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AQ1

Abstract. Side-channel attacks of maximal efficiency require an accu-
rate knowledge of the leakage function. Template attacks have been intro-
duced by Chari et al. at CHES 2002 to estimate the leakage function
using available training data. Schindler et al. noticed at CHES 2005 that
the complexity of profiling could be alleviated if the evaluator has some
prior knowledge on the leakage function. The initial idea of Schindler
is that an engineer can model the leakage from the structure of the
circuit. However, for some thin CMOS technologies or some advanced
countermeasures, the engineer intuition might not be sufficient. There-
fore, inferring the leakage function based on profiling is still important.
In the state-of-the-art, though, the profiling stage is conducted based on
a linear regression in a non-orthonormal basis. This does not allow for
an easy interpretation because the components are not independent.

In this paper, we present a method to characterize the leakage based
on a Walsh-Hadamard orthonormal basis with staggered degrees, which
allows for direct interpretations in terms of bits interactions. A straight-
forward application is the characterization of a class of devices in order
to understand their leakage structure. Such information is precious for
designers and also for evaluators, who can devise attack bases relevantly. AQ2

Keywords: Side-channel analysis · Stochastic attacks · Leakage
model · Pseudo-Boolean functions · Orthonormal bases · Leakage
characterization

1 Introduction

The existence of side-channels weakens the security of embedded devices, as it
allows an attacker to retrieve information about secret keys. The best attacks
require the best possible knowledge about the leakage function. A first method in
this direction consists of exhaustive characterizations, referred to as templates by
Chari et al. [5]. Templates are asymptotically perfect estimations of the model,
but as pointed out by Schindler [15], they may be inaccurate when there is only a
limited amount of profiling traces. Therefore, Schindler has suggested to simplify
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2 S. Guilley et al.

the characterization using stochastic attacks. While the template method con-
sists in profiling leakage values for all configurations of intermediate variables,
which Schindler describes as a projection over a full basis, stochastic attacks
consist in characterizing the leakage over a basis of smaller dimensionality.

Leakage characterization does not only benefit to actual attacks. As shown
by Kasper et al. [11], it is also a constructive feature: when the basis is able
to describe the switching activity of the circuit, the estimated weights (basis
coefficients) highlight specific exploitable security flaws in the implementation.
In their case study, the absolute value of the weight corresponding to one spe-
cific bit showed that is was leaking in an outstanding way, and this could be
connected to the underlying hardware components (that bit was driving a mul-
tiplexer network).

Another motivation is for implementing masking countermeasures. The sen-
sitive data is split into shares which should not interfere physically. Stochastic
characterization of the leakage of a bit pairs (and in general, of a bit tuples)
belonging to different shares can reveal flaws in the implementation.

Additionally, stochastic characterization can also benefit to the analysis of
unprotected implementations. Recent works showed that, if the linear basis
describing the switching activity of each bit independently is extended to a non-
linear basis which also includes interactions between bits, then attacks are more
successful in terms of success rate (see e.g., [8,13]). Interestingly, while we know
that the consideration of nonlinear bases improves the attack, no sound explana-
tions have been given about what precise information is captured by these non-
linear basis vectors. In [10,13] the authors mention cross-talk and glitch effects
as one possible reason. Up to now, these effects could not be precisely accounted
for. One possible reason is that a badly chosen nonlinear basis extension, made
with products of bits (i.e., monomials), is neither normalized nor orthogonal.
As a result, the estimated weights cannot be compared to each other and it
seems difficult to draw conclusions about the influence of either individual bits
or bit interactions. While the basis normalization can be easily carried out (see
e.g., [10]), any unstructured orthogonalization procedure comes at the expense of
the loss of its interpretability in terms of bit interactions, due to the underlying
complex change of basis.

Contributions. The goal of this paper is to describe the best possible basis
decomposition that is able to isolate leakage from a given coupling of pairs,
triples, . . . , tuples of bits, independently of the others. We conduct an extensive
study of the underlying basis and find a surprisingly simple method to compute
the orthonormalized basis. Our method does not only give a feasible solution to
interpret the results but it also helps avoid stability problems that occur using
standard procedures [16, Sect. 4.2]. The practicability of our methods is tested
using simulations and measurements where a leakage is attributed to a tuple of
interacting bits.

Outline. The remainder of the paper is organized as follows. Section 2 provides
mathematical background for stochastic profiling. Our contribution starts at
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Stochastic Side-Channel Leakage Analysis via Orthonormal Decomposition 3

Sect. 3, where we derive a novel basis for leakage function decomposition which
allows for an easy interpretation in terms of degrees. The method consists in
applying a Gram-Schmidt transform on the monomial basis, ordered according
to monomial degrees. In Sect. 4 we investigate the leakage estimation in the new
basis, together with a fast computation based on the Fourier transform. Practical
validation on simulated and real-world traces is shown in Sect. 5. Finally Sect. 6
concludes. Appendix A shows how to estimate projections, and gives an exemple
of a “bad” projection into a non-orthogonal basis.

