
leakage.

An interesting observation is that writing cryptographic code robust to timing
attacks is challenging. While the OpenSSL code for AES has no obvious flaw
(such as unbalanced branches which depend on sensitive data), the timing of
AES is data-dependent, due to microarchitectural features of the studied ARM
core. There seem to exist two classes of solutions against timing attacks: The first
aims at randomizing the execution timing, as studied for instance in [6]. Such an
implementation can still be attacked with high-order distinguishers, albeit with
more traces than without any protection. The second would attempt to balance
the timing, yet this requires some hardware support such as the CCM feature of
the STM32F4 processors.

Acknowledgements

Part of this work has been funded by “Archi-Sec” (Micro-Architectural Security)
2019-2023 Project, within ANR AAP Générique 2019, and by BRAINE Project
from European Union’s Horizon2020/ECSEL research and innovation program,
under grant agreement N˚876967.

Declaration

This paper is an extended version of a paper accepted at HASP workshop and
presented at Seoul, Korea, on June 18, 2016, under the title “Template Attacks
with Partial Profiles and Dirichlet Priors: Application to Timing Attacks”.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 29 Journal of Information Security

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Daemen, J. and Rijmen, V. (2002) The Design of Rijndael: AES—The Advanced

Encryption Standard. Springer, Berlin.
https://doi.org/10.1007/978-3-662-04722-4_1

[2] Schindler, W. (2000) A Timing Attack against RSA with the Chinese Remainder
Theorem. In: Koç, Ç.K. and Paar, C., Eds., Proceedings of the Second International
Workshop on Cryptographic Hardware and Embedded Systems, Lecture Notes in
Computer Science, Vol. 1965, Springer, Berlin, 109-124.
https://doi.org/10.1007/3-540-44499-8_8

[3] Schindler, W. (2002) Optimized Timing Attacks against Public Key Cryptosystems.
Statistics & Risk Modeling, 20, 191-210. https://doi.org/10.1524/strm.2002.20.14.191

[4] Brumley, D. and Boneh, D. (2003) Remote Timing Attacks Are Practical. Proceed-
ings of the 12th USENIX Security Symposium, Washington DC, 4-8 August 2003,
1-13.
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timin
g-attacks-are-practical

[5] Brumley, B.B. and Tuveri, N. (2011) Remote Timing Attacks Are Still Practical. In:
Atluri, V. and Díaz, C., Eds., European Symposium on Research in Computer Secu-
rity, Lecture Notes in Computer Science, Vol. 6879, Springer, Berlin, 355-371.
https://doi.org/10.1007/978-3-642-23822-2_20

[6] Danger, J.-L., Debande, N., Guilley, S. and Souissi, Y. (2014) High-Order Timing
Attacks. In: Proceedings of the First Workshop on Cryptography and Security in
Computing Systems, ACM, New York, 7-12.
https://doi.org/10.1145/2556315.2556316

[7] Chari, S., Rao, J.R. and Rohatgi, P. (2002) Template Attacks. In: International
Workshop on Cryptographic Hardware and Embedded Systems, LNCS, Vol. 2523,
Springer, Berlin, 13-28. https://doi.org/10.1007/3-540-36400-5_3

[8] Kocher, P.C. (1996) Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. Advances in Cryptology—CRYPTO’96, Santa Barbara,
18-22 August 1996, Vol. 1109, 104-113. https://doi.org/10.1007/3-540-68697-5_9

[9] Bernstein, D.J. (2005) Cache-Timing Attacks on AES. 1-37.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[10] Rebeiro, C. and Mukhopadhyay, D. (2012) Boosting Profiled Cache Timing Attacks
with a Priori Analysis. IEEE Transactions on Information Forensics and Security, 7,
1900-1905. https://doi.org/10.1109/TIFS.2012.2217333

[11] Weiß, M., Heinz, B. and Stumpf, F. (2012) A Cache Timing Attack on AES in Vir-
tualization Environments. 16th International Conference on Financial Cryptogra-
phy and Data Security, Kralendijk, 27 February-2 March 2012, Vol. 7397, 314-328.
https://doi.org/10.1007/978-3-642-32946-3_23

[12] Bhattacharya, S., Rebeiro, C. and Mukhopadhyay, D. (2012) Hardware Prefetchers
Leak: A Revisit of SVF for Cache-Timing Attacks. 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, Vancouver, 1-5 December 2012, 17-23.
https://doi.org/10.1109/MICROW.2012.13

https://doi.org/10.4236/jis.2021.121001
https://doi.org/10.1007/978-3-662-04722-4_1
https://doi.org/10.1007/3-540-44499-8_8
https://doi.org/10.1524/strm.2002.20.14.191
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1145/2556315.2556316
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-68697-5_9
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1109/TIFS.2012.2217333
https://doi.org/10.1007/978-3-642-32946-3_23
https://doi.org/10.1109/MICROW.2012.13

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 30 Journal of Information Security

[13] Parzen, E. (1962) On Estimation of a Probability Density Function and Mode. An-
nals of Mathematical Statistics, 33, 1065-1076.
https://doi.org/10.1214/aoms/1177704472

[14] Standaert, F.-X., Malkin, T. and Yung, M. (2009) A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks. In: Annual International Confe-
rence on the Theory and Applications of Cryptographic Techniques, LNCS, Vol.
5479, Springer, Berlin, 443-461. https://doi.org/10.1007/978-3-642-01001-9_26

[15] Heuser, A., Rioul, O. and Guilley, S. (2014) Good Is Not Good Enough—Deriving
Optimal Distinguishers from Communication Theory. 16th Workshop on Crypto-
graphic Hardware and Embedded Systems, Busan, 23-26 September 2014, Vol.
8731, 55-74. https://doi.org/10.1007/978-3-662-44709-3_4

[16] Frigyik, B.A., Kapila, A. and Gupta, M.R. (2010) Introduction to the Dirichlet Dis-
tribution and Related Processes. UWEE (University of Washington, Electrical En-
gineering) Technical Report Series, Tech. Rep. 206.

