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ABSTRACT
The design of Fitts’ historical reciprocal tapping experiment
gravely confounds index of difficulty ID with target distance D:
Summary statistics for the candidate Fitts model and a com-
peting model may appear identical, and the validity of Fitts’
model for some tasks can be legitimately questioned. We
show that the contamination of ID by either target distance
D or width W is due to the common practices of pooling and
averaging data belonging to different distance-width (D,W)
pairs for the same ID, and taking a geometric progression for
values of D and W. We analyze a case study of the validation
of Fitts’ law in eye-gaze movements, where an unfortunate
experimental design has misled researchers into believing that
eye-gaze movements are not ballistic. We then provide simple
guidelines to prevent confounds: Practitioners should carefully
design the experimental conditions of (D,W), fully distinguish
data acquired for different conditions, and put less emphasis
on r2 scores. We also recommend investigating the use of
stochastic sampling for D and W.
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INTRODUCTION
Fitts’ law is a well known rule for human-aimed movement
that predicts the movement time (MT) it takes to reach a target
of width W located at a distance D:

MT = a + b log2(1 +D/W) = a + b ID, (1)

where ID is the index of difficulty1and a and b are estimated
empirically.
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Fitts’ law gained importance in the HCI community after the
seminal study by Card et al. [4] that measured the performance
of four pointing devices on desktop computers. The law plays
a prominent role in HCI, where it is heavily used to predict
and evaluate the performance of input techniques. It has been
shown to handle many conditions and tasks quite well, result-
ing in an incredibly wide spectrum of applications. Studies
include reciprocal tapping between two targets using different
limbs and body parts, such as tapping pedals [9] and manipu-
lating a cursor [15] with the feet, controlling a stylus attached
to the chin with head movements [2], and moving a cursor by
rolling the head [16]. More unexpected applications include
pointing and dragging sequences [12], rapid elbow flexion [6],
eye-gaze movements [25, 21], and a study of patients with
cerebral palsy [3],

Fitts’ pointing paradigm for the reciprocal tapping experi-
ment [10, Experiment I] has proven to be very influential.
Fitts’ apparatus was comprised of two plates of width W,
separated by distance D. Distance and width were systemati-
cally varied: The four different conditions of D (2,4,8,16 (in.))
were crossed with four conditions for W (1/4,1/2,1,2 (in.)),
resulting in 16 conditions. MT was then evaluated for each
one of the 16 conditions. Today’s version of a generic 1-D
Fitts’ law experiment is in many cases a simple adaptation of
this protocol, where physical plates are replaced by targets
on computer screens, and reciprocal tapping is sometimes re-
placed by discrete tapping, a cleaner version of the protocol
due to Fitts & Peterson [11]. While the ISO standard [24] for
the evaluation of pointing performance recommends a 2-D
multi-directional tapping task, composed of circular targets of
diameter W arranged in a circle of diameter D to control the
effect of direction, many studies, old or recent, are conducted
with the simple 1-D task.

Notations
Throughout the paper we use the following notations:
● Factors are noted in roman capital letters: distance D, width

W, index of difficulty ID, and movement time MT.

1There are several formulations for ID, the one given here, known as
the Shannon formulation [18, 19] being the most widely used in HCI.
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● These factors take values in sets, denoted by their corre-
sponding calligraphic capital letters: D = {d1,d2, . . . ,dn},
W = {w1,w2, . . . ,wm}, ID = {id1, id2, . . . , idk}.

● When two factors, e.g. D and W, are fully crossed, each
element of D is paired with each element ofW , resulting
in n × m pairs. We use the condensed notation D ×W to
denote all these pairs.

● Several (D,W) pairs may result in the same D/W ratio. For
example if D = {10,20,50} andW = {1,2,4}, pairs (10,1)
and (20,2) have the same D/W ratio of 10. We call D the
variable corresponding to the average distance computed
over equal ratios D/W.

● The list of averaged values D is noted D. With D andW
as above, the set of ratios is {2.5, 5, 10, 12.5, 20, 25, 50} and
the corresponding list of values of D is D = (10,15,15,50,
20,50,50).

● Similarly, we note MT and W the variables corresponding
to the averages of MT and W computed over equal ratios
D/W.

Flaws in Fitts’ Literature
While Fitts’ law has proven to be incredibly robust and useful,
a number of potential flaws in the experimental designs used
in the literature have been identified.

Guiard [14] showed that the design of Fitts’ original tapping
experiment correlates ID with D: “ The dependence [between
D and ID] is strong and systematic: on average target distance
is raised by 11.7 cm for each extra bit of information” [14].
Hence Fitts’ design makes D a confounding factor: a factor
that has an effect on both a dependent and an independent
variable in a controlled experiment.