2 Stochastic Profiling

2.1 Leakage Model

Consider a leaking device which manipulates some secret key k. The crypto-
graphic operations involve xoring k with some (plain or cipher) text T . The
attacker focuses on manageable parts of the text and key, and T is taken as
an n-bit byte (typically n = 8). Thus the leakage function f applies to T ⊕ k
together with some additive noise N , modeled as a normal random variable
N ∼ N (0,σ2). The resulting leakage X is given by the equation

X = f(T ⊕ k) + N. (1)

The purpose of this paper is to characterize f which maps the finite set Fn
2 =

{0, 1}n to the set of real numbers R. A simple example would be the Hamming
weight f = wH . Often, f is taken as the composition of some cryptographic
function, such as a substitution box S : {0, 1}n → {0, 1}n, and a leakage function,
such as the Hamming weight wH . This is represented in Fig. 1. In practice, the
mapping from S(T ⊕ k) ∈ {0, 1}n to R can be more complex.

k

T

S

function f
unknown leakage

wH

N

X

Side-channel measurementCryptographic algorithm

Analog world (R)Digital world ({0, 1}n)

Fig. 1. Setup considered in this paper: f is the unknown

In the following, we consider several independent and identically distributed
(i.i.d.) realizations of T , N and X, denoted by (t1, . . . , tQ) = (tq)q∈{1,...,Q},
(nq)q∈{1,...,Q} and (xq)q∈{1,...,Q}, respectively, where Q denotes the number of
queries.
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4 S. Guilley et al.

2.2 Notations for Sums and Products

Sum notations will differ depending on whether the considered variables lie in
Fn

2 or R. Let t ∈ Fn
2 be any n-bit vector with bits t0, t1, . . . , tn−1. We let ti ⊕ tj

be the exclusive-or addition of bits ti and tj in F2, such that 1 ⊕ 1 = 0, while
the usual sum notation ti + tj refers to the addition in R, where 1 + 1 = 2. For
the product, there is no such complication. Letting ∧ be the ‘and’ operator for
multiplication in F2 and × be the usual multiplicative product in R, we have
in fact ti ∧ tj = ti × tj for any two bits ti and tj in {0, 1}. Therefore, we will
simply denote this product by titj , and use the notation

∏n−1
i=0 ti to denote the

conjunction of all bits of bit vector t.

2.3 Template and Stochastic Attacks

Template attacks [5] consist in an offline estimation of Eq. (1) for all values t
of realizations of T and all choices of the secret key k. This profiling phase is
followed by an online application of the maximum likelihood principle to uncover
the unknown key. However, template attacks cannot provide an analytic char-
acterization of the leakage. For instance, templates cannot answer the question:
“are bits 2 and 3 of T leaking together?”. We will show in Fig. 4(b) and (c) that
our leakage characterization can give a quantitative answer.

While template attacks are data-driven, stochastic attacks are model-driven:
They assume authoritatively that Eq. (1) can be considered to belong to a specific
subset of functions Fn

2 → R. However, the classical approach is to assume some
basis for f based on the engineer’s intuition. In contract, we aim to find a method
to select the most suitable basis for the representation of f .

2.4 Bases and Orthonormality

Let E be the set of so-called pseudo-Boolean [4, Sect. 2.1]) functions Fn
2 → R,AQ3

which forms a Euclidean vector space over R of dimension 2n. The scalar prod-
uct between two vectors f0 and f1 in E is ⟨f0|f1⟩ =

∑
t∈Fn

2
f0(t)f1(t) and the

corresponding norm is ||f ||2 =
√

⟨f |f⟩. Any linearly independent family of 2n

vectors (ψu)u∈Fn
2

form a basis of E . This basis is orthonormal if ⟨ψu|ψv⟩ = 0 for
all u ̸= v and =1 if u = v. In this case an arbitrary pseudo-Boolean function
f ∈ E can be written as the sum of orthogonal projections

f =
∑

u∈Fn
2

auψu where au = ⟨f |ψu⟩ ∈ R (2)

The leakage function f : Fn
2 → R is an element of E that we would like to

characterize through a convenient vector basis of E . Two requirements are:

– the basis should somehow relate to bit combinations to make an easy inter-
pretation of the leakage structure in terms of the interactions between bits;

– the basis should be orthonormal so that the characterization of each basis
vector is uncorrelated to the other basis vectors.
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Stochastic Side-Channel Leakage Analysis via Orthonormal Decomposition 5

AppendixA provides an analysis which explains why the use of a non-
orthogonal basis is misleading for the interpretation of bit interactions. Appen-
dixA.1 details how coordinates in an orthonormal basis can be estimated with
a correlation method, and AppendixA.2 shows that the blind application of this
method to a non-orthogonal basis yields erroneous results.

2.5 Canonical and Monomial Bases; Degree

The canonical basis (δu)u∈Fn
2

of E is defined by

δu(t) =
n−1∏

i=0

(ti ⊕ ui) =

{
1 if t = u,

0 otherwise,

while the monomial basis (φu)u∈Fn
2

of E is defined by

φu(t) =
∏

i|ui=1

ti =
n−1∏

i=0

tui
i . (3)

where the power notation is simply t0i = 1 and t1i = ti.

Definition 1 (Degree). The degree of the monomial φu(t) =
∏n−1

i=0 tui
i is the

number of coordinates involved in the product, that is, the Hamming weight
wH(u) =

∑n−1
i=0 ui of u.

The degree deg(f) of any pseudo-Boolean function f : Fn
2 → R is the max-

imum value of the degrees of the monomials φu in the decomposition of f over
the monomial basis.

A function of unit degree is simply a linear combination of bit values, also
referred to as Unevenly Weighted Sum of Bits (UWSB) in the side-channel lit-
erature [9,17]. A function of degree >1 has interacting bits in its decomposition.
For example, when the degree is two, product of bits titj for i ̸= j are involved.
The degree represents the maximum number of interacting bits.

2.6 Why Canonical and Monomial Bases Are Not Suitable

Properties of the canonical and monomial bases in terms of orthogonality and
degree are as follows.

Lemma 2. The canonical basis is orthonormal, but all vectors have degree n.

Proof. Clearly ∥δu∥ = 1 and ⟨δu|δv⟩ vanishes when u ̸= v since the supports
of δu and δv are disjoint. This shows orthonormality. