
Persistent Fault Analysis with Few
Encryptions

Sébastien Carré1,2, Sylvain Guilley1,2,3(B), and Olivier Rioul2

1 Secure-IC S.A.S., Think Ahead Business Line, Paris, France
sylvain.guilley@secure-ic.com

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

Abstract. Persistent fault analysis (PFA) consists in guessing block
cipher secret keys by biasing their substitution box. This paper improves
the original attack of Zhang et al. on AES-128 presented at CHES 2018.
By a thorough analysis, the exact probability distribution of the cipher-
text (under a uniformly distributed plaintext) is derived, and the maxi-
mum likelihood key recovery estimator is computed exactly. Its expres-
sion is turned into an attack algorithm, which is shown to be twice more
efficient in terms of number of required encryptions than the original
attack of Zhang et al. This algorithm is also optimized from a computa-
tional complexity standpoint. In addition, our optimal attack is naturally
amenable to key enumeration, which expedites full 16-bytes key extrac-
tion. Various tradeoffs between data and computational complexities are
investigated.

Keywords: Persistent fault analysis · Substitution box · Maximum
likelihood distinguisher · Key enumeration

1 Introduction

Cryptographic algorithms are generally “mathematically secure”. As an exam-
ple, the current best mathematical attack on AES cryptosystem is the biclique
attack [4] that has a complexity of 2254.4 for AES-256. However, the imple-
mentation of a cryptographic algorithm can leak information that can greatly
reduce the complexity of attacks. For example, any implementation for which the
encryption time or the power consumption depends on the secret key gives the
attacker some sensitive information about that key. Attacks exploiting physical
leakages are known as side-channel attacks. Another class of attacks, known as
fault attacks [1,5,7,12], deliberately creates errors in the cryptographic algorithm
to help the attacker find the secret key. There are many types of fault attacks.
Differential fault attacks [3,8,16,18,21] compare a faulted ciphertext with a cor-
rect one. Statistical fault attacks [10] perform multiple faulted encryptions to get
sensitive information through statistical tools. Persistent fault attacks [6,20,23]
consist in making a fault that remains persistent during the whole encryption
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 3–24, 2021.
https://doi.org/10.1007/978-3-030-68773-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_1

4 S. Carré et al.

and across several consecutive encryptions. Persistent fault injection can be
performed in various ways: laser injection [19], which requires a local access
and which is possibly expensive; RowHammer attack [2,9,11,14,17] or Plunder-
Volt [13] which can be triggered remotely and which do not require any expensive
laboratory equipment. Combining fault attacks with side-channel attacks subse-
quently gives an attacker the ability to break a cryptosystem in a very efficient
way.

1.1 Zhang et al.’s Attack

The attack of Zhang et al. [23] focuses on injecting a fault in the SBOX of AES
that is used to perform the SubBytes operation. Such a fault eliminates an ele-
ment y− of the SBOX and creates a new one y+ != y− instead. As a consequence,
the element y+ appears twice in the SBOX after the fault injection. This results
in a bias on the output of the SubBytes operation: Assuming a uniformly dis-
tributed input, the value y− cannot be observed at all as the output, while the
value y+ is observed with a higher probability of 2/256; other values are observed
with an unchanged probability of 1/256. The resulting output probability dis-
tribution D is then

D : P(y) =






0 if y = y−,
2/256 if y = y+,
1/256 otherwise.

(1)

The attack of Zhang et al. [23] requires enough encryptions to obtain an empirical
distribution where only one element per byte is not observed, as shown in Fig. 1.
From such never observed byte value x−, the key byte can be obtained as k =
x− ⊕ y−.

Because each AES round gives a 16-byte output and consumes a 16-byte key,
there are 16 possible biased distributions for an AES output, which only differ
by the key byte value. In Fig. 1, each subplot represents one byte distribution
among the 16 bytes of an AES ciphertext.

Thus, for the attack of Zhang et al. to work, the number of required encryp-
tions should be such that all values are observed but one. This is an instance of
the coupon collector problem. Figure 2 shows the success rate of the reproduced
Zhang et al. [23] attack to recover a full 128 bits AES key. Their attack typi-
cally requires more than 2500 encryptions to obtain the AES master key with
probability ≥ 80%.

1.2 Contributions

The Zhang et al. [23] attack assumes a uniform distribution at the input of the
last round SBOX. Since the faulted SBOX is used in each AES round, it is not
obvious that this uniformity assumption actually holds. In this paper, we assume
that the fault location and the fault value are known by the attacker. We first
give a formal proof of uniformity at the input of the last round SBOX, thanks

Persistent Fault Analysis with Few Encryptions 5

Fig. 1. Empirical distributions for each byte of the ciphertext. The bias depends on
the last round key value.

Fig. 2. Success rate of the Zhang et al. attack over 1000 retries to recover the complete
AES key. With such a strategy, the attacker needs at least 2500 encryptions to obtain
the AES master key with probability ≥ 80%.

6 S. Carré et al.

to a property of the MixColumns operation. Then, under this assumption, the
maximum likelihood estimator for n encryptions is determined and an efficient
attack algorithm is derived from this estimator. The maximum likelihood prin-
ciple aims at maximizing the probability of obtaining the correct key.

The attack of Zhang et al. only exploits the only element x− that is never
observed, but does not exploit the fact that another element is more likely to be
observed than the others. When relatively few encrypted messages are collected,
there may be more than one element not observed. Therefore, there are as many
key candidates as unobserved elements, which are equally likely. To prevent these
limitations, we leverage the maximum likelihood principle to optimize the attack.

The proposed attack improves the state-of-the-art performance by reducing
the required number of encryptions. Less encryptions can still give the correct key
without having to use a full instance of the coupon collector problem. Specifically,
about 1000 encryptions are required to get a success rate of 80% with our strategy
compared to about 2500 encryptions for the attack of Zhang et al. Besides, we
detail a computationally efficient version of the attack algorithm.

Reducing the number of encryptions is important in a product evaluation
context that uses, for instance, the Common Criteria (ISO/IEC 15408) since it
influences the quotation. Indeed, in Common Criteria parlance, the quotation is
a score which results from a combination of different factors, including time for
trace collection and time for analysis.

More important, our result allows to calibrate one countermeasure against a
persistent fault analysis: We derive a lower bound on the number of encryptions
to successfully extract the correct key and the designer can simply refresh the key
more frequently than this bound to avoid such attack. The number of encryptions
can further be reduced thanks to a key enumeration algorithm. Our analysis is
very amenable to such enumeration since it provides likelihoods to each subkey.

This paper also improves the proposed attack using various techniques such
as key byte enumeration and key combination, exploring multiple strategies for
each technique.

The attack presented in this paper is optimal for full key recovery since it
is optimal at byte level in term of number of traces and also computationally
optimal at the combination level of all bytes.