It may then appear that manipulating the independent variable
leads to variations in the dependent variable, when in fact both
variations are due to the confounding factor. Thus, within
Fitts’ design, manipulating the ID affects movement time, but
in fact both ID and MT are affected by the confounding factor
D, making it impossible to disentangle the effects of D and ID
on MT.

The correlations between D and ID are even stronger if one
“builds an average on execution times for one ID first and calcu-
late the correlation afterwards” [7]. This procedure, commonly
used by HCI researchers, considers all blocks corresponding
to the same ID as equivalent and computes a single average
per value of ID, leading to what we have noted D, W and MT.
Not only does this operation pre-supposes the validity of Fitts’
law [7, 8], it also strongly correlates D and ID [14, 7, 8]. As
we shall illustrate, it then becomes impossible do distinguish
if the effects on MT are due to D or ID.

The implications of these confounds are wide ranging. Accord-
ing to MacKenzie [20], referring to Glencross and Barrett [13],
“It has been suggested that the model [Fitts’ law] would hold
for the mouth or any other organ for which the necessary de-
grees of freedom exist and for which a suitable motor task
could be devised”. If D is indeed a confounding factor for ID,
one can then wonder about the validity of Fitts’ law in some
of its applications.

Positioning and Goals of The Paper
One solution proposed by Guiard [14] to disentangle D and ID
is what he called the complete form x scale design. Although
this solution does guarantee the decorrelation of D and ID,
it is impractical for pointing experiments in that it strongly
restrains the range of variation of ID2. The ID cannot be
raised over 6 bits or so because that would require, at lower
scale levels, impractically small values of W; nor can the ID
be lowered below 4 bits or so because that would require, at
higher scale levels, impractically large values of D [14].

While the form×scale design ensures a totally independent
variation of factors D and ID, in “real-world” HCI, the deci-
sion about the validity of Fitts’ law is usually based on the
informal criterion that r2 between ID and MT should be high
enough (e.g., r2 > 0.9 in [24]). What matters then, as we
will show, is not that the confound be totally removed, but
rather that its “strength” be reduced. We define X and Y as
strongly confounded factors if r2(X,Y) > 0.9, otherwise they
are weakly confounded3. In contrast to Guiard [14], the focus
of this paper is to find designs that prevent strong confounds.

The goal of this paper is threefold: First, we identify the ob-
jective conditions that lead to strong confounds in Fitts’ law
experimental designs. Such conditions can be evaluated on
past and future experiments to quickly determine if the design
is at risk of strong confounds. Second, once these conditions
are clearly identified, we show a documented case in eye-gaze
pointing where the validation of Fitts’ model is the result of
a strong confound between D and ID. Third, we provide rec-
ommendations to protect the experimenter from confounding
factors when designing experiments for Fitts’ law. These rec-
ommendations may also prove useful for experimenters in
HCI in general.

PRACTICAL EFFECTS OF STRONG CONFOUNDS
Guiard [14] and Drewes [7, 8] have illustrated the strong
confound between D and ID that occurs in Fitts’ original
design and raised ensuing qualitative issues. The goal of this
section is to show a numerically worked out example of strong
confounds between D and ID, on a different design than Fitts’.

A Surprising Simulation
Let us consider two potential generative processes for MT:

Law A is Fitts’ law, where MT is given by Eq. (1). Values
for a and b are taken respectively as a = −1047 ms and
b = 391 ms/bit.

Law B relates MT to D only:

MT = a′ + b′ D, (2)

where a′ = −251 ms and b = 1.956 ms/mm.

The explanation for the specific values of a, a′, b and b′ will
appear below. We now consider the following experimental
2As noted in [14], a full form×scale design on Fitts’ design for
Experiment I [10] requires, e.g., W = 0.02 cm.
3The operational value of r2 above which a confound is deemed
strong or not depends of course on what is expected by the experi-
menter. The value .9 is common in the Fitts’ law literature.
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Figure 1. Simulated data for task A (orange, logarithmic) and task B
(blue, linear). We have shifted the x-axis by 0.05 for task A for better
legibility. The circles correspond to the average MT for a given ID for
task B, the diamonds for task A. For Fitts’ law (task A), we find MT =
386 ID − 1040 with r2 = 0.9995. For task B, we find MT = 392 ID − 1052
with r2 = 0.9921.

design: D = {256,512,1024} and W = {8,16,32}, where
D and W are fully crossed. There are thus 9 different exper-
imental conditions that lead to only 5 different D/W ratios:
(8,16,32,64,128). The corresponding average distances are D
= (256,384,597,768,1024).

