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Abstract—Physically unclonable functions (PUF) have been
used in various applications, such as device authentication,
secure storage of sensitive data, and anti-counterfeiting. Different
applications require various levels of reliability from the PUF.
However, as of today, no predictive model to characterize the PUF
reliability has been developed. This is particularly a problem for
PUFs with low error rates, because the lower the error rate, the
larger the number of measurements required to obtain a good
estimate.

In this paper, we develop a predictive framework, which
enables us to derive a closed-form expression of both entropy
and reliability for several families of delay PUFs: the ring
oscillator (RO) PUF, the RO sum PUF as well as the Loop PUF.
Improving reliability with bit-filtering, we provide an explicit
tradeoff between complexity, reliability and entropy. Error rates
as low as 10−9 or even lower can be achieved. Our theoretical
results are validated by experiments on Loop PUFs implemented
in 65 nm CMOS ASIC technology, also used to simulate the
behavior of the RO PUF and the RO sum PUF.

I. INTRODUCTION

Designing a PUF involves a three-way tradeoff between

entropy, reliability and complexity (e.g., circuit size). Firstly, en-

tropy is increased by adding more elements such as RAM cells

or oscillators, at the expense of an increased circuit size. Also,

reliability is enhanced by error-correcting codes (ECC), but

their redundancy generally decreases the entropy. For a given

PUF design, it is not obvious how to precisely characterize the

tradeoff between these three parameters (entropy, reliability and

circuit complexity). For instance, fuzzy extraction [7] using

error-correcting codes is implemented in the PUFKY [14]

based on the ROPUF [3]. However, for this design, and fuzzy

extraction in general, it is very hard to determine the bit

error rate (BER) theoretically. Therefore, the actual parameter

selection for the fuzzy extractor is not straightforward. Bit-

filtering [18] can also improve the reliability but since the

number of output bits is reduced as a result of the filtering, this

technique also decreases the entropy of the PUF. Thus, this

technique, similar to fuzzy extraction, is subject to a tradeoff

between reliability and entropy.

The aim of this paper is to build a framework to analyze this

tradeoff for delay PUFs. Maes [13] proposed such a framework

for the reliability of SRAM PUFs which was ad hoc for a

given PUF architecture and where the parameters’ identification

was performed on experimental data. Bhargava et al. [2] also

perform filtering to improve the reliability of their PUF design,

but provide no theoretical model to predict the reliability that

might be obtained. In contrast, we aim at deriving a generic

model using elementary assumptions, where the three-way

tradeoff is not fully determined by real measurements, but

given instead by closed-form expressions involving the signal-

to-noise ratio (SNR). In this way, additional estimations of the

SNR yield new predictions for the tradeoff.
Our framework is applied to three popular delay PUFs: the

RO-PUF [19], the RO sum PUF [20] and the Loop PUF [4].

Bit-filtering is the technique chosen here to improve reliability,

in a manner similar to the η-out-of-λ scheme of Škoric et

al. [18]. Our contributions are as follows:

• a generic tradeoff analysis framework for delay PUFs;

• closed-form expressions for the BER and entropy for these

PUFs, with and without bit-filtering;

• an analysis of the RO-PUF, the RO sum PUF and the

Loop PUF, using this framework;

• real measurements of the delay PUFs on ASIC confirming

our theoretical results.

The remainder of this article is organized as follows.

Section II presents a theoretical model for the delay PUFs.

Closed-form expressions for reliability and entropy are derived

in Section III. This framework is applied to various delay PUFs

in Section IV. Section V provides an experimental validation

on silicon. Section VII concludes.

II. DELAY PUF MODEL

In this section, we provide a black-box analysis for a

generic delay PUF. Throughout this paper we use the following

notations.

n number of delay elements in the circuit

i index of a delay element

t index of a measurement

T total number of measurements

M total number of challenges

m index of a challenge
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J number of circuits

j index of a circuit

cmi i-th challenge bit
Cm m-th challenge Cm = (cmi )i
djC,t total delay for challenge C (at measure t, for

circuit j)

δjC,t δjC,t = djC,t − dj¬C,t

δjC δjC = 1
T

∑T
t=1 δ

j
C,t

ΔC random variable modeling δC
Z additive Gaussian measurement noise

For simplification, sub- and superscripts (such as m, t, or j)
may be dropped when this does not introduce any confusion.

We model an ideal (noiseless) delay PUF as a deterministic

algorithm PI that takes a challenge C as input, and outputs a

delay difference δC :

PI : C �→ δC .

This delay is then, in general, discretized in order to extract

one (or more) bit(s). Thus, the final output is some function

of the measured delay difference. For the sake of simplicity,

we consider the sign function as the bit-output of the PUF:

b = sign(δC).

The delay difference δC for a given challenge stems from

a multitude of small delay variations caused by technology

dispersion, and is thus seen as a realization of a random

variableΔC . Similarly to Lim et al. [12], we model this random

PUF variable as Gaussian ΔC ∼ N (0,Σ2) for some positive
deviation Σ > 0.
Such a delay PUF model is ideal since in practice, measure-

ment noise is always present. Following e.g., [12] we model

this noise as additive and independent Gaussian. Our PUF

model becomes a probabilistic algorithm:

P : C �→ δC + Z b = sign(δC + Z) (1)

where Z ∼ N (0, σ2) for some σ > 0. Since P(C) is the sum
of a "signal" ΔC and noise Z, the signal-to-noise ratio (SNR)
can be defined

SNR =
E[Δ2

C ]

E[Z2]
=

Σ2

σ2
. (2)

and the bit error rate is defined as

BER(δC) = P(sign(δC + Z) �= sign(δC)). (3)

To simplify the reliability analysis, we make the additional as-

sumption that all PUF responses δC are mutually independent.
In general this will only be satisfied approximately. As shown

below for each specific PUF, the independence assumption will

hold accurately for specific sets of challenges (at the order of

n).
In the model proposed by Maes [13], δC would correspond

to the process variables and Z to the noise variable. However,
the output bits from a delay PUF do not precisely correspond

to a measurement of the process variables and further analysis

is needed to apply the Maes model to delay PUFs. Furthermore,

rather than estimating the BER from experimental data and then

find the parameters using a top-down approach, we find it more

convenient to derive the BER from measures of simple system

parameters such as the SNR, in a bottom-up approach, as

described in the next section. We feel that such a determination

is better theoretically justified since it requires less ad hoc
assumptions.

III. DELAY PUF RELIABILITY AND ENTROPY

When considering n challenges to generate n response bits,

there is a high probability that unreliable response bits are

obtained. Katzenbeisser et al. [11] showed that there is 2%

to 15% unreliable bits, depending on the environment. Here

we consider the proportion of faulty bits, or, equivalently,

the average probability that a PUF bit flips, as a metric to

characterize the PUF reliability. In contrast to an SRAM PUF,

for which only the output bit values are available, delays can

be measured in a delay PUF to detect unreliable bits, as we

will explain in the next sections.

A. Reliability Assessment

The reliability of a delay PUF is directly related to the

absolute value |δC | of the delay difference δC associated to

each challenge C. Indeed, the larger the value, the smaller the
probability to have a bit flip of the measured δC sign due to

measurement error. More formally, if we consider the Gaussian

noise Z ∼ N (0, σ2) added to δC , the BER is the probability

to have a bit flip for challenge C, and is given by the following

Lemma 1. One has

BER(δC) = P
(
sign(δC + Z) �= sign(δC)

)
= Q

( |δC |
σ

)
, (4)

where Q(x) = 1
2 erfc(

x√
2
).

Proof. Let Z ∼ N (0, σ2) and δC be a fixed value. Then

BER = P[sign(δC + Z) �= sign(δC)]

= P[(δC + Z > 0, δC < 0)] + P[(δC + Z < 0, δC > 0)]

= P[Z > |δC |, δC < 0] + P[−Z > |δC |, δC > 0]

= P[Z > |δC |] = Q
( |δC |

σ

)
since Z is symmetrically distributed.

Figure 1 illustrates the distribution of ΔC and the noise

distribution around the value δC associated to the challenge C.
In this example, an error occurs when δC + Z is negative.

|δC |/σ value 0 1 2 3 4

BER 0.5 1.6 10−1 2.3 10−2 1.3 10−3 3.2 10−5

|δC |/σ value 5 6 7 8 9

BER 2.9 10−7 9.9 10−10 1.3 10−12 6.2 10−16 1.1 10−19

Table I
BER FOR ONE BIT ACCORDING TO THE |δC |/σ VALUE.
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δCError area

δC + Z ∼ N (δC, σ2)

ΔC ∼ N (0,Σ2)

PUF values (δC) distribution

Measurement (δC,t) distribution

Error probability

Figure 1. pdf of Δ and noise for a given challenge C.

Table I gives the BER one can expect for a given challenge.

For a set of challenges, the BER has to be assessed on all the

δC values, which are assumed to be independent.

The average proportion of bit flips is the expectation of the

BER over ΔC , and is given by the following

Lemma 2. One has

B̂ER = E[BER(ΔC)] =
1

π
arctan(

1√
SNR

). (5)

Proof. As shown in the proof of Lemma 1,

B̂ER = P[sign(ΔC + Z) �= sign(ΔC)]

= P[Z > |ΔC |]
= P[

Z

σ
> |ΔC

Σ
|
√
SNR].

Note that this probability is taken jointly over ΔC , Z
and that these are independent Gaussian variables, ΔC ∼
N (0,Σ2), Z ∼ N (0, σ2). Therefore, X = ΔC

Σ and Y = Z
σ

are independent and follow standard normal distributions, and

the formula becomes

B̂ER = P[Y > |X|
√
SNR].

Since the probability distribution of (X,Y ) is isotropic, it is

easily seen that B̂ER equals the proportion of the hatched area

on Fig. 2. This proportion is simply 2θ/2π, where tan(θ) =
1/
√
SNR by the geometric definition of the tan function. Thus,

we simply have that

B̂ER =
1

π
arctan(

1√
SNR

).

The expected BER is represented as a function of the SNR

in Fig. 3. Although the expected BER (III-A) vanishes with

the noise:

lim
SNR→+∞

B̂ER = 0,

it is easily seen that the expected BER remains quite high,

> 10−3, even for large values of SNR (several thousands).

X

Y

θ = arctan( 1√
SNR

)

(1,
√
SNR)

Y > |X|√SNR

Figure 2. Polar representation of X and Y.

Figure 3. Expected BER as a function of the SNR.

B. Reliability Enhancement by Delay Knowledge

A classical and efficient method to enhance (reduce) the BER

is to take advantage of ECCs, like the secure sketch methods

presented by Dodis [7] and exploited by reliable architectures

like PUFKY [14]. With this method, an enrollment phase takes

place once, just after manufacturing, in order to build a public

"helper data". The helper data, also called "secure sketch", can

be either a n bit code-offset or a n− k bit syndrome. During

PUF usage, noise might corrupt the PUF value, but thanks to

the secure sketch, the potential errors can be corrected by the

ECC decoder.

We will investigate here another method to improve the

reliability of the PUF that uses the knowledge of the δC
values to filter out unreliable bits. Therefore, ECC may not

be necessary or at least less complex, which helps to reduce

circuit complexity.

The BER can be decreased discarding the challenges which

generate unreliable bits. These challenges are recorded during

the enrollment phase in the helper data. This helper data is

then used during the reconstruction phase of the PUF. This

construction resembles the η-out-of-λ scheme by Škoric et al.

[18]. However, to make the computations tractable, instead

of removing a fixed number of challenges, we remove bits

that whose reliability is lower than a given threshold. Below

we compute the resulting average reliability in terms of mean

BER, and the average remaining entropy after bit-filtering.
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From the security point of view, this helper data does not

unveil any information of the response bits, since the PUF

responses to challenges are assumed independent. However, if

an attacker could modify the helper data, she could reconstruct

the PUF response, for example using an attack similar to the

one described by Hiller et al. [10]. Therefore, we have to

assume that the helper data can only be read by an attacker,

but cannot be modified. This can, for example, be achieved by

storing it on ROM memory on the PUF.

The declaration of "unreliability" is given at enrollment phase

when the delay |δC | for a challenge C is below a threshold Th,
which has to be chosen to take into account the noise level σ.
In what follows, we set Th = W · σ, where W expresses the

capacity to filter the unreliable bits. Increasing W decreases

the BER, but reduces the number of bits, hence the entropy.

Figure 4 illustrates the distributions of ΔC and the noise. It

points out the unreliable area in the window [−Th,+Th] of
width 2Wσ.

