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Abstract—Using information-theoretic tools, this paper estab-
lishes a mathematical link between the probability of success of a
side-channel attack and the minimum number of queries to reach
a given success rate, valid for any possible distinguishing rule and
with the best possible knowledge on the attacker’s side. This link
is a lower bound on the number of queries, which depends on
the mutual information between the traces and the secret key.
This leads us to derive upper bounds on the mutual information
that are as tight as possible and can be easily calculated. It turns
out that, in the case of additive white Gaussian noise, the bound
on the probability of success of any attack is directly related to
the signal-to-noise ratio (SNR). This leads to easy computations
and predictions of the success rate for any leakage model.

I. INTRODUCTION

Since 1999 [8] side-channel analysis is considered as a
serious threat against the security of ciphering chips. It exploits
physical leakages (such as power consumption, electromag-
netic radiation, execution time of the ciphering algorithm) to
break the secret key byte per byte. This topic has grown widely
over the last decades and theoretical approaches were proposed
to understand the threat and optimize the attacks [6], [15].

We consider the following framework which was already
leveraged at ISIT’2016 [12] for comparing different side-
channel distinguishers. During the execution of the crypto-
graphic algorithm (such as AES), some given random text byte
vector T = (T1,...,T,) is combined with the n-bit secret key
byte K (n = 8 for AES) through a XOR operation noted .
The secret key leaks through a so-called sensitive variable
Y = (Y1,...,Y,), given by the formula V; = f(T; @ K)
where f is a deterministic function. In order to recover the
actual key k € K, the attacker performs ¢ measurements
X = (X1,...,Xy) = Y + N under additive i.i.d. noise
N = (Ny,...,Ng). We assume the attacker also knows the
corresponding plaintexts T'. She then computes a mathematical
function called a distinguisher D that returns an estimation K
of the secret key. As recalled in [6], the best distinguisher
maximizes likelihood for uniformly distributed K:

K=DX,T) = arg maxP(X|T, k). (1)
cE

This above framework is tailored for key extraction in sym-
metric cryptography from embedded systems (such as AES).
We limit ourselves to such ideal setup, where physical side-
channel measurements are perfectly synchronized and i.i.d.
(no insertions nor deletions). Such model is classically used
for differential power analysis [8], a major topic in hardware
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security which serves for real product evaluations (e.g., the
1000+ products listed in the Common Criteria portal').

Recently, some more general frameworks have been pro-
posed, such as the quantitative information flow [14] or the
general operational approach of [7]. In contrast, we focus on
the derivation of closed-form bounds on the probability of
success, which cannot be estimated as a simple expression.
These bounds should capture structural properties of the side
channel (e.g., how it varies with the SNR), be easily computed,
and be valid for any practical attack in order to be useful for
real-world cryptographic chip designers.

Previous works such as [10] have already tackled similar
issues, however either with approximations (assuming e.g.,
a law of large numbers), or using specific cryptographic
assumptions [3] where constant terms are neglected in the
proofs. In this paper, we aim at bridging the gap between
Shannon’s information theory and side-channel analysis in the
context of cryptographic hardware security. The goal is to con-
solidate the state-of-the-art information-theoretic techniques
for cryptographic evaluation, which may serve as a basis for
further rigorous information-theoretic developments.

Arimoto [1] proved a lower bound of the error rate (hence
an upper-bound of the success rate) in terms of a Gallager
coefficient. However, not only its evaluation requires intensive
computations, but also the model assumes a freely chosen
input distribution. In our case, that input distribution is set
by the leakage model and therefore, cannot be freely chosen.
Arimoto’s main result [1, Eq.(24)] remains true because it
represents the best possible case for an attacker for all possible
input distributions; but the resulting bound is very loose in
our side-channel context. [1, Eq. (9)] could be used instead
but depends on a parameter S which is difficult to optimize.
Arimoto’s bound requires multivariate integrations of degree ¢
which is almost as complicated as a direct simulation of the
success probability (¢ is very large in practice). Expressions
of the probability of success can also be obtained in terms of
the min-entropy, but this bears similar problem of estimation
complexity.

In this work, we apply the converse coding theorem? and
Fano’s inequality to obtain upper bounds on the probability

I'See website: https://commoncriteriaportal.org/products/stats/

2Shannon’s (direct) coding theorem cannot apply here because no particular
“coding” scheme is used: we consider the worst possible case for the designer
(i.e., the best case for the attacker).
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of success for any attack that depends on mutual information
(MI) between secret and measurements. The obtained bounds
on the success rate and number of measurements are universal
in the sense that they are valid for any possible attack.

This remainder of this paper is organized as follows. Sec-
tion II provides our main result and three different ways to
exploit it. An application to additive Gaussian noise is carried
out in Section III, where we show that knowledge of the SNR
is enough to predict the security of a device.

II. APPLY THE CONVERSE SHANNON THEOREM

The side-channel can be modeled as the “communication
channel” [6], [15] shown in Fig. 1. From this figure we have

Block 2
N
Block 1 l Block 3
K — Encoder Channel Decoder —— K
o |

Fig. 1: Side-channel leakage seen as a communication channel

the Markov chain
(K, T) — (Y, T) — (X,T) — K. 2)

Let us emphasize that we make no particular assumption on
the actual distribution of texts T'. For instance, T can be pieces
of ciphertext obtained from a block cipher under a mode oper-
ation running on unknown plaintext. Also, the model equally
applies to situations where there are countermeasures, such as
random masking or shuffling [13]. The countermeasure would
be an unknown random variable explaining Y in block 1 of
Fig. 1, along with T.

A. Fundamental Lower Bound on 1(X;Y | T)

From (2) we have the data processing inequality [2]
I((K,T);(X,T)) < I((Y,T) ; (X, T)). A3)

We now expand both sides. Since the channel is memoryless
and K and T are independent, the Lh.s. is

I((K,T);(X,T)) = H(K,T) - H(K,T) | (X, T))
= H(K)+ H(T) - H(K | T, X).

As K is a deterministic function of T and X, adding knowl-
edge of K does not change the entropy:

I((K,T);(X,T)) = H(K)+ H(T) — HK | T,X,K)
> H(K)+ H(T) - HK | K).

The latter inequality holds because conditioning can only
reduce entropy [2]. Now by Fano’s inequality [2],

H(K | K) < Hy(Pe) + P, logy (K| — 1)

where P, = P(K # K) is the probability of error. The
probability of success is Py, = 1 — P, so that Hy(P.) =

Hy(P,) = —P.log,P, — P log, P,. Thus H(K|K) <

Hy(Ps) 4+ (1 — Py)logy (2™ — 1), which gives
(K. T); (K, T)) > “
H(K)+ qH(T) — Ho(Ps) — (1 — Py)log, (2™ — 1).
On the other hand, the r.h.s. of (3) is:
(Y, T);X,T) =HX, T)-H(X,T|Y,T) )

=IX;Y|T)+ H(T).
Combining (4) and (5), we obtain the fundamental inequality:
H(K)—Hy(Ps)—(1—Py)logy(2"—1) < I(X;Y | T). (6)

which shows that there is a direct link between the probability
of success of an attack P, and mutual information (MI)
I(X;Y | T).

Remark 1: The expression n + (Ps — 1)log,(2" — 1) —
H,(Py) is always non-negative for any P in the range (0,1)
and vanishes if and only if P, =1 / 2™, Therefore, when there
are no traces, [(X;Y | T) = 0, the only probability that can
respect inequality (6) is Ps = 1/2™, meaning that without
information, the blind attacker cannot have a better success
rate than 1/2™ obtained with an equiprobable random guess,
as expected. Every trace will bring additional information and
therefore increases the probability of success.

Remark 2: In the context of cryptanalysis, we are interested
in high values of P,. Indeed, for successful key extraction in
practice, one needs to extract not only one, but, say, sixteen
bytes of keys (e.g., in the case of AES-128). Attacks are thus
based on a “divide-and-conquer” approach, and 128-bit key
extraction results from the conjunction of 16 attacks, which
must thus all be successful. Therefore, probability of success
for each individual byte must be quite high. In this regime, it
happens that Fano’s inequality is fairly tight.

B. First Upper Bound on I(X;Y | T)

Since X,Y and T are vectors of length ¢, with the above
i.i.d. assumption on the noise, it is easy to check that

IX,Y|T)<q-I(X;Y|T) @)

with equality if and only if all random vectors are i.i.d. This
trivial upper bound on MI is linear in ¢, and, therefore, will
diverge as the number ¢ of measurements increases.

However, in our side-channel model, the MI is always
bounded by the number n of key bits since I(X;Y | T) <
H(Y |T) < H(K) < n. Thus (7) will eventually be loose as
q increases. Therefore, it is important to derive another bound
that will converge to n as ¢ — co. This is done next.

C. Second Upper Bound on I(X;Y | T)

We need the following lemma, proved in Appendix A.
Lemma 1: For any random variables X and Y and real-
valued function (z,y) — f(z,y),

—Ey log, Ex[exp(f(X,Y))] < —log, Ex[exp(Ey f(X,Y))].

The following corollary is proved in Appendix B.
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Corollary 1: For any random variables X and Y and
positive function (z,y) — g(z,y),

expEy log, Ex [g(X,Y)] > Ex[exp(Ey log g(X,Y))]

Equipped with these inequalities, we compute MI as follows:

I(X; K | T) = ExEx kT log, %
= ErExEx |k, logy %
Let K’ be an independent copy of K.
I(X; K |T) = ExExEx k1 log, %
= —ErExEx |k T log, EK/%
Thus
IX;Y | T) = ~ErExEx g,
By Lemma 1 we obtain
I(X;Y | T)
< —ErEg log, Ex exp l:EX|K,T log, %ﬂ%;;]

= —ErEk log, Ex exp [—D(]P’X‘K%T Il ]P’X|K/7T)} . ®

which is our second upper-bound of I(X;Y | T).

Remark 3: This second bound improves on top of (6)
derived from Fano’s inequality, and actually resorts to relative
entropy D(Px |k 1 || Px|x/,r). While Shannon’s entropy is
perhaps not always the best metric, in our situation, it appears
to be tractable and will be seen to perform very well (in
contrast to Arimoto’s bound).

D. Graphical Comparison

In order to visualize the difference between the two upper
bounds (7), (8) given above, we have plotted in Figure 2
the mutual information I(X;Y | T = t), where t is a fixed
balanced vector. The leakage model chosen is given by the
equation

y(kvti) :Hw(sbox(ti@k)) (i: 1727"'7(1)

where Hy,(-) is the Hamming weight (of the value written
in binary), and Spox(-) is the AES substitution box [11].
We assumed a zero-mean additive white Gaussian noise with
standard deviation o = 4, hence a signal-noise ratio SNR =
1/8. The results of Figure 2 were obtained by Monte-Carlo
simulation. Notice that as expected in Subsection II-B, the first
upper bound is linear in ¢; and as expected in Subsection II-C,
the second upper bound converges to H(K) =n = 8.

e
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Upper bound (Section II-C) *
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Number of traces g

Fig. 2: Comparison of the two upper bounds of subsec-
tions II-B and II-C, for n = 8.

III. APPLICATION TO AWGN

In this section, we develop the results of Section II for
leakages with additional white Gaussian noise (AWGN). This
is the most common case for attacks such as DPA, where
the noise comes from other algorithmic computations running
during the execution of the ciphering algorithm and is usually
modeled as Gaussian.

With this model, we can link the success rate to Shannon’s
capacity C' = %log(l + SNR), and therefore, to the SNR =
Var(Y)/o2.

A. Shannon’s Channel Capacity

Under the AWGN assumption, it is easily seen that the
scalar mutual information I(X;Y | T) does not exceed
Shannon’s capacity:

I(X;Y |T)=ErI(X;Y | T =1t)
=H(f(K)+N)-H(X|Y)

< § log(2me(Varke(£(K)) + Var(N))) — H(X | ¥)

1
3 log, (1 4+ SNR).

Combining this with inequality obtained in Subsection II-B
yields a lower bound on the number of traces to reach a given
probability of success:

_ ot (P = 1)logy(2" — 1) — Hy(Py)
- 1log,(1 + SNR) ’

®

Remark 4: The number of traces ¢ needed to recover the
key reliably is lower-bounded by:

lim
P,—1

n

R P m—— (10)
1 log,(1+ SNR)

However, because as we have seen the MI can never be higher

than H(K), the above constant bound is not accurate for real

attacks. The next subsection provides a much more accurate

estimation.
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B. Evaluation of the Relative Entropy

The upper bound (8) has a relative entropy (divergence) term
that depends on Px | g . In the AWGN model, Px| &, follows
a multivariate normal distribution A (y (K, T), 0%1,). For such
distributions, the relative entropy is very easy to compute as
the covariance matrix is diagonal. It is easily found that

yv(K,T) - y(K',T)|3
DB rlBxr ) = ST YU T
o
The upper-bound (8) becomes

n+(Ps — 1)logy (2" — 1) — Ha(Py)
_ ”y(K7 T) — Y(KlvT)”%
202 )
an

This is easy to evaluate with numerical computations. We note
that it is also reminiscent of so-called generalized confusion
coefficients [5, Def. 8]:

< —ErEk logy Ex/ GXP(

M]) (12)

w(k, k') = Ep ([y .