We run a simulation experiment where trials for each process
are generated for the D ×W conditions by adding a random
noise sample to the underlying generative process. MTi for
each trial i is then given by,

MTi = −1047 + 391 log2(1 +D/W) + zi (law A) (3)

MTi = −251 + 1.956 D + z′i , (law B) (4)

where zi and z′i are the outcomes of a centered random process,
which we took equally distributed according to a zero-mean
Gaussian law with standard deviation σ = 300 ms, meaning
that approximately 96% of the samples for MT are located
within a 1200 ms interval. As we shall see later, the shape
of the actual distribution is of little impact as long as it is
centered.

We generated 200 trials per condition; the two datasets are
represented in a MT vs. ID plane in Fig. 1. Five vertical
scatters are obtained, one for each different D/W ratio. To get
rid of the strong variability, we consider MT, the averages of
MT per ID. After averaging, we end up with the blue dots and
orange diamond markers in Fig. 1.

The surprising result is that the summary MT for law A is
indistinguishable from that of law B. Both datasets, after aver-
aging, are extremely well fitted with Fitts’ law: The r-squared
between MT and ID is r2 = 0.9995 for law A and r2 = 0.9921
for law B. This is unexpected for the second dataset since it
was generated with law B, not Fitts’ law.

A Scenario for an Experimenter
The scenario for the above simulation is very close to a real
experiment: Let us consider an experimenter who wants to
investigate two tasks A and B and tries to find reasonable
models to explain MT in both tasks. Let us assume that MT is
actually governed by law A (Fitts’ law) for task A and by law
B for task B. The experimenter does not know this but has the
intuition that both tasks should be reasonably well modeled
by Fitts’ law (law A).

After setting up the experimental design described above, he
runs the experiment for both tasks. The resulting datasets
are probably very similar to those in Fig. 1, with 5 vertical
scatters for each task. After averaging over ID, he ends up
with the large markers (blue disks and orange diamonds) of
Fig. 1. This is precisely the averaging procedure discussed by
Drewes [7] and mentioned in the introduction. After averaging,
the experimenter then computes a fit using linear regression,
and finds very high r2’s for both tasks. He can thus conclude
that his intuition was right and that Fitts’ law is a good model
to describe MT for both tasks. Unfortunately, as we have
shown, in the case of task B, this is an artifact due to the
experimental design.

Decoding the Simulation
We now explain the results of the simulation.

Law A
For a given ID, the average of MT is equal to Fitts’ law evalu-
ated at this given ID, plus the average value of the zi’s. Since
the noise is centered, the law of large numbers implies that
the average value of the noise is close to 0. While we used
a Gaussian distribution, this holds for any shape of the noise
distribution. We could also have used an asymmetric distri-
bution to guarantee positive movement times, this would not
have changed the values obtained after averaging. A similar
observation can be made about the standard deviation. By
virtue of the central limit theorem, a larger standard deviation
would only require more trials for the sample mean to be close
enough to the statistical mean.

Thus, the fact that we get an r2 between MT and ID close to
1 for law A is not surprising. As expected, we find that the
linear regression between MT and ID is very close to the one
used for generating the data: MT = 386 ID − 1040 for the
simulation results vs. MT = 391 ID − 1047 for the formula
generating the data.

Law B
The dataset generated with law B has the same summary statis-
tic as the one generated with law A. Although surprising, this
can be explained as follows. In the MT versus ID plane, there
can be more than one (D,W) condition leading to the same
D/W ratio, e.g. for D/W = 32, there are three different values
for D: D = 1024 (W = 32), D = 512 (W = 16), and D = 256
(W = 8). Therefore while it appears that there is only one verti-
cal scatter plot per ID, there are in fact three overlapping ones.
As the contribution of the noise will again be close to zero by
the law of large numbers, average MT can thus be evaluated by
inputting the average D = 1/3× (256+ 512+ 1024) ≃ 600 into
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Figure 2. The 9 D conditions (light green dots) that lead to the 5 ID
conditions used in the thought experiment. Black dots correspond to D,
the average value of D for equal IDs. Dark green dots correspond to data
points that overlap the average. r2 between D and ID and between D and
ID are given in the legend. The blue line corresponds to Eq. 8.

Eq. 2. By generalizing over all values of ID, MT is obtained
simply by evaluating Eq. 2 for each value of D.

Fig. 2 plots the values of D appearing in the D×W conditions
(light green dots) and those appearing inD (black dots) against
ID. The correlation between D and ID is very high (r2 =

0.9913). This means that the relationship between D and ID
can be considered linear:

D = α + β ID, (5)

Linear regression gives α = −407 and β = 200. Inputting
Eq. (5) into Eq. (2), we find that MT is given by

MT = a′ + b′ D = a′ + b′α + b′β ID = a′′ + b′′ ID, (6)

thereby showing that MT will indeed appear linear in ID.
Notice that this situation can only happen if the confound
between ID by D is strong enough, which warrants our focus
on strong confounds.