δC

δC + Z ∼ N (δC, σ2)

δC ∼ N (0,Σ2)
Unreliable area

-Th Th

2Wσ

Reference values (δC) distribution (static randomness)

PUF delay distribution (with dynamic randomness)

Figure 4. Unreliable area vs distributions of ΔC and the noise Z.

The average BER reduction after filtering the unreliable bits

depends directly on Th = Wσ and is given by the following

Lemma 3.

B̂ERfilt =
2

erfc( W√
2
√
SNR

)

(
T (W,

1√
SNR

) +

1

4
erf(

W√
2
√
SNR

)(erf(
W√
2
)− 1)

)
(6)

where T represents Owen’s T function:

T (h, a) =
1

2π

∫ a

0

e−
1
2h

2(1+x2)

1 + x2
dx.

Proof. For the sake of simplicity, we will drop the subscript
C from the random variable ΔC .

By definition of the filtered BER, we have that:

B̂ERfilt =

∫ +∞

−∞
p(Δ | |Δ| > Th) · BER(Δ) dΔ.

This generic formulation, or very similar ones, have already

been found before, for example by Delvaux [5] (Eq 4.41).

However, we will apply it here to a specific PUF, and can

therefore derive a more explicit formulation. Indeed, we can

find a closed form of E(BERfilt) after filtering the bits as:

B̂ERfilt =

∫ +∞

−∞
p(Δ | |Δ| > Th)BER(Δ) dΔ

=

∫ +∞

−∞
|Δ|>Th(Δ)

p(Δ)

P(|Δ| > Th)
BER(Δ) dΔ

=
2

P(|Δ| > Th)

∫ +∞

Th

p(Δ) · BER(Δ) dΔ

=
2

P(|Δ| > Th)

1

2
√
2πΣ

∫ +∞

Th

e
−Δ2

2Σ2 erfc(
Δ

σ
√
2
) dΔ.

Using the following integral value for x, k > 0:∫
e−x2

erfc(kx) dx =

− 1

2

√
π(4T [

√
2kx,

1

k
] + erf(x)(erf(kx)− 1) + 1) + constant

(where T is Owen’s T function, first introduced by Owen [16]),

and using a change of variables, we get that

B̂ERfilt =
2

P(|Δ| > Th)
(T (

Th

σ
,

1√
SNR

)+

1

4
erf(

Th√
2Σ

)(erf(
Th√
2σ

)− 1))

or, since P(|Δ| > Th) = erfc( W√
2
√
SNR

) and
Th

Σ
=

Wσ

Σ
=

W√
SNR

,

B̂ERfilt =
2

erfc( W√
2
√
SNR

)

(
T (W,

1√
SNR

) +

1

4
erf(

W√
2 · √SNR

)(erf(
W√
2
)− 1)

)
.

C. Entropy After Filtering Out Unreliable Bits

The proportion of unreliable bits is given by

P(Bit unreliable) = P(|Δ| < Th) = erf(
Th√
2Σ

)

= erf(
W√
2SNR

). (7)

In other words, the average remaining entropy of a circuit with

n elements (thus, of complexity proportional to n) is equal to

H(n,W )SNR = n · erfc( W√
2SNR

). (8)

With this method, it is necessary to increase the number of

elements to generate a given entropy. The expected number of
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elements n, with n > h, to consider in order to obtain h bits

of entropy is given by:

n =
h

1− P(Bit unreliable)
=

h

erfc( W√
2SNR

)
. (9)

Figure 5 represents the average remaining entropy for a circuit,

depending on the SNR and the target BER. This characterizes

the tradeoff between reliability and entropy.

Figure 5. Remaining average entropy after filtering unreliable bits as a function
of the BER to reach.

If ever it is not possible to reach the required entropy, the

device is discarded. The probability of this happening can

also be computed. Since the obtained delays are independent

(when choosing a Hadamard matrix for the challenges), the

number of unreliable bits is given by a binomial distribution

B(n, erf( W√
2SNR

)) on a PUF with n elements. Thus,

pdiscard =

n∑
i=n−h+1

(
n

i

)
erf(

W√
2SNR

)i erfc(
W√
2SNR

)n−i

= Ipd
(n− h+ 1, h) (10)

where Ix(a, b) is the regularized incomplete beta function and
pd is the probability of discarding a bit, pd = erf( W√

2SNR
).