[17] Moradi, A. and Standaert, F. (2014) Moments-Correlating DPA. IACR Cryptology
ePrint Archive, Vol. 2014, 409. http://eprint.iacr.org/2014/409

[18] Moradi, A. and Standaert, F. (2016) Moments-Correlating DPA. Proceedings of the
ACM Workshop on Theory of Implementation Security, Vienna, October 2016, 5-15.

[19] Veyrat-Charvillon, N. and Standaert, F.-X. (2009) Mutual Information Analysis:
How, When and Why? In: International Workshop on Cryptographic Hardware
and Embedded Systems, LNCS, Vol. 5747, Springer, Berlin, 429-443.
https://doi.org/10.1007/978-3-642-04138-9_30

[20] Gierlichs, B., Batina, L., Tuyls, P. and Preneel, B. (2008) Mutual Information Analy-
sis. In: CHES, 10th International Workshop, Lecture Notes in Computer Science,
Vol. 5154, Springer, Berlin, 426-442.
https://doi.org/10.1007/978-3-540-85053-3_27

[21] Microelectronics, S. STM32F4DISCOVERY Discovery Kit with STM32F407VG
MCU.
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/
evalboard/product/252419.jsp

[22] NIST (2003) AES Proposal: Rijndael (Now FIPS PUB 197).
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

[23] Guilley, S., Heuser, A. and Rioul, O. (2015) A Key to Success—Success Exponents for
Side-Channel Distinguishers. Progress in Cryptology—INDOCRYPT 2015—16th In-
ternational Conference on Cryptology in India, Bangalore, 6-9 December 2015, Vol.
9462, 270-290. https://doi.org/10.1007/978-3-319-26617-6_15

[24] Aly, H. and ElGayyar, M. (2013) Attacking AES Using Bernstein’s Attack on Mod-
ern Processors. Progress in Cryptology—AFRICACRYPT 2013, 6th International
Conference on Cryptology in Africa, Cairo, 22-24 June 2013, Vol. 7918, 127-139.
https://doi.org/10.1007/978-3-642-38553-7_7

[25] Bernstein, D.J. (2005) Cache-Timing Attacks on AES.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[26] Renauld, M., Kamel, D., Standaert, F.-X. and Flandre, D. (2011) Information Theo-
retic and Security Analysis of a 65-Nanometer DDSLL AES SBox. In: Preneel, B.
and Takagi, T., Eds., International Workshop on Cryptographic Hardware and
Embedded Systems, LNCS, Vol. 6917, Springer, Berlin, 223-239.
https://doi.org/10.1007/978-3-642-23951-9_15

[27] Heuser, A. and Zohner, M. (2012) Intelligent Machine Homicide: Breaking Crypto-

https://doi.org/10.4236/jis.2021.121001
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-662-44709-3_4
http://eprint.iacr.org/2014/409
https://doi.org/10.1007/978-3-642-04138-9_30
https://doi.org/10.1007/978-3-540-85053-3_27
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/evalboard/product/252419.jsp
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/evalboard/product/252419.jsp
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
https://doi.org/10.1007/978-3-319-26617-6_15
https://doi.org/10.1007/978-3-642-38553-7_7
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/978-3-642-23951-9_15

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 31 Journal of Information Security

graphic Devices Using Support Vector Machines. In: Schindler, W. and Huss, S.A.,
Eds., International Workshop on Constructive Side-Channel Analysis and Secure
Design, LNCS, Vol. 7275, Springer, Berlin, 249-264.
https://doi.org/10.1007/978-3-642-29912-4_18

https://doi.org/10.4236/jis.2021.121001
https://doi.org/10.1007/978-3-642-29912-4_18

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 32 Journal of Information Security

Appendix

We have copied here the OpenSSL C code for the encryption function. We no-
tice that this is a straight line code, and that there is a use of Look Up Tables (the
T boxes) that may cause the non constant time.

https://doi.org/10.4236/jis.2021.121001

E. De Chérisey et al.

DOI: 10.4236/jis.2021.121001 33 Journal of Information Security

https://doi.org/10.4236/jis.2021.121001

	Information Theoretic Distinguishersfor Timing Attacks with PartialProfiles: Solving the EmptyBin Issue
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Derivations
	2.1. Notations and Assumptions
	2.2. About Empty Bins

	3. Distinguishers Which Tolerate Empty Bins
	3.1. Building Distributions or Models
	3.2. Robust Distinguishers

	4. Simulated Results
	4.1. Presentation of the Simulated Model
	4.2. Attack Results

	5. Results on Real Devices
	5.1. The ARM Processor
	5.2. Weaknesses—Non Constant AES Time
	5.3. Characterizing the Leakages for Data Cache on
	5.4. Attack Results
	5.5. Nature of Empty Bins
	5.6. Study on the Mean-Square Error

	6. Success Rate in Presence of External Noise
	6.1. Effect of Measurement Noise
	6.2. Comparison with Existing Methods in the Presence of Noise

	7. Conclusion and Perspectives
	Acknowledgements
	Declaration
	Conflicts of Interest
	References
	Appendix