The values used in the simulation can now be explained: We
chose the values of a and b and computed a′ and b′ from
Eq. (6). We can verify that a = a′+b′α = −251+1.956×−407 =
−1047 and b = b′β = 1.956 × 200 = 391.

Strong Confounds in the Goal Passing Task
The previous simulation is not entirely artificial. In fact, the
D ×W conditions, as well as the values4 of a and b are from
Accot & Zhai’s goal passing task [1, Experiment 1]. They
conducted this experiment to validate Fitts’ law as a model for
4Accot & Zhai [1] actually give a = −1347 instead of the −1047 that
we used. We did so because the values of the fit given in their paper
do not match the plot in their figure. For example, for ID = 3.5, we
can read MT ≃ 300 ms in the graph, but a calculation using the values
of the fit predicts 21.5 ms. We assume that there was a typographical
error, whereby the “0” in 1047 was mistakenly typed as a “3”.

goal passing, a result that they used in the derivation of the
steering law.

Accot & Zhai used 9 conditions, yet only represented 5 move-
ment time averages [1, Fig. 3], each corresponding to a differ-
ent ID, meaning that they considered MT. According to the
simulation above, we now know that another law than Fitts’
law, whose formula is given by Eq. (2), will fit MT equally
well. Note that since one law depends on W and not the other,
one of the two models must prove inaccurate in a design that
does not confound D and ID so strongly.

Accot & Zhai were apparently unaware of this difficulty, and
concluded that the “goal passing task follows the same law as
in Fitts’ tapping task despite the different nature of movement
constraint”. They used the word “despite” as if surprised that
Fitts’ law proved a good predictor for movement times.

In fact, the law given by Eq. (2) seems reasonable for a goal
passing task when W is large enough, since in that case the
width does not really constrain the movement and the goal
passing task becomes a simple distance covering task. As-
suming a constant maximum speed c, movement time would
simply be given by

MT = to + 1/c × (D − d0), (7)

where t0 is the time needed to reach a speed of c, and d0 the
distance traveled until c is reached. This is a linear model as
in Eq. (2) with slope 1/c and intercept t0 − d0/c.

CONDITIONS FOR STRONG CONFOUNDS
Fitts’ design for the tapping experiment [10, Experiment I]
strongly confounds D with ID (r2 between D and ID above
.99, see [14, 8]). We have established that the design of the
goal passing task [1, Experiment 1] suffers from a similar
confound (r2 between D and ID above .99). In this section,
we investigate the reason for these strong confounds.

Fitts-Like Designs
We first define a class of experimental designs, which we call
Fitts-like designs, characterized by experimental conditions of
the following general form:
1. D = {d.2i}, where 0 ≤ i ≤ N − 1 and d is fixed,
2. W = {w.2 j}, where 0 ≤ j ≤ M − 1 and w is fixed.
3. D andW are fully crossed.

Conditions 1 and 2 state that the values of D and W follow a
geometric progression. Both Accot & Zhai’s goal passing task
and Fitts’ tapping experiment are Fitts-like designs.

Table 1 shows the r2 values between D and ID for four Fitts-
like designs: “Tapping”, “Disc Transfer” and “Pin Transfer”
refer to the experiments conducted by Fitts [10]; “Goal Pass-
ing” refers to the study conducted by Accot & Zhai [1, Ex-
periment 1]. All four experiments lead to strong confounds
between D and ID.

We also compute the r2 values between D and ID for different
sizes of D and W . Fig. 3 shows that any Fitts-like design
strongly confounds D with ID if N and M are small enough.
Practical considerations often limit the values of N and M to



XP N/M d w r2(D, ID) r2(W, ID)

Tapping 4/4 2(in.) 1/4(in.) 0.99 0.94
Disc

Transfer
4/4 4(in.) 1/16(in.) 0.97 0.97

Pin
Transfer

5/4 1(in.) 1/16(in.) 0.95 0.94

Goal
Passing

3/3 256(pix.) 8(pix.) 0.99 0.99

Table 1. Characteristics of four Fitts-like experiments. Tapping, Disc
Transfer and Pin Transfer by Fitts (1954) and Goal Passing by Ac-
cot & Zhai (1997).

about 5, so that most Fitts-like designs are likely to produce
strong confounds between D and ID.

Geometric Progression of D&W Causes Strong Confound
The strong confound between D and ID is the result of the
geometric progressions of D and W. First, notice that D is an
exponential function of ID (Fig. 2):

d = w × (2id
− 1) (8)

For D to be strongly confounded with ID, i.e. to be linearly de-
pendent of ID, D must combine several values corresponding
to the same ID. If a design is fully crossed, there are at least
two values of ID corresponding to a single (D,W) condition,
namely the minimum ID (minimum D associated with maxi-
mum W) and the maximum ID (maximum D associated with
minimum W). In the case of Fitts-like designs, only these two
IDs meet this condition, as can be seen in Fig. 2.