C. Example for Monobit Leakage

In order to compare these bounds with practical cases we
consider a monobit leakage model:

f(ti ®k) =LSB(Spox(ti ®k))  (i=1,2,...,q)

where Spox is the AES substitution box and LSB is the least
significant bit of a bit vector. Figure 3 represents the success
rate of a monobit leakage under AWGN with ¢ = 4. The
distinguisher used is the maximum likelihood distinguisher
which is optimal [6]. The graphical plot of the success rate
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Number of traces g

Fig. 3: Success rates with monobit leakage for o = 1

(in red) follows [9] where error bars are taken into account.
The other curves are the bounds obtained with:
« a numerical estimation of I(X;Y|T) (by a Monte-Carlo
simulation);
e MI’s upper bound (7);
e MI’s upper bound (8).

The three bounds curves lie above the success rate curve
as expected, the one obtained with a numerical estimation
of I(X;Y|T) being the tightest (since it gives the closest
approximation of the MI). The two other curves obtained
from (7) and (8) are not as tight as the bound obtained with
a Monte-Carlo estimation but very easy to compute.

D. Example for Hamming Weight Leakage

In practice, the AES algorithm computes SubBytes based on
bytes (i.e., with 8 bits), which impacts the leakage function:

yi = f(ti ® k) = Hy (Spox(ti D k)) (i=12...,9

where Sy is the AES substitution box and H,, is the
Hamming weight function. Figure 4 shows the success rate
compared with the three other types of estimation under
AWGN with ¢ = 1. Once again, we observe that all bounds

Probability of Success

Estimation

02

ML Distinguisher
Subsection I-B —s«—
Subsection II-C —#—

Numerical —s—

5 10 15 20 25 30
MNumber of traces q

Fig. 4: Success rate for a Hamming weight leakage for 0 = 1

are above the success rate of the optimal distinguisher and that
the closest estimation of the MI gives the tightest bound.

IV. CONCLUSION

In this paper, we have linked two metrics used in the field of
side-channel analysis: the probability of success of an attack
(computed as the success rate) and the mutual information
between the leaked traces and the secret key. Our results are
of interest to better understand the different factors that impact
the success rate of an attack.

We obtained universal bounds to the success rate, in the
sense that they are independent of what the attacker may ex-
ploit with the measurements. This can be seen as an advantage
for designers since in practice, they are never able to know
how their devices will be attacked in the future. This work is
a first step to allow them ensure a minimal security of their
device in any adversarial context.

While our results presented in the paper lie within the
specific framework of “power-line attacks” (e.g., monobit
leakage or Hamming weight leakage), we emphasize that our
theoretical development is fairly general since it requires only
the assumption of the Markov chain (2). In fact, our bounds
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are somewhat generic in that they do not depend on the
leakage model itself, but rather on an aggregated quantity
of it (measuring the link between Y and (K,T)), namely
I(X;Y | T) or D(Px|x1,7/|Px|x’,T), similar to works such
as [4], [16] which rely on confusion coefficients (12).

The bounds obtained in this paper also happen to be
empirically tight, hence relevant for the business of Common
Criteria evaluation, and more generally for designers who seek
more precise tools to secure their cryptographic chips.

APPENDIX A
PROOF OF LEMMA 1
Let X’ be an independent copy of X. Consider the difference
A =—EylogEx[exp f(X,Y)] +logEx expEy f(X,Y)
—logexpEy log Ex: exp f(X',Y)
+logEx expEy logexp f(X,Y)
expEy logexp f(X,Y)
expEy logEx exp f(X',Y)
=logEx expEy[logexp f(X,Y) — logEx exp f(X',Y)]
exp f(X,Y)
Ex: exp f(X/, Y)}

=logEx

=logEx expEy {log

By concavity of the logarithm,

exp f(X,Y)
Ex:exp f(X’,Y):|
exp f(X,Y)
Ex exp f(X, Y)}
Exexp f(X,Y)
Ee o 3y | = o8B =
APPENDIX B
PROOF OF COROLLARY 1

A <logEx explogEy [
= logExEy |:

=logEy {

Lemma 1 reads
Ey logEx[exp(f(X,Y))] > logEx[exp(Ey f(X,Y))]

where the r.h.s. rewrites as log E x [exp(Ey logexp f(X,Y))].
Setting g(z,y) = exp(f(z,y)), we obtain

Ey logEx[9(X,Y)] > log Ex[exp(Ey log g(X,Y))].

which taking the exponential on both sides gives the result.
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