1.3 Outline

This paper is organized as follows. Section 2 mathematically shows that, even if
the SubBytes operation gives a biased distribution due to a persistent fault, this
bias is eventually cancelled by the MixColumns operation. Section 3 improves
Zhang et al. attack: An algorithm to find the most probable key for each last
round key is developed in Subsect. 3.1. Then, multiple combination strategies
are discussed in Subsects. 3.2 and 3.3 in order to find the complete last round
key and eventually the master key. Subsection 3.4 compares the success rate of
our approaches compared to the one of Zhang et al. Section 4 concludes and
gives some perspectives.

Persistent Fault Analysis with Few Encryptions 7

2 Bias Cancelling Effect of MixColumns

The attack of Zhang et al. is possible provided the distribution of the last round
SubBytes operation is uniformly distributed. This assumption is not obvious
since the output of SBOX in each AES round is not uniformly distributed due
to the persistent fault which biases the SBOX. Proposition 1 shows that, in the
context of this paper, the MixColumns operation returns a uniform distribution
even for a biased input (output of corrupted SubBytes). Therefore, as AES con-
sists in alternations between SubBytes and MixColumns (and other functions
such as ShiftRows and AddRoundKey which do not change the distributions),
provided the plaintext is uniformly distributed, so is the output of each Mix-
Columns at every round.

Lemma 1 (Convolutional Identity). For any u ∈ F256, we have
∑

b∈F256

D(b)D(u − b) =
1
256

(
1 +D(u+ y+) − D(u+ y−)

)
. (2)

where y− and y+ were defined in Subsect. 1.1.

Proof. Observe that (1) writes D(b) = 1
256 (1 + 1{y+}(b) − 1{y−}(b)). Therefore

256
∑

b∈F256

D(b)D(u − b) =
∑

b∈F256

(1 + 1{y+}(b) − 1{y−}(b))D(u − b)

=
∑

b∈F256

D(u − b) +D(u+ y+) − D(u+ y−)

= 1 +D(u+ y+) − D(u+ y−)

&'

Lemma 2 (Uniformity of the AES State Bytes). If the plaintext is uni-
formly distributed, then any intermediate variable in the AES algorithm is also
uniformly distributed.

Proof. AES being a Substitution-Permutation Network (SPN), each operation
is bijective on the states. Therefore, uniformity property is maintained from the
plaintext down to any intermediate state. &'

Corollary 1 (Uniformity Implies Independence). Provided the AES plain-
text is uniformly distributed, all bits or bytes at any stage of the algorithm are
mutually independent.

Therefore, under the hypothesis of plaintext uniformity, the input bytes of the
MixColumns operation are independent.

Proposition 1 (Bias Cancelling Effect of MixColumns). Let y−, y+ ∈
F256 and distribution D be defined by Eq. (1). Let B0, B1, B2, B3 ∈ F256 be
four bytes representing an AES state column before a MixColumns operation,
independent and identically distributed according to distribution D. Then each
byte Z0, Z1, Z2, Z3 ∈ F256 representing an AES state column after a MixColumns
operation is uniformly distributed.

8 S. Carré et al.

Proof. For any z ∈ F256, given the assumed independence of B0, B1, B2, B3:

P(Z0 = z) = P(02B0 + 03B1 +B2 +B3 = z)

=
∑

b0,b1,b2∈F256

P(02b0+03b1+b2+B3=z|B0=b0, B1=b1, B2=b2)D(b0)D(b1)D(b2)

=
∑

b0∈F256

D(b0)
∑

b1∈F256

D(b1)
∑

b2∈F256

D(b2)P(B3 = z − 02b0 − 03b1 − b2)

=
∑

b0∈F256

D(b0)
∑

b1∈F256

D(b1)
∑

b2∈F256

D(b2)D(z − 02b0 − 03b1 − b2). (3)

where the + (XOR) sign denotes addition (same as subtraction) in F256. Using
Lemma 1, Eq. (3) is simplified by collapsing the sums using Eq. (2). Each sum
(lefthand-side of Eq. (2)) generates three terms (righthand-side of Eq. (2)), and
the first constant term further simplifies by noting that

∑
b∈F256

D(u − b) = 1.
After three recursive applications of Eq. (2), Eq. (3) becomes:

P(Z0 = z) =
1
256

+
1

2563





D(z+02y++03y++y+) −D(z+02y−+03y++y+)
− D(z+02y++03y−+y+) −D(z+02y++03y++y−)
+ D(z+02y−+03y−+y+) +D(z+02y−+03y++y−)
+ D(z+02y++03y−+y−) −D(z+02y−+03y−+y−)





where we observe that the terms in D pairwise cancel, as per:

D(z + 02y+ + 03y+ + y+) = D(z + 0) = D(z + 02y− + 03y− + y−),
D(z + 02y− + 03y+ + y+) = D(z + 02(y+ + y−)) = D(z + 02y+ + 03y− + y−),
D(z + 02y+ + 03y− + y+) = D(z + 03(y+ + y−)) = D(z + 02y− + 03y+ + y−),
D(z + 02y− + 03y− + y+) = D(z + y+ + y−) = D(z + 02y+ + 03y+ + y−).

Hence P(Z0 = z) = 1/256, the uniform distribution. &'

The independence hypothesis in Proposition 1 assumes the rounds prior to
the last round are executing the genuine AES, so that Lemma 2 applies, and
yields the independence between any tuple of bytes in an AES intermediate
state.

This proposition considerably simplifies the modeling of the problem, and
allows us to derive exact results in the sequel. Additionally, the obtained uni-
formity at the output of the MixColumns operation, despite SubBytes is not
uniform (after persistent fault), makes it possible to prove that, provided the
plaintext is uniformly distributed, all configurations are explored, hence attack
success rate does reach 100% asymptotically.

This proposition also shows that only one MixColumns operation is required
to cancel the bias. This is confirmed by taking many observations and building
the empirical distribution from these observations as shown in Fig. 3 where each
element indeed appears to have the same probability to be observed. This means
that one can consider the input of the last round as being uniformly distributed,
no matter where the persistent fault occurred.

Persistent Fault Analysis with Few Encryptions 9

Fig. 3. Empirical distribution of a byte of an AES state after a MixColumns operation
that takes a small biased input given by distribution D of Proposition 1.

3 Improvement Using Maximum Likelihood

This section explains how the Zhang et al. attack can be improved. First of all,
the most likely key value for each byte of the last round key is extracted. In
this step, each key per byte of the last round key is ranked from the most to
the least probable. Then, a combination strategy is used to guess each byte of
the last round key in a complete 128-bit last round key. Eventually, the correct
master AES key is extracted from that last round key. Note that the value of
the last round key is not necessarily the correct one, typically when the key
schedule uses the faulted SBOX. This situation can be considered marginal,
since most of the time, the keys are scheduled once, then reused multiple times.
Hence, if the permanent fault in the SBOX occurs after the key is scheduled,
then the round keys are correct, and the master key can be recovered from the
last round key. Otherwise, the key schedule can also be inverted, although with
some uncertainty: when a key byte is equal to y+, then the two antecedents shall
be considered when inversing the round of the key schedule. The number of
possible master keys is in the order of 2

256 × 16× 10 (< 2), which is manageable
to enumerate.

3.1 Optimal Distinguisher

In this section, n AES encryptions are used to find the most probable key. For
pedagogical reasons, only the first byte of an AES ciphertext is considered in this
section, but other bytes are treated in a similar way. For the same reason, only
the first byte of the last round key is considered. In this section, the term key
refers to one byte of the last round key of AES. Precisely, this section focuses on
the extraction of the last round key. From these n encryptions, n bytes x1, . . . , xn,
that can be viewed as elements of F256, are observed.

10 S. Carré et al.

Maximum Likelihood Optimality. This section shows that the application
of the MLE is optimal in the sense that it maximizes the attack success rate in
a Bayesian context.

Figure 4 summarizes the idea of the attack until the success to find one byte
of the last round key. In this illustration, y− = 0x63 and y+ = 0x41. This section

Fig. 4. Fault model and attack principle for this paper (with y− = 0x63, y+ = 0x41).

first assumes that each possible key is equally probable before any observation,
meaning that P(k) = 1/256 for each of the 256 possible keys k. Note that the
fault also alters the round keys since the key scheduler uses SBOX. However, the
biased output of an SBOX in the key scheduler is added to a uniform random
variable in F256 before to output a round key. This eventually gives uniformly
distributed round keys. Thus, even with the fault, it makes sense to assume a
uniform distributed key for each of the AES round before any observations. Then,
these probabilities are updated after the observations. This is then a Bayesian
context of statistical inference in which this paper is written.

Finding the most probable key k means finding the key that maximizes
the conditional probability P(k | x1, . . . , xn) for observations x1, . . . , xn. This
is a well known problem in a Bayesian context known as Maximum a posteri-
ori (MAP) estimator that is a generalisation of Maximum Likelihood Estimator
(MLE). These estimators are defined in the Definition 1.

Definition 1 (MAP and MLE). Given a joint distribution of k, x1, . . . , xn

of such distribution, we define two estimators:

– Maximum A Posteriori (MAP) estimator k̂MAP = argmax
k

P(k | x1, . . . , xn).

– Maximum Likelihood Estimator (MLE) k̂MLE = argmax
k

P(x1, . . . , xn | k).

Persistent Fault Analysis with Few Encryptions 11

For uniformly distributed key hypotheses the estimators coincide:

Lemma 3 (MAP=MLE for Uniform Distribution). In a Bayesian con-
text, k̂MAP = k̂MLE for a uniform a priori distribution of k.

Lemma 3 is a classical result but we include its proof for completeness.

Proof. MAP is defined as k̂MAP = argmax
k

P(k | x1, . . . , xn). By Bayes’ formula,
this also writes

k̂MAP = argmax
k

P(x1, . . . , xn | k)P(k)
P(x1, . . . , xn)

= argmax
k

P(x1, . . . , xn | k)P(k)

since P(x1, . . . , xn) does not depend on k. Moreover, for a uniform a priori dis-
tribution, P(k) is constant and, therefore,

k̂MAP = argmax
k

P(x1, . . . , xn | k) = k̂MLE .

&'

Since we assume that, before any observation, each possible key has the same
probability, MLE is used to compute the MAP and find the most probable key.
The choice of using MLE instead of directly computing MAP is motivated by
the fact that, since observations are independent, computing P(x1, . . . , xn | k)
is much easier that computing P(k | x1, . . . , xn), since the former simplifies to
a product P(xi | k) = D(xi ⊕ k) for all 1 ≤ i ≤ n. This distribution can be
extended for multiple observations. Such distribution is given in the Lemma 4.

Lemma 4 (Computation of the Likelihoods). Given k, y−, y+ ∈ F256, y− !=
y+,

P(x1, . . . , xn | k) =
{
0 if ∃i, 1 ≤ i ≤ n | xi ⊕ k = y−,

2mk,2−8n otherwise

where mk,2 = #{i ∈ {1, . . . , n} | xi ⊕ k = y+}.

Proof. Since the observations are conditionally independent given k, one has
P(x1, . . . , xn | k) =

∏n
i=1 P(xi | k) =

∏n
i=1 D(xi ⊕ k). This product is equal to

zero if at least one D(xi ⊕ k) is equal to zero. For a given k, there is only one
element xi for which D(xi ⊕ k) = 0 since it can only happen when xi ⊕ k = y−

where y− is the only element that is never observed at the output of the SBOX
due to the fault. If no such term is equal to zero, then there are two options:

– if xi ⊕ k = y+, then D(xi ⊕ k) = 2
256 since y+ appears twice at the output of

the faulted SBOX;
– otherwise, xi ⊕ k != y+ and xi ⊕ k != y−. Thus xi ⊕ k only appears exactly
once in the faulted SBOX and D(xi⊕k) = 1

256 , which happens for 254 SBOX
unique outputs.

12 S. Carré et al.

Thus, P(x1, . . . , xn | k) is equal to

n∏

i=1

P(xi | k) =




∏

i|xi⊕k=y−

0








∏

i|xi⊕k=y+

2
256








∏

i|xi⊕k %∈{y−,y+}

1
256





= (0)mk,0

(
1
256

)mk,1 (
2

256

)mk,2

=
{
0 if ∃i | xi ⊕ k = y−,(

1
256

)mk,1 (
2

256

)mk,2 otherwise

where we have noted mk,0 = #{i | xi⊕k = y−}, , and mk,2 = #{i | xi⊕k = y+}.
Note that mk,0 +mk,1 +mk,2 = n. Moreover, when P(x1, . . . , xn | k) != 0, one
has mk,0 = 0, thus mk,1 = n − mk,2. Therefore, when there is no i, 1 ≤ i ≤ n,
such that xi ⊕ k = y−, one has

P(x1, . . . , xn | k) =
(

1
256

)n−mk,2 (
2

256

)mk,2

=
1

256n
2mk,2 = 2mk,2−8n.

&'

From Lemma 4, a two-step strategy is developed to find the correct key:

1. Eliminate keys that have the value x ⊕ y− for each observation x since the
probability to observe such element is null;

2. Among the remaining keys, declare the most likely key to be the one that has
the value x+ ⊕ y+, for an observation x+ that appears the most often among
all the observations. Indeed, x+ is the value that should appear the largest
number of times, owing to Lemma 4.

This strategy is optimal in the sense that it maximizes the likelihood. We
now go one step further by applying the strategy without actually computing the
probabilities. The computationally efficient strategy is exposed in our Proposi-
tion 2.