IV. TRANSLATION FOR VARIOUS PUF ARCHITECTURES

When applying our results on real PUF architectures, we

must suppose that the output bits are independent and non-

biased. By restricting the set of possible challenges, we

can prove, under the assumption that the theoretical model

describing the PUF is accurate, that the remaining output bits

are indeed independent and non-biased. However, this is no

longer true when the PUF behavior deviates from that predicted

by its model. It is possible to ensure that the output bits are not

biased and uniform using standard test suites, for instance those

provided by NIST [1]. If these tests fail, bias and correlation

can be corrected by applying fuzzy extractor techniques [6]

prior to bit filtering.

A. RO-PUF

The RO-PUF has been first described by Suh and Devadas

[19]. In the general case, it uses a certain number of oscillating

loops for which the oscillation frequencies are measured and

compared. In the setting that we will analyze, and that had

already been described in this seminal work, we will use 2n
ring oscillators to generate n bits. To describe this PUF in

our unified framework, we will define a challenge C as any

n-bit string with Hamming weight exactly 1. If Cm is such

that cmi = 1 iff m = i, then the delay difference δCm will

correspond to the frequency difference between oscillators 2m
and 2m + 1. Thus, the δCm will be mutually independent.

Therefore, our framework can be directly applied in order to

estimate the reliability-entropy tradeoff in case filtering is used.

B. RO sum PUF

The RO sum PUF, or recombined oscillator, has been

proposed by Yu and Devadas [20]. Instead of comparing the

oscillator frequencies, they are measured, added or subtracted,

before one bit is generated from the sign. More precisely, the

2n oscillators are divided into n pairs. Let C = (ci)i be a
challenge of length n. If di is the delay difference for the two
oscillators of the i-th pair, then the total delay is obtained as

δC =

n∑
i=1

di(−1)ci .

Here, di should be modeled as a realization from a normal

law, with variance Σ2
0. Therefore, we will have that ΔC ∼

N (0, nΣ2
0 = Σ2). There are 2n possible challenges, however,

the delays for all these challenges will not be independent.

It has been shown by Rioul et al.[17], for a different PUF

but the same delay model, that the challenges are mutually

independent if, when converted to {±1} vectors instead of

{0, 1} vectors, they are orthogonal. We can therefore find a
subset of n challenges that are independent if a Hadamard

matrix of rank n exists. This is always the case if n is a power

of two or a multiple of 4 smaller than 668 [15]. Assuming this
is the case, we can choose any such subset of challenges for

the n possible challenges. Our framework can then be applied

to this PUF.

C. Loop PUF

The Loop PUF, described by Cherif et al. [4], strongly

resembles the RO sum PUF, with the exception that one

configurable ring oscillator is used, instead of 2n simple

ROs for the RO sum PUF. For the Loop PUF, each RO

comprises n configurable and balanced delay element pairs.

During delay measurement, the signal only passes through one

half of the delay elements, this half being determined by the

input challenge. The same measurement is then done for the

complementary challenge, so that the signal passes through the

other half of the delay elements, and the delay difference is

then computed. The mathematical model is thus very similar

to that of the RO sum PUF, with some minor differences. For

example, in the RO sum PUF, the delays for the individual

ring oscillators are first quantified and then added, which might

lead to some rounding errors. This is less the case for the Loop

PUF, since a total delay is directly measured. Thus, there are

only two delay quantifications for the Loop PUF.
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As shown by Rioul et al. [17], in order to obtain independent

delay differences, and thus independent bits, the challenges

need to be orthogonal, in the same sense as before. Thus, an

entropy of n bit can be obtained by choosing a n×n Hadamard
matrix for the challenges, if a Hadamard matrix of this size

exists.

V. EXPERIMENTS AND VALIDATION WITH REAL SILICON

A. Architecture of the Test Circuit

We used Loop PUFs with n = 64 delay cells for our

experiment. The cells use 65 nm CMOS technology, and each

test chip contains 49 PUFs, embedded in a 7× 7 matrix. We
performed the delay measurements during L = 214 oscillation
periods of the reference clock at fref = 100 MHz. This allows
us to simulate:

• 49 Loop PUFs with 64 delay elements, or

• 64 RO-PUFs with 24 delay elements, or

• 64 RO sum PUFs with 48 delay elements.

Following [17], we choose a 64× 64 Hadamard matrix as
the challenge matrix to control the 49 Loop PUFs. The 64
challenge responses can therefore be considered independent.