Let us now construct a design where there are multiple values
of D for each ID, except for the extreme ones. We start with
a predetermined set ID = {id1, id2, . . .} of increasing IDs.
We can then always choose the values of D and compute the
correspondingW using the definition of ID. Assuming that
the design is fully crossed, the smallest ID, id1, is necessarily
composed by the smallest D (d1) and the largest W (w1). We
pick an arbitrary value for d1 and solve id1 = log2(1 + d1/w1)

for w1, giving

w1 = d1/(2id1 − 1)

Since we do not allow a single D condition for a given value
of ID (except at the edges), the second smallest value of ID,
id2, should correspond to the two combinations d1 ×w2 and
d2 ×w1, from which the values of w2 and d2 can be computed:

id2 = log2(1 + d1/w2) Ô⇒ w2 = d1/(2id2 − 1)

id2 = log2(1 + d2/w1) Ô⇒ d2 = w1 × (2id2 − 1)

Note that we have d2/d1 = w1/w2.

The next smallest value of ID, id3, must correspond to at
least two of the following combinations: (d3,w1), (d1,w3),
(d2/w2), i.e. d3/w1 = d2/w2 and d1/w3 = d2/w2. Solving
these gives d3 = d2w1/w2 and w3 = w2d1/d2. Note that we
have d3/d2 = w1/w2 = d2/d1 and w3/w2 = d1/d2 = w2/w1.
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Figure 3. r2 values between D and ID when N (number of D conditions)
and M (number of W conditions) are varied. White dots indicate the
cases where r2 ≥ 0.95. r2 computed for d = 128 and w = 12 according to
our notation of Fitts-like designs.

We repeat this procedure for the remaining values of ID. It
follows that the increasing sequence of distances di and the de-
creasing sequence of widths w j are such that all ratios di/di+1
and w j+1/w j are equal, except at the edges, resulting in geo-
metric progressions for the values of D and W.

The fact that the resulting values of D are almost in linear
progression can be explained mathematically, but is of little
interest: it is a coincidence due to the fact that the range of IDs
being investigated is small. This explains why r2 decreases
when N and M increase, as shown in Fig. 3.

To summarize, the fact that Fitts-like designs create strong
confounds between D and ID can be attributed to the following
causes:
1. D and W are both in geometric progressions (one passes

from one value to the next by multiplying by some constant,
e.g. 2);

2. the range of IDs used in practice is small.

Other Strong Confounds
We have just identified the reasons that make Fitts-like designs
strongly confound D with ID. As W grows at the same rate
as D, one would expect an equivalently strong confound in
Fitts-like designs between W and ID. This is indeed the case
as can be seen in the rightmost column of Table 1. One should
thus also be careful to avoid strong confounds between W and
ID.

Care must also be taken with designs that are not Fitts-like.
The combination of a small number of conditions, the fact that
they are usually chosen according to some structure (such as a
linear or geometric progression), and the smoothing effect of
averaging make it very likely that D or W can be approached
by a simple function of ID.



We illustrate this with an example. Consider a candidate
model5 for the dependent variable Y as a function of the inde-
pendent variable X:

Y = f (X). (9)

Now consider a third variable Z, that can be expressed as a
function of X:

Z = g(X). (10)

We will call g the confusion function. A competing model of
the form

Y = f (g−1
(Z)) (11)

will inevitably be indistinguishable from the candidate model,
since plugging (10) into (11) gives:

Y = f (g−1
(g(X))) = f (X) (12)

which is equivalent to Eq. (9).

The variable Z used here is very general and can represent
any factor. In the example developed in the previous section
(“Thought experiment”), ZwasD and the g was a linear func-
tion. As another, more complex example, let us consider two
sets D andW for which D has a square root relationship to ID

D = a′
√

ID + b′ (13)

Then, g−1(x) = (x/a′)2 − b′, and f (g−1(x)) = a − bb′ +
b(x/a′)2, so that a quadratic model for MT cannot be dis-
tinguished from Fitts’ model, as MT is also linearly related to
ID. If we then take a model of the form

MT = a − bb′ + b(D/a′)2 (14)

plugging Eq. (13) into Eq. (14) gives

MT = a + bID. (15)

This is a simple linear function between MT and ID, thereby
showing that a quadratic law for movement time can be indis-
tinguishable from Fitts’ law in some designs.

While in general, a weak confound between D and ID implies
that any function of D is (weakly) confounded with ID, this is
not true anymore for strong confounds. We have shown here
that most designs of Fitts’ law experiments are likely to have
a strong confound between ID and some function of D and W.
If one knows precisely this strong confound, e.g. Eq. (13), it
is easy to determine which model for MT will have almost
the same summary statistic MT and r2 as Fitts’ model. For
example, with Eq. (13), consider the model of Eq. (14).