Proposition 2 (Operational MLE Computation for PFA). Consider n
observations of ciphertext bytes {x1, . . . , xn}, and known PFA characteristic val-
ues y−, y+ ∈ F256, y− != y+. Define

A = {x ⊕ y− | x ∈ F256 − {x1, . . . , xn}}
Bj = {i ∈ {1, . . . , n} | xi = j and xi ⊕ y+ ∈ A} (0 ≤ j ≤ 255)

We have k̂MLE ∈ A, and k̂MLE is the index of Bj which is the largest set, i.e.,
k̂MLE = argmaxj(#{Bj}).

Proof. First, note that {x ∈ F256 − {x1, . . . , xn}}} and {x ∈ {x1, . . . , xn}}} are
complementary sets. This implies that A and are complementary. Since P(xj |
k) = 0 for xj ⊕ k = y−, then value k != xj ⊕ y−. Thus, k̂MLE ∈ A.

For the second point, we note that Bm contains the element that is the most
often observed for which the condition xm ⊕ y+ ∈ A holds. In other word, xm is
the most often observed value after removing elements xi such that xi ⊕ y− = k.

Persistent Fault Analysis with Few Encryptions 13

The proof then consists in showing that the maximum likelihood estimator
is given by eliminating values k such that xi ⊕ k = y− and for which xi appears
the most often. Let k̂ = argmaxk P(x1, . . . , xn | k) be the maximum likelihood
estimator. The values of k such as xi ⊕ k = y− for at least one observation
give P(x1, . . . , xn; k) = 0. Such keys can then be eliminated from the maximiza-
tion. Since m +→ 2m−8n is strictly increasing in variable m ∈ N, we have that
argmaxk 2mk,2−8n = argmaxk mk,2, i.e., the most likely key values are the values
k that maximize mk,2 (amongst k values which have not been ruled out). &'

Note that the set A contains all the possible keys. Thus, all impossible keys
have been eliminated to get this set. This is the first remarkable point of our
strategy. The elements contained in each class Bj are chosen in such a way that
they match with a possible key. For the correct key, one observation has to
appear the most often compared to the others. This observation can then be
found by taking the class Bj that has the maximum number of elements. This
is the second peculiarity of our strategy.

Based on Proposition 2, Algorithm 1 consists in eliminating the impossible
keys and selecting the most likely one through the most observed value. Note
that line 5 of this algorithm counts the number of times a key, related to an
observation, can be observed and also takes care to only select possible keys by
using the term A[xi ⊕ y−] that is equal 0 for the key k = xi ⊕ y−. At line 2,
the algorithm discards a key candidate if the value k = xi ⊕ y− is not already
in set A. Therefore, the set of impossible keys is increasing with respect to the
inclusion. When all the 255 unique values of the ciphertexts xi have been seen,
the set A has cardinality 255, and the algorithm returns the key (in a singleton).
As a corollary, when the correct key is found, more ciphertexts do not alter the
outcome of the attack. This behavior differs from that of side-channel attacks
where the measurements are noisy (e.g., powerline attacks, etc.).

Algorithm 1: Algorithm to extract the most likely key
input : The SBOX erased value y− ∈ {0, . . . , 255}, the SBOX duplicated value

y+ #= y−, and n observations (x1, . . . , xn) of ciphertext bytes.
output: Most likely key

1 h[256] ← 0, . . . , 0 // Histogram storing the occurrence count of a
possible key. Notice that h[j] = #{Bj} as per proposition 2

2 A[256] ← 1, . . . , 1 // Indicator of the set of possible keys. A[k] = 1 if
k is a possible key, otherwise A[k] = 0

3 for i ∈ {1, . . . , n} do // Iterating on the observations
4 A[xi ⊕ y−] ← 0 // Eliminate impossible key xi ⊕ y−. This builds the

set A of proposition 2
5 h[xi ⊕ y+] ← A[xi ⊕ y+] × (h[xi ⊕ y+] + 1) // Among the remaining keys,

count the ones that appear the most

6 return argmaxj h[j] // Returns a list in case of ex æquo keys

14 S. Carré et al.

Fig. 5. P(k̂ = k) for one byte of multiple last round key of AES, averaged over 1 000
tries.

In our case, k is an AES last round key and an observation is a byte resulting
from an encryption. We evaluate the number of required encryptions for all of
the 256 possible keys. Figure 5 gives the success rate. The maximum likelihood
estimator is known to be consistent. Thus, P(k̂ = k) = 1 for enough observations,
where k is the correct key. For clarity, only 7 keys are represented in this figure.
However, the 256 possible keys follow the same trend.

Figure 6 shows how many key bytes remain, averaged over 1000 set of plain-
texts, possible as a function of the number of encryptions by considering only
the keys that are eliminated from the first figure or the keys that maximize the
likelihood. Note that, some keys have the same likelihood and, thus, multiple key
can maximize the likelihood. Note that the number of keys that maximizes the
likelihood can locally increase but will eventually decrease down to 1. For less
than 800 encryptions, the figure shows that more than 15 keys byte candidates
are possible.

A Note About Guessing Entropy. Another approach to find a key k such as
P(x1, . . . , xn | k) is maximal from n observations is to use the guessing entropy
defined as GE =

∑256
i=1 kP(x1, . . . , xn | k) where {P(x1, . . . , xn | k)} are sorted in

decreasing order. Due to this sort, the guessing entropy is approximately equal
to 1 if P(x1, . . . , xn | k) is the biggest probability and other are small relatively
to it. We thus estimate the number of observations required to get GE = 1
and observe that the guessing entropy becomes equal to 1 between 1200 and
1400 observations meaning that we require between 1200 and 1400 observations
to be able to get the AES master key. This mean that, between 1200 to 1400
encryptions are required to get the correct key.

Persistent Fault Analysis with Few Encryptions 15

Fig. 6. Remaining values of one byte of last round keys after eliminating impossible
keys (blue) and remaining values of one byte of last round keys that maximize the
likelihood (black), averaged over 1000 tries. The line y = 256 − x is represented as
a reference, to illustrate the optimistic situation where one values of one byte of a
last round key hypothesis is ruled out at each new encryption (never twice the same
ciphertext byte).

3.2 Key Byte Ranking

Algorithm 1 returns not one unique value of a byte of the last round key, but
a set of values of a byte of the last round key (since there are possibly ties in
the likelihood values). Full 128 bits key can be reconstructed using key rank-
ing algorithms, such as [22]. Indeed, one byproduct of our attack is that, in
addition to be optimal, it is based on MLE, hence can sort out key candidates
based on probabilities. Therefore, key ranking algorithms apply in a straight-
forward manner. In most cases, this requires to modifying Algorithm 1 so that
instead of returning the most probable value of a byte of the last round key (the
argmaxj h[j] at line 6), it returns the most probable value of a byte of the last
round key sorted with decreasing probabilities.

3.3 Combination of Several Key Bytes to Reconstruct the Full Key

In case not enough observations are available, the key byte ranking (Sect. 3.2)
can fail to rank the keys correctly. In order to get around this limitation, a
combination algorithm is given in this section.

The complete last round key can be recovered by combining key byte candi-
dates in an empirical algorithm consisting in 16 imbricated loops. The first loop
(outer loop) iterates over the candidates of the first key byte. The second loop
iterates over the candidates for the second key byte and so on. Noting Ni the
number of candidates for the last round key byte i, the total number of candi-
dates for the whole last round key is N =

∏16
i=1 Ni. This product can be very

16 S. Carré et al.

large and can induce a high time complexity of the attack. For instance, for 100
candidates per byte of the last round key, we have N = 10016 last round key
candidates. More specifically, assuming the key byte rank algorithm gives the
correct key byte as the first candidate for key bytes except the first one, then
the attacker has to test between 2 × 10015 and 10016 last round key candidates
which is not practical.

One strategy to mitigate this issue is to only test a predefined maximum
number of key byte candidates. This assumes that the key byte rank algorithm
is efficient enough. For instance, assuming that the key byte rank algorithm
always rank the correct key byte between the first and the third rank, the time
complexity is then reduced from N = 10016 to N = 316. While this assumption
is not always met, for each key byte candidate, the first key byte candidate is
often the correct one and only very few key byte candidates are not correctly
ranked. Thus we can consider only the first key byte candidate for most of the
bytes and only iterate over the few other bytes. Due to this observation, our
strategy consists in building the last round key candidates through 16 stages.

The first stage consists in trying all possibilities for only one byte over the
16 bytes. This gives a maximum of 16 × 256 = 4096 possibilities. At this stage,
each of the 15 other key byte candidates is fixed to the first candidate. Those
15 bytes are called small varying bytes. If the full 128 bits key is not found, the
second stage is used.

The second stage consists in trying all possibilities for two bytes among all
combinations of two bytes among the 16 bytes. This gives a maximum number
of testing key equal to 16 × 15 × 2562. At this stage, each of the 14 other key
byte candidates is fixed to the first candidate. Those 14 bytes are called small
varying byte. If the full 128 bits key is not found, the third stage is used.

All stages are built along the same scheme for at most
∑n=16

k=1
16!

(16−k)!256
k

keys to test. Even if this appears to be a huge number, in practice the correct
key is found in the first stages. To reduce again the time complexity, we can limit
the number of byte candidates to pi for byte i instead of 256. The parameter pi
is chosen experimentally to optimize the time it takes to perform the attack can
be performed in a relatively short time.

For each stage, the small varying bytes were fixed to the first candidates. A
more general strategy consists in choosing the first n candidates instead of the
first. In such case, the maximum number of tested key is 16!

(16−i)!p
i
iα

16−i
i per stage

where αi is the value of the small varying bytes.
Table 1 gives the time required to perform the attack and get the AES master

key, according to the number of stages and the number of small varying bytes.
The rows describe the number of stages that is used to perform the attack. The
stages are used in order. For example, for 3 stages, the stage 1, 2 and 3 are used
one after the other. The columns describe the value of the small varying bytes.
For a small varying byte equal to 1, we used p1 = 256, p2 = 256, p3 = 108,
p4 = 17, p5 = 6, p6 = 3 and p7 = 1. For a small varying byte equal to 2 we used
p1 = 256, p2 = 33, p3 = 5 in the same idea to not test an excessive number of
keys. For the same reason, the stage 4 to 7 is not used in this case. For a small

Persistent Fault Analysis with Few Encryptions 17

Table 1. Time, expressed in second, required to perform the attack and get the 16-
bytes AES-128 master key, as a function of the number of stages used (in rows) and
the value of the small varying byte (in columns).

1 2 3

1 256/0.005 s 256/0.291 s 18/7.652 s

2 256/0.067 s 33/4.376 s –

3 108/2.424 s 5/5.947 s –

4 17/2.887 s – –

5 6/2.975 s – –

6 3/2.993 s – –

7 2/3.022 s – –

varying byte count equal to 3, we use only one stage with p1 = 18. Each cell of
the table reminds pi before the time ti in the format pi/ti.

Figure 7 gives a comparison of success rates, according to the number of
stages and the value of the small varying byte in the same configuration given by
Table 1. Only two stages is quite efficient compared to the success rate illustrated
in Fig. 2. The figure shows that the best curve in term of number of encryption
is for small varying byte equal to 2 with only 3 stages with 1371 encryptions.

Fig. 7. Our MLE attacks for the complete last round key of AES— Comparison of
success rates, according to the number of used stages. The value of small varying bytes
is taken equal to 1 (plain line), 2 (dotted line), and 3 (semi dotted line). One color by
number of stage is used, respectively red, green, blue, black, yellow, cyan, purple for 1,
2, 3, 4, 5, 6, 7 stages. Note that the result of stages six and seven are almost identical.
(Color figure online)

18 S. Carré et al.

3.4 Efficiencies of Key Byte Rank and Combination Algorithms

In order to test the efficiency of the key byte rank and combination algorithms,
we compare multiple strategies that are combinations of three tactics:

1. Using the key byte algorithm or not. If the key byte algorithm is not used,
the key byte candidates are tested in the order of the non observed values.

2. Getting ciphertexts until the histograms are full, meaning that all possible
values are observed, or not. If we do not require the histograms to be full, we
limit the number of candidates and stages with the better strategy discussed
before that consists in using only three stages.

3. Using the combination algorithm or not.

This leads to 23 = 8 possible strategies. However, there are 22 = 4 strategies,
for which we get enough encryption to fill the empirical histograms, that yield
the same results. Indeed, in such cases, there is only one key byte candidate and
then testing all candidates is the same than testing only one candidate. Moreover,
and for the same reason, using the key byte rank algorithm necessarily gives the
same results whether used or not. This reduces 4 strategies to only 1 and thus
only 5 strategies remain.

We also note that, if we do not use the key byte rank algorithm and if we do
not ensure a full histogram, then the success rate does not depend whether we
use the combination algorithm or not. This shows the importance of a key byte
rank and it is also due to the fact that our combination algorithm relies on the
results of this key byte rank.

Thus four strategies remain. They are listed hereafter:

Strategy 1. Use the key byte ranking algorithm; Do not require to fill his-
tograms; Use the combination algorithm.

Strategy 2. Use the key byte ranking algorithm; Do not require to fill his-
tograms; Do not use the combination algorithm.

Strategy 3. Do not use the key byte ranking algorithm; Do not require to fill
histograms.

Strategy 4. Require to fill histograms. As far as we understand, this strategy
is the one used by Zhang et al. [23].

Figure 8 (top) gives the success rates over 1000 tries of the four strategies.
The last one, in blue, is the worst since it necessarily requires more encryptions
to fill histograms. The best one, in black color, is the most efficient one and is also
the one that uses the key byte rank algorithm and the combination algorithm.
Not using the combination algorithm is less efficient as shown by the red curve,
but is still better than the green curve that shows the strategy that does not use
the key byte ranking algorithm. One can note that the combination algorithm
greatly improves the efficiency.