We perform T = 1000 measurements for each challenge and
each PUF per chip. This directly yields the responses for the

Loop PUF. In order to simulate a RO-PUF, we fix a challenge

index m and consider the 24× T response delays:{
δ2jm,t − δ2j−1

m,t , j ∈ [1, 24]
}
.

In a similar fashion, for the RO sum PUF we choose a

48× 48 Hadamard matrix C̃. For a fixed challenge index m
of the Loop PUF, we then obtain 48× T response delays:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
C̃ ·

⎛
⎜⎜⎜⎝
δ1m,t

δ2m,t
...

δ48m,t

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

B. BER and Entropy Measurement

1) Results: Six test chips have been analyzed, and the

measured BER and remaining entropy have been plotted in

Fig. 6.

The error bars represent the range of values obtained among

the tested chips. Although they do not share the exact same

SNR, a middle value has been chosen, so that a simple

comparison is possible. The SNR was calculated by estimating

the variance of ΔC and Z from the delay measurements of the

test chips. Moreover, the range of measured SNRs is relatively

small (between 180 and 250).
2) Discussion: For the remaining entropy, the measured and

predicted values match quite closely. This seems to confirm

the hypothesis of a Gaussian distribution for the average delay

values. For the bit error rate however, the interpretation of the

results seems more complicated. Indeed, while the BER for

small filtering thresholds, and thus "large" BERs, seems to

match our prediction, this is not the case for larger thresholds,

Figure 6. Experimental validation of the SNR and remaining entropy.

at least for the RO-PUF simulation and the Loop PUF. We can

see two explanations for this:

First, the sample size is probably not large enough to reliably

estimate probabilities around 10−8. Indeed, for each chip, we

record about 3 million samples, and thus, even one bit error

would yield a BER, for that circuit, of more than 3 · 10−7.

Therefore, the BERs for parameters W ≥ 4 come with a fairly
large uncertainty.

The small sample size does not explain everything, however.

When further analyzing the delay measurements, we notice

that the noise distribution does not perfectly follow a Gaussian

distribution. Indeed, on some chips, we observe multiple

measurements that are more than 7σ away from the computed

mean delay value, as taken over 1000 measurements. This

should not happen more than once in about 500 million

measurements, if the noise was truly Gaussian. Thus we must

admit that the noise is not exactly Gaussian. More exactly, it
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seems to be more heavy-tailed than a Gaussian noise. This

could be an artifact of our experimental setup. Indeed, it forces

us to wait a relatively long time span between measures, and

the outliers could be explained, for example, with voltage

fluctuations (the Loop PUF is relatively sensible to supply

voltages changes). On the other hand, it should not come to

a great surprise that a physical phenomenon does not exactly

follow a Gaussian distribution. In order to derive a more precise

model, other types of noise distributions need to be considered.

One can further notice that the divergence from the expected

BER is almost absent from the RO sum PUF simulation. This

can be easily explained. A simulated delay measurement for the

RO sum PUF corresponds to the sum of 48 independent Loop

PUF delay measurements. If only one Loop PUF measure is an

outlier relative to the expected Gaussian noise distribution, this

will less affect the whole sum. This also explains why the RO-

PUF exhibits less divergent behavior than the Loop PUF, as any

outlier will be summed with another delay measurement. These

results, however, are possibly artifacts of our experimental setup,

if we suppose that external factors cause these outlier measures.

Indeed, in a real RO-PUF or RO sum PUF, all measures would

certainly be done in parallel, and might be affected by the same

glitch at the same time. Therefore, this does not say anything

about the intrinsic robustness of these three PUF types.

VI. EFFECT OF ENVIRONMENTAL CHANGES: TEMPERATURE

PUFs are not necessarily used in the same environmental

conditions they were enrolled at. Mainly two factors seem

to be able to affect their behavior: temperature and input

voltage [8]. We will assume that the input voltage can be

controlled, via an voltage regulator for instance, and not further

investigate in this direction. However, it is more complicated

to control the temperature at which the PUF will be used,

and it would therefore be helpful if it was possible to model

the PUF-response dependency on temperature. In this section,

we propose and test such a model. A similar model has been

proposed by Maes [13], but for delay PUFs, it is possible to

more directly test the model and make more straightforward

predictions.

A. Assumptions

Given our experiments, we think that it is safe to make the

following assumption: The delay response of a given oscillator

is linearly dependent on the temperature, but the proportional

constant might vary among ring oscillators. Testing on the

Loop PUF circuits yielded a linear regression R2 score above

0.999 for every oscillator. In addition, we will assume that

this proportional constant follows a normal law. The curve for

different oscillators in Figure 7 seems to validate this kind of

distribution. Since in general, only the differences between ring

oscillators are being considered (for the RO-PUF as well as the

RO sum PUF), we can suppose that the probability distribution

is centered. More formally, let’s denote the temperature by

θ, and the linear dependency coefficient by �, where � is a
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Figure 7. Distribution of temperature dependency coefficients (for 49 distinct
oscillators, as well as 64 challenges of the same oscillator, for three different
oscillators)

realization of a random variable L ∼ N (0, σθ) . We therefore
have the model for the temperature dependent PUF:

Pθ : C �→ δC + Z + �θ, b = sign(δC + Z + �θ) (11)

B. Average BER

We can now try to compute the average bit error rate over

all average delays δC and dependency coefficients �. As a
reminder, the BER is defined here as

B̂ERθ = P [sign(Δ + Z + Lθ) �= sign(Δ)] (12)

Since Z and Lθ are two centered independent Gaussian random
variables, with variance respectively σ2 and θ2σ2

θ , the sum is

also a Gaussian random variable with variance σ2 + θ2σ2
θ .

Therefore, the result for the average BER obtained in III-A

can be directly applied, by replacing σ with
√

σ2 + θ2σ2
θ :

B̂ERθ =
1

π
arctan(

√
σ2 + θ2σ2

θ

Σ
) (13)

Thus, for the average BER, using the PUF at a temperature that

is different from the enrollment temperature is equivalent to

a loss of SNR. Of course, for individual delay measurements,

this is not true, as the BER can exceed 0.5 if an inversion of
the average sign happens due to the temperature difference,

but it remains true for the average BER.

C. Effect on delay PUFs

The RO-PUF and RO sum PUF are equally affected by

the temperature dependency of the ring oscillators on the

temperature. Indeed, for the RO-PUF, the delay difference is

simply the difference of delay among two oscillators, and the

model can be directly applied as is. For the RO sum PUF, the

total delay difference is actually the sum of a larger number of

ring oscillator-pair delays. However, since the sum of Gaussian

random variables still follows a Gaussian distribution, the same

formula applies for the RO sum PUF, where σ, σθ and Σ are

simply multiplied by the square root of the number of ring
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oscillator pairs. Since the average BER only depends on the

ratio between these quantities, the BER formula is unchanged.

The case of the Loop PUF is a little different. Indeed,

the delay differences are measured on the same oscillator,

and different challenges should have a similar temperature

dependency. However, as Figure 7 shows, this is not exactly

the case. While the temperature dependency coefficients vary

less between challenges of the same oscillator than between

oscillators, the variance is not zero. The model seems also

applicable to the Loop PUF, albeit with a lower standard

deviation σθ.

VII. CONCLUSION

This paper first presents the formalism to express the entropy

and reliability of multiple delay PUFs: the RO-PUF, the RO

sum PUF and the Loop PUF. We obtained a closed-form

expression of the reliability which shows that the BER cannot

go lower than about 10−3 even with large SNRs. The gain

provided by the bit-filtering method that discards unreliable

bits at enrollment phase has been formalized, giving a BER

which can go to less than 10−10.

The tradeoff between BER, entropy and complexity has

been characterized. The resulting parameter selection for a

given application is quite straightforward and simple. Practical

experiments on few hundred PUFs designed in 65 nm CMOS

process validate the theory. Testing the effect of temperature

on the different types of PUFs is difficult when simulating

with Loop PUFs. Tests with "native" PUFs might be necessary

for a more thorough validation.

The Gaussian model for process and noise variables are

validated by these experiments up to a certain threshold.

Beyond, the Gaussian model may not be valid at the far tail

of the noise distribution, and an adequate model for the noise

distribution is a subject for future work. Such a model would

allow more efficiently designs of PUFs with very low error

rates. In particular, this model for reliability (also sometimes

termed steadiness) is a suitable metric for stochastic models

being developped in ISO/IEC 20897 project [9].
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