Creating Strong Confounds Between Any Two Factors
In the previous subsections, we explained how strong con-
founds between ID and functions of D or W could make two
models indistinguishable from each other. We now give a
general method to create strong confounds between ID and
almost any function of D or W, as a constructive illustration.
5In Fitts’ law, Y ≡MT, X ≡ ID, and f is a linear function. X, Y and
Z may also represent averaged quantities, e.g. D or MT.

1. Choose a set of ID values ID,

2. Choose a set of target sizesW .

3. Choose the confusion function, e.g. D = 4.5
√

ID − 0.9.

4. For each target size w ∈ W and for each id ∈ ID , find the
corresponding Dw,id = (2id − 1)w.

5. For each ID, find the combination of D’s whose average
minimizes the distance to the target confusion function.

Figure 4. A generic method that generates a design to create confound-
ing variables

Fig. 4 shows a method for creating (D,W) pairs that strongly
correlate ID with any function of D. Confounding with W
is easily achieved by switching the roles of D and W. Extra
search steps could be added to the algorithm. For example, in
step 2, one could consider several setsW and keep the one
that minimizes the distance to the target confusion function;
in step 3, the parameters of the confusion function could be
varied.

We used the procedure described in Fig. 4 with the following
confusion function from Eq. (13):

D = 4.5
√

ID − 0.9. (16)

The corresponding D and W conditions, resulting in 12 pairs,
are given in Fig. 5. Notice that in resulting design D and W
are almost as well decorrelated as in a fully crossed design.

We then perform the same simulation as in the Thought Ex-
periment: Law A is given by Fitts’ law, as before, and Law
B is the quadratic law in Eq. (14). After the simulation of
200 trials per condition, we find that r2 between MT and ID
is once again very high for Law A: r2 = 0.99. It is also very
high for Law B: r2 = 0.95. As in the Thought Experiment, the
summary statistics of the two laws are almost identical. More
importantly, we obtain very good fits for movement time using
Fitts’ law in a situation where the data for movement time was
generated using a quadratic law that does not depend on the
width factor W.
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r2 = 0.0036

Figure 5. D and W conditions that lead to an almost perfect confusion
between D and

√
ID. The correlation between W and D is r2 = 0.0036.



In summary, we first demonstrated that Fitts-like designs cre-
ate strong confounds between D and ID. We then showed that
the issue is much deeper than Fitts-Like designs: With any
design, there exists a possibility that some function of D or W
is strongly confounded with ID.

EYE-GAZE EXPERIMENTS
We discuss two studies conducted on eye-gaze movements us-
ing the results of the previous section. These demonstrate that
the issues we have underlined until now are not only theoreti-
cal constructs, but do appear in real-world scenarios. The first
study, by Miniotas [21], validated Fitts’ model for movement
time in a pointing task using eye-gaze. Drewes [8] discussed
this study and pointed out that outside HCI, researchers would
generally use Carpenter’s formula [5] (a formula not dependent
on W) to model eye-gaze data. We compare this first study
to another study by Miniotas et al. [22], as yet uncommented,
and show that the results of these two studies on the validity of
Fitts’ model for eye-gaze data are strikingly inconsistent. We
will explain the difference by formally applying Carpenter’s
formula to Miniotas’ paradigm and using the previous results
on Fitts-like designs.

Fitts’ Law for Eye-Gaze Interaction
The first study [21] was conducted to validate Fitts’ law for
modeling eye-gaze interactions. According to Miniotas [21],
prior work by Ware and Mikelian [25] suggested that Fitts’ law
would be an adequate model for movement time in eye-gaze
interaction, but the range of ID explored then was very narrow
(less than 3 bit wide), and the width W had been kept constant.
The motivation was thus to create an empirical dataset that
was more thorough.

In line with Fitts’ paradigm, the task was to move the cur-
sor to a target of width W located at a distance D by us-
ing their eyes instead of a stylus. An eye tracker was
used to control the cursor. The control variables were D
(D = {26,52,104,208} (mm)) and W (W = {13,26} (mm)).
It is not clear how the r2 between MT and ID was computed,
but Miniotas reported r2 = 0.982. He concluded that Fitts’ law
was a good fit for his dataset, a valuable result for designers.

However, it turns out that the design of the experiment is
“Fitts-like” according to our definition: First, both D and W
have a geometric progression; there are 8 conditions, yet only
5 different D/W ratios. Second, the range of IDs, [1,4.1],
is quite small. Accordingly, the correlation between D and
ID is very strong: r2 = 0.974, leading to a strong confound.
As a consequence, a competing model such as Eq. (2) could
equally well explain the summary of the gathered data. Note
that Ware & Mikelian [25], recognizing that eye-saccades are
ballistic, stated that they had used Fitts’ law “only as a con-
venient way of summarizing the results, not because [they]
wish[ed] to make any theoretical claims”.