Each curve of the top figure of 8 is obtained by computing an average over
1000 curves where each of the 1000 curves describes a success rate for a given
plaintext. For each of those 1000 curves, the success rate becomes equal to one
more or less rapidely. The repartition of when the success rate is equal to 1

Persistent Fault Analysis with Few Encryptions 19

Fig. 8. Our MLE attacks for the complete last round key of AES—Success rates of
strategies 1 to 4 over 1000 tries (top). Distribution of minimum number of encryptions
over 1000 tries (bottom). Less than 1000 encryptions are required with the first strategy
whereas more than 2000 are required for the last one. The smallest dispersion is reached
for the first strategy whereas the worst one is reached by strategy four where no ranking
algorithm is used.

over those 1000 curves are given by the bottom of the Fig. 8 that shows the
distribution of minimum number of encryptions over 1000 tries. On this figure,
mean µ and standard deviation σ are also given. Less than 1000 encryptions are
required with the first strategy whereas more than 2000 are required for the last
one. Also the best dispersion is reached for the first strategy and the worst one
is reached on strategy four where no ranking algorithm is used. Strategy 1 is
thus relevant to go further than the theoretical number encryption induced by
the Coupon Collector Problem and discussed by Zhang et al. [23].

20 S. Carré et al.

3.5 Comparison with the Tool of Veyrat-Charvillon et al. [22]

Our methodology to combine bytes can be compared to the C++ tool of Veyrat-
Charvillon et al., which implements the maximum likelihood algorithm to give
the rank of the full 16-byte key based on the distribution of each individual
key byte. This tool is pessimistic, in that, in case of ties (recall black curve in
Fig. 6), it provides the largest rank. While the tool of Veyrat-Charvillon et al.
is generally more efficient, our strategy focuses in reducing the time for small
number of encryptions. For instance, getting the AES last round key with 893
encryptions requires about 20min where the tool of Veyrat-Charvillon et al.
takes about 3 h.

Fig. 9. Comparison between the combination algorithm described in paper with the
tool of Veyrat-Charvillon et al. for one trace (no average)

Figure 9 shows the rank of the correct key estimated by the tool of Veyrat-
Charvillon et al. and our method. For less than 903 encryptions our method gives
the correct key at a lower rank compared to the tool of Veyrat-Charvillon et al.

4 Conclusion and Perspectives

4.1 Conclusion

In this paper, we revisited the fault attack that makes a permanent fault in the
AES SBOX and we improve it by using multiple techniques including estimation
theory, rank and key combination algorithms. With enough observations, if one
focuses on the most observed value x+, the most likely key will be k = x+ ⊕
y+. Some observations can have exactly or approximately the same number of
occurrences among the overall observations. In such case, since an observation x
cannot be equal to k⊕ y−, one can eliminate some keys. The strategy developed
in this paper, and derived from the maximum likelihood analysis, to find the
correct key therefore consists in two steps:

Persistent Fault Analysis with Few Encryptions 21

1. eliminate keys that have the value x ⊕ y− for each observation x;
2. declare the most likely key among the remaining keys to be the one that has

the value x+ ⊕ y+, for an observation x+, that appears the most often.

The key byte rank algorithm uses maximum likelihood estimation and guess-
ing entropy. Various techniques have been experimented to build combination
algorithms such as using imbricated loops, truncating the number of key byte
candidates or to a more specific strategy that uses so-called stages.

After recalling some basics about how AES encryption works and how AES
round keys are derived from the master key, the paper shows how a single byte
fault can affect the final ciphertext. This fault can be stepped on at any time of
the encryption. The attacker can also permanently fault the SBOX before or after
key scheduling. The fault is only assumed to be persistent for all encryptions.
The paper first assumes that an attacker can encrypt any messages, that are not
necessarily chosen, in order to get an ideal empirical distribution for each of the
16 bytes of the ciphertext. In the state-of-the-art, more than 2000 encryptions
were required to get such ideal distribution for each byte of the last round key.
The attack in this paper works because the MixColumns operation is performed
on all of the AES rounds but the last one. From those distributions, the paper
explains how an attacker can find the last round of AES by analysing only the
ciphertexts. Since the fault can affect the key scheduler, this last round key can
be wrong but the paper shows that an attacker can still get the correct master
key from a wrong last round key, and then derives the correct round keys.

The attack was further improved by considering non ideal empirical distribu-
tions. This was done by using a key rank algorithm for multiple key candidates
with a combination algorithm that combines each potential byte of the last round
key to get a complete round key. On average, less than 922 encryptions to get the
AES master key with a high probability was necessary. In order to check whether
the correct key is found, one can decrypt a ciphertext and check whether the
resulting plaintext does make sense.

4.2 Perspectives

TBOX. In this paper, we focused on the faults on AES SBOX. Some imple-
mentations of AES use tables called TBOX to perform jointly the SubBytes and
the MixColumns operations [15, Sec. 5.2.1, page 18]. Cryptographic libraries
that implement AES with TBOX uses 4 tables of 256 elements. Each of those
elements has 4 bytes size and those tables are used for all AES rounds except
the last one since it does not require the MixColumns operation. For the last
round, some implementations use a fifth table whereas others, like OpenSSL,
mask 3 of the 4 bytes of the TBOX elements in order to only use the SubBytes
operation out of the TBOX. In cryptographic libraries that use TBOX, two cases
are possible to perform the attack described in this paper. These two cases are
discussed here for future works.

In the first case, an attacker can try to target the SubBytes operation imple-
mented by the TBOX. To reach this aim on implementations that uses 5 tables,

22 S. Carré et al.

an attacker can only target the fifth table that does not implement the Mix-
Columns operation. For implementations that only use 4 tables, an attacker can
only target 1/4 of the tables. Note that for implementations that only uses 4
tables, one fault per table has to be made in order to get the same effect with
a single fault on an SBOX table. If one only targets one table it actually only
targets one column of an AES state and thus, 4 bytes of a key.

In the second case, an attacker targets the MixColumns operation imple-
mented by the TBOX. In such cases, we do not observe any bias for all of
the bytes of the ciphertexts. However, we observe a bias on column of an
AES states. The attack described in this document could then be adapted at
column-level instead of byte-level. However, since a column represents 232 possi-
ble values instead of 28 for a byte, more encryptions are required. If we assume
that the number of encryptions is proportional to the number of values, and
since we need 1371 encryption for an analysis at a byte level, we then need
1371 × 232/28 = 23001563136 encryptions. We could also need a more efficient
key rank algorithm since we will have to test more keys.

Knowledge About the Fault. This paper considers that the location of the
fault in the SBOX and also the value of the fault are known. In other words,
it is assumed that the values y− and y+ are known by the attacker. Based on
this assumption, if uniform byte values were submitted to each sbox, then the
attack would converge in 255 plaintexts (because, at each newly observed byte
c, the attacker knows that c ⊕ y− is not a valid key byte). This is depicted by
the curve y = 256 − x in Fig. 6. This assumption was originally accepted in the
case of a rowhammer attacker on a shared SBOX where the attacker can read
the fault in memory. This assumption is invalid on some implementations, such
as the AES-NI instruction set, where the SBOX is not exposed to the user (it
can for instance be some firmware). Without the knowledge of y− and y+, one
can still use a ranking algorithm to get the most likely value of y+ ⊕ y−. Only
256 guess values are required to guess y−, and y+ will directly follow from the
most likely value of y+ ⊕ y− when analyzing the ciphertext distribution.

4.3 Note Added After Revision of the Accepted Paper

We became aware of the recent work “Persistent Fault Attack in Practice” [24].
This paper elaborates on the attack converge speed and attributes it to MLE.
Our work does further in that we mathematically derive the attack from the
MLE. Besides, we show the merit of exploiting the likelihood for each key candi-
date to enumerate them by decreasing probability, thereby further speeding up
the attack. This results in “strategy 1”, whereas [24] consists in the strategy we
called “strategy 2”.

Persistent Fault Analysis with Few Encryptions 23

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

2. Bhattacharya, S., Mukhopadhyay, D.: Curious case of rowhammer: flipping secret
exponent bits using timing analysis. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 602–624. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 29

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

6. Caforio, A., Banik, S.: A study of persistent fault analysis. In: Bhasin, S., Mendel-
son, A., Nandi, M. (eds.) SPACE 2019. LNCS, vol. 11947, pp. 13–33. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-35869-3 4

7. Carré, S., Desjardins, M., Facon, A., Guilley, S.: OpenSSL Bellcore’s protection
helps fault attack. In: Novotný, M., Konofaos, N., Skavhaug, A. (eds.) 21st Euromi-
cro Conference on Digital System Design, DSD 2018, Prague, Czech Republic,
29–31 August 2018, pp. 500–507. IEEE Computer Society (2018)

8. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 23

9. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

10. Jain, S., Agrawal, V.D.: Statistical fault analysis. IEEE Design Test Comput. 2(1),
38–44 (1985)

11. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of dram disturbance errors. SIGARCH Comput. Archit. News 42(3), 361–
372 (2014)

12. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15031-9 22

13. Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: software-based fault injection attacks against Intel SGX. Tracked as
CVE-2019-11157 (2020)

14. Mutlu, O., Kim, J.S.: Rowhammer: a retrospective (2019). arXiv:1904.09724
[cs.CR]

15. NIST. AES Proposal: Rijndael (now FIPS PUB 197), 9 April 2003. http://csrc.
nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf. Accessed 19 Apr 2020

https://doi.org/10.1007/978-3-662-53140-2_29
https://doi.org/10.1007/978-3-662-53140-2_29
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-030-35869-3_4
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-642-15031-9_22
http://arxiv.org/abs/1904.09724
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

24 S. Carré et al.

16. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

17. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip Feng
Shui: hammering a needle in the software stack. In: 25th USENIX Security Sym-
posium (USENIX Security 16), pp. 1–18. USENIX Association, Austin, August
2016

18. Rivain, M.: Differential fault analysis on DES middle rounds. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04138-9 32

19. Roscian, C., Dutertre, J.M., Tria, A.: Frontside laser fault injection on cryptosys-
tems - application to the AES’ last round. In: 2013 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 119–124, June 2013

20. Schmidt, J.M., Hutter, M., Plos, T.: Optical fault attacks on AES: a threat in violet.
In: 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pp. 13–22, September 2009

21. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

22. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 8

23. Zhang, F., et al.: Persistent fault analysis on block ciphers. IACR Trans. Cryptogr.
Hardware Embed. Syst. 2018(3), 150–172 (2018)

24. Zhang, F., et al.: Persistent fault attack in practice. IACR Trans. Cryptogr. Hard-
ware Embed. Syst. 2020(2), 172–195 (2020)

https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-642-04138-9_32
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-642-38348-9_8

	Preface
	Organization
	Contents
	Fault and Side Channel Attacks
	Persistent Fault Analysis with Few Encryptions
	1 Introduction
	1.1 Zhang et al.'s Attack
	1.2 Contributions
	1.3 Outline

	2 Bias Cancelling Effect of MixColumns
	3 Improvement Using Maximum Likelihood
	3.1 Optimal Distinguisher
	3.2 Key Byte Ranking
	3.3 Combination of Several Key Bytes to Reconstruct the Full Key
	3.4 Efficiencies of Key Byte Rank and Combination Algorithms
	3.5 Comparison with the Tool of Veyrat-Charvillon et al. ch1DBLP:confspseurocryptspsVeyratspsCharvillonGS13

	4 Conclusion and Perspectives
	4.1 Conclusion
	4.2 Perspectives
	4.3 Note Added After Revision of the Accepted Paper

	References

	A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device
	1 Introduction
	2 Preliminaries and Notation
	2.1 Keccak-f[1600] and SHA-3
	2.2 Template Attack
	2.3 Combining Multiple Likelihood Tables

	3 Attack Strategy
	4 Template Attack on SHA-3
	4.1 Target Hardware Device and Measurement Setup
	4.2 Interesting Clock Cycle Detection
	4.3 Building Templates
	4.4 Evaluating the Quality of Templates

	5 Searching the Correct Intermediate States
	5.1 Layer 1: Generating Tables for Byte Rows
	5.2 Layer 2: Generating Tables for Byte Slices
	5.3 Layer 3: Consistency Checking
	5.4 Results

	6 Discussion and Conclusion
	References

	Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes
	1 Introduction
	2 Preliminaries and Related Works
	2.1 Basic Notation
	2.2 Authenticated Encryptions Based on Polynomial Hash Function
	2.3 The Problem of Unforgeability
	2.4 Conventional SCAs on Polynomial Hash Function

	3 Proposed Attack on ChaCha20-Poly1305
	3.1 Attack Description
	3.2 Side-Channel Analysis on Final Addition
	3.3 Exhaustive Polynomial Factorization
	3.4 Feasibility Evaluation
	3.5 Application to Open-Source Poly1305 Implementation

	4 Discussion
	4.1 Noise Tolerance
	4.2 Applicability and Generality of the Proposed Attack
	4.3 Countermeasures

	5 Conclusion
	References

	Side-Channel Analysis Methodologies
	Wavelet Scattering Transform and Ensemble Methods for Side-Channel Analysis
	1 Introduction
	2 Problem Statement
	3 Time-Frequency Analysis with the Wavelet Scattering Transform
	3.1 Some Time-Frequency Representations
	3.2 The Wavelet Scattering Transform

	4 A Combination Procedure for Ensemble Methods in SCA
	5 Experiments
	5.1 Method Used
	5.2 Datasets
	5.3 Choosing the Parameters
	5.4 Results
	5.5 Visualizing Leakages

	6 Conclusion
	References

	Scatter: a Missing Case?
	1 Introduction
	2 Background
	2.1 Scatter Transform with Chi2/MIA Distinguishers
	2.2 On-the-Fly Linear Regression
	2.3 Selection of Parameters