Carpenter’s Formula
A reliable relation known as Carpenter’s formula [5] relates
MT and angular amplitude α (Eq. (17)) for eye-gaze move-
ments:

MT = a + b α, (17)

L

Sα

Figure 6. Carpenter’s Formula applied to Fitts’ pointing paradigm. L
is the fixed distance between the user and the screen, S is the on-screen
distance that the cursor must travel, i.e. D with the notations of Eq. (1).

where MT is the movement time needed to cover the angular
amplitude α. Carpenter’s formula can be applied to Miniotas’
paradigm as illustrated in Fig.6, where L is fixed and S corre-
sponds to D in Fitts’ paradigm. In line with the ballistic nature
of eye movements, W does not appear in Carpenter’s formula.
The angle α can be expressed in terms of the available param-
eters as

α = 2 arctan(
S
2L

) ≃
S
L
=

D
L

when α is small enough. (18)

If we input this equation into formula Eq. (17), we obtain

MT = a + b α ≃ a + b′ D, where b′ = b/L. (19)

Therefore, Carpenter’s formula, the leading explanatory model,
predicts that movement time is linearly related to D.

Thanks to our previous analysis, we can now safely assert
that since the design of Miniotas’ experiment [21] is Fitts’
like, Fitts’ model is almost equivalent in terms of fitting MT
to the leading explanatory model derived from Carpenter’s
formula. Therefore one cannot conclude from that experiment
that eye-gaze follows Fitts’ law.

Eye-Gaze Interaction with Expanding Targets
Miniotas et al. [22] conducted a second study on eye-gaze
interaction with expanding static targets. Expanding static
targets are targets whose appearance does not change for the
user, but to which the interface responds as if it were larger.
The expansion is predetermined, hence the term “static”.

Although the goal was not to validate Fitts’ law, Miniotas et al.
did check for goodness of fit of the Fitts model and found
r2 = 0.69. The experiment is very similar to that described in
the first study [21], with a notable exception: the progression
for W is not geometric, but linear: D = {128,256,512} (pix.)
andW = {12,24,36} (pix.). Because this design is not Fitts-
like, we expect r2 between D and ID to be weaker than for
Fitts-like designs, and indeed we find r2 = 0.74.

Miniotas et al. attributed the decrease in correlation between
MT and ID from 0.98 in the 2000 study [21] to 0.69 in the 2004
study [22] to the presence of a visible cursor in the 2000 study,

XP Fitts-like r2(D, id) r2(MT, id)
Miniotas 2000 yes 0.99 0.98

Miniotas et al. 2004 no 0.74 0.69
Table 2. Table summarizing the relevant r2 in the Miniotas (2000) and
Miniotas et al. (2004) studies. r2(x, y) is the coefficient of determination
between x and y.



whereas there was no visual feedback in the 2004 study. This is
because they assumed Fitts’ law to be a valid model. However,
the comparison between the two studies tells a different story,
as shown in Table 2. The design used in the 2000 study [21]
was Fitts-like, making Fitts’ model almost equivalent to the
one derived from Carpenter’s formula, whereas the design
used in the 2004 study [22] was not Fitts-like. As a result the
confound between D and ID is not as strong (r2 between D
and ID of .74). Not surprisingly, r2 between MT and ID drops
with a similar magnitude (r2 between MT and ID of .69). We
conclude that Fitts’ model’s apparent validity in [21] is an
artifact caused by the experimental conditions.

COMBATING STRONG CONFOUNDS
In this section we give four recommendations to protect exper-
iment designers from strong confounds.

Do Not Trust a Good r2

The two datasets generated from law A and law B in the
Thought Experiment had the same MT and r2. From this sum-
mary alone, they were indistinguishable. If one had used dif-
ferent summaries, such as those from Jude et al. [17], striking
differences would have emerged. For example, the variance of
the two datasets are very different.

The evaluation of Fitts’ model in the HCI community relies
almost exclusively on high r2 values. As emphasized by
Roberts & Pashler [23] however, a good fit reveals nothing
about the flexibility and variability of the data (what the model
can and cannot fit), nor the likelihood of other models. Indeed,
we have shown that within a Fitts-like design, two different
models could fit the same summary data.

Do Not Average or Pool Data From Different Conditions
We have seen (Sect. 3) that the strong confound between D
and ID was made possible because of the averaging procedure.
For example, in Fitts’ tapping experiment, the r2 between D
and ID is .48; after averaging the r2 between D and ID is .99.
It is unfortunately common for experimenters to pool data
and average movement times that correspond to the same D/W
ratio but that do not come from the sameD×W condition (see,
e.g., Drewes [7, 8]). This practice involves a confirmation bias:
The logic behind averaging movement times that correspond
to the same D/W ratio but come from different pairs (D,W) is
to believe that because data was acquired under the same ratio
and that movement time is supposedly dependent on the ratio
only, the two conditions would essentially be the same. But
this is only true if indeed, the ratio explains all the variability
of MT, which is precisely what we want to test when trying to
validate Fitts’ law in the first place.