	3 First-Order Experiments
	3.1 Setting #1: A Simulated Shuffled Implementation
	3.2 Setting #2: A Concrete Jittery Implementation

	4 Higher-Order Scatter
	4.1 The Need of a Combination Function
	4.2 Second-Order Simulated Experiments

	5 Conclusion
	References

	Augmenting Leakage Detection Using Bootstrapping
	1 Introduction
	2 Preliminaries
	2.1 Leakage Detection Using Welch's t-test
	2.2 The Bootstrapping Method
	2.3 Kolmogorov-Smirnov Test

	3 Applying Bootstrapping to Leakage Detection
	3.1 Simulating Leakage Detection
	3.2 Experimental Results

	4 Limitations
	5 Implementation Details
	6 Conclusion
	References

	Evaluation of Attacks and Security
	Security Assessment of White-Box Design Submissions of the CHES 2017 CTF Challenge
	1 Introduction
	1.1 CHES 2017 Capture the Flag Challenge
	1.2 Our Contribution

	2 Tooling
	2.1 Preprocessing the Source Code
	2.2 Tooling for DCA
	2.3 Tooling for DFA

	3 Security Assessment and Classification
	3.1 DCA Vulnerable Designs
	3.2 DFA Vulnerable Designs
	3.3 Second Order DCA
	3.4 Automated Resistant Challenges
	3.5 2019 Edition of the White-Box Competition

	4 Real-Life Usefulness of White-Box Cryptography
	References

	On the Implementation Efficiency of Linear Regression-Based Side-Channel Attacks
	1 Introduction
	1.1 Context: Side-Channel Analysis
	1.2 State-of-the-Art's Review
	1.3 Contributions
	1.4 Outline

	2 Mathematical Modelization
	2.1 Notations
	2.2 Description of Stochastic Attacks

	3 LRA Study and Improvements of Its Implementation
	3.1 Difference Between SCAs with and Without Coalescence
	3.2 LRA with Assumption of Equal Images Under Different Subkeys
	3.3 Spectral Approach Computation to Speed up LRA (with EIS)
	3.4 Further Improvement
	3.5 Incremental Implementation of LRA

	4 Extension of the Improvements to the Protected Implementations by Masking
	4.1 Normalized Product Combination Against Arithmetic Masking

	5 Experiments
	5.1 LRA with and Without Spectral Approach
	5.2 SCAs with and Without Coalescence
	5.3 LRA Against Higher-Order Masking

	6 Conclusion and Perspectives
	A Proof of Proposition2
	B LRA Algorithm 4
	C WHT Algorithm
	References

	Side-Channel Attacks and Deep Learning
	Kilroy Was Here: The First Step Towards Explainability of Neural Networks in Profiled Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 Multilayer Perceptron and Convolutional Neural Networks
	2.2 Comparison of Neural Networks and SVCCA Methodology
	2.3 Related Work

	3 Establishing a Baseline
	3.1 DPAcontest V4 Dataset
	3.2 Comparison Datasets
	3.3 Experimental Setup

	4 Portability
	4.1 Datasets and Experimental Setup
	4.2 Results

	5 Conclusions and Future Work
	A Additional Figures
	References

	Online Performance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Profiling Attacks
	2.3 Neural Networks
	2.4 Evaluation Metrics
	2.5 Related Work on Metrics for Side-Channel Analysis

	3 dtrain,val: A Deep Learning Evaluation Metric for Side-Channel Analysis
	3.1 dtrain,val: Internal State Detection
	3.2 Detection of Overfitting/underfitting
	3.3 dtrain,val : A Suitable Metric for Early Stopping

	4 Experimental Results
	4.1 Early Stopping on the ASCAD Database
	4.2 Comparison Between GEBVD and 1train,val

	5 Conclusion
	A Networks
	References

	Primitives and Tools for Physical Attacks Resistance
	Custom Instruction Support for Modular Defense Against Side-Channel and Fault Attacks
	1 Introduction
	2 Preliminaries
	3 Modular Design of Countermeasures
	3.1 Higher-Order Masked Computation
	3.2 Data-Redundant Computation
	3.3 Time-Redundant Computation

	4 SKIVA Implementation
	4.1 Custom Instruction-Set Extensions in SKIVA
	4.2 Hardware Support for Aggregated Bitslice Operations

	5 Results
	5.1 Performance Evaluation
	5.2 Side-Channel Analysis
	5.3 Security Analysis of Data Faults

	6 Conclusion
	References

	Processor Anchor to Increase the Robustness Against Fault Injection and Cyber Attacks
	1 Introduction
	2 Background
	2.1 Control Flow Graph
	2.2 Control Flow Hijacking
	2.3 Control Flow Integrity

	3 Related Work
	3.1 Threat Model
	3.2 Protection State of the Art
	3.3 Limitation of Our Approach

	4 Solution
	4.1 Hardware
	4.2 Software

	5 Speculative Execution
	6 Interruptions Management
	7 Attack Model and Security Guaranties
	8 Implementation
	9 Performance
	10 Conclusion
	References

	Integrating Side Channel Security in the FPGA Hardware Design Flow
	1 Introduction
	2 Augmenting the Xilinx Vivado FPGA Design Flow
	3 Experimental Validation
	4 Concluding Remarks
	References

	Side-Channel Countermeasures
	Self-secured PUF: Protecting the Loop PUF by Masking
	1 Introduction
	2 The Loop PUF
	2.1 Architecture
	2.2 Operating Mode
	2.3 Loop PUF Challenges for Maximum Entropy
	2.4 Loop PUF Implementation

	3 Side-Channel Analysis of the Loop PUF
	3.1 Experimental Setup
	3.2 Frequency of Interest Detection
	3.3 Side-Channel Analysis of the Loop PUF
	3.4 Limitations and Constraints: Frequency Resolution

	4 Securing the Loop PUF
	4.1 Temporal Masking
	4.2 Self-secured Loop PUF Using 1-Bit RNG from LSB
	4.3 Empirical Analysis of the LSB-Mask
	4.4 Side-Channel Analysis of the Self-secured Loop PUF

	5 Remarks on the Proposed Solution
	5.1 Impact of Measurement Time
	5.2 Application of Temporal Masking to RO PUFs

	6 Conclusion
	References

	Leakage-Resilient Authenticated Encryption from Leakage-Resilient Pseudorandom Functions
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Primitives
	2.3 Leakage Model
	2.4 Security Notions
	2.5 The FGHF Construction

	3 Unpredictability and Pseudorandomness Under Leakage
	3.1 Under Leakage: Unpredictability Pseudorandomness
	3.2 Under Leakage: Pseudorandomness Unpredictability

	4 Leakage Resilience of the N2 Construction
	5 Leakage Resilience of the FGHF Construction
	5.1 Leakage-Resilient MACs from LPRFs
	5.2 Leakage-Resilient Encryption from LPRFs
	5.3 Security of the FGHF Construction

	References