Averaging before knowing the validity of Fitts’ model may
then result in a premonitory experiment where Fitts’ law can
be validated simply because it was pre-supposed to hold, as
shown in the section analyzing Miniotas’ experiment [21].

Note that for experimenters using the effective index of dif-
ficulty, IDe [24], a different value of IDe is calculated for
each block based on the participants variability in that specific
block. Therefore different conditions will almost always result

in different values of IDe, even if they correspond to the same
D/W ratio. The net result is that this procedure eliminates the
risk of averaging across (D,W) conditions.

Consider Competing Models
We have shown that Fitts-like designs create strong confounds
between ID and both D and W. We further showed that we
could construct a design that strongly confounds ID with al-
most any simple function of D or W. It is then important, when
evaluating whether Fitts’ model is a good fit for a task, to also
consider competing models. If there are any, the experimenter
should make sure that the design does not strongly confound
factors of both models. For example, in the eye-gaze study it
would have been safer to also evaluate Carpenter’s formula
(Eq. 17) on the experimental data.

Notice that once a competing model is identified, it is easy to
verify the risk of strong confounds among factors by checking
the correlations between them.

Use Stochastic Conditions
In a Fitts’ law experiment, D and W are varied and MT is
measured. The average MT of each block represents one
sample in the (D,W) space. Experimental data can thus be
visualized as a set of samples in the (D,W) space6. Fitts [10]
showed that this representation could be summarized by a
simple formula – now known as Fitts’ law. We have shown
that some sampling strategies such as Fitts’, i.e. geometric
progressions and orthogonal sampling in the (D,W) space,
may lead to strong confounds between factors. A different
sampling strategy is Guiard’s [14] orthogonal sampling in the
form×scale space, which provides a theoretical solution to the
issue, but can lead to physical values of D and W that are hard
to implement in practice.

We have shown that sampling issues leading to strong con-
founds occur under very specific conditions, i.e. when the
conditions are generated by some rule. For example, a Fitts-
like design is characterized by a geometric progression for D
and W. Therefore, we believe that a simple solution to get rid
of potential sampling artifacts is to adopt stochastic conditions
for D and W, possibly with some constraints. For example,
we could divide the (D,W) space into a grid and choose ex-
perimental conditions by drawing a point uniformly within
each rectangle defined by the grid, resulting in pairs of (D,W)
values).

CONCLUSION AND PERSPECTIVES
In the experimental testing of any mathematical model, we
may distinguish two steps:

1. Sampling the factor space, e.g. Fitts’ traditional (D,W)

space or Guiard’s form×scale space, thus defining a set of
experimental conditions for data collection;

2. Processing the data by applying operations that yield a score.
In Fitts’ law studies, this traditionally involves computing
means of movement times and r2 values between ID and
MT.

6Incidentally, this is precisely how Fitts summarized his data in his
historical study [10, Fig. 4]



We have shown that a Fitts-like sampling of the (D,W) space
solely associated with the computation of r2 between ID and
MT creates strong confounds between D and ID. We attributed
this to the geometric progression of D and W. A simple
workaround would seem to be to avoid such a sampling. How-
ever, using a constructive approach, we devised a sampling
strategy that strongly confounds ID with any simple function
of D and W. Avoiding Fitts-like designs is thus insufficient to
avoid strong confounds.

Based on these new results, we analyzed an apparent contradic-
tion between the results of two eye-gaze pointing experiments
using. We resolved the contradiction by noting that Carpen-
ter’s formula is a widely accepted model for eye-gaze data and
by showing that in one of the experiments, Fitts’ model was
indistinguishable from Carpenter’s model due to the use of a
Fitts-like design.

Finally, we provide guidelines to avoid strong confounds be-
tween factors. We believe that Fitts’ law studies place too
much emphasis on high r2 values. It is crucial to introduce
other considerations when validating a model, such as the
flexibility of the evaluated model, the variability of the dataset
and the possibility of competing models. Working with block
averages or, worse, averages computed for equal values of ID,
such as MT, dramatically decreases the number of points to
be fitted, thereby mechanically increasing r2 values.

An interesting and simple way to prevent strong confounds
is to use stochastic sampling of the (D,W) space. Stochastic
sampling is a promising perspective, especially when consid-
ering the replication of studies, as a different but equivalent
design can be ensured with each replication. However, more
conceptual work is needed to support the idea of using random
conditions in a controlled experiment.
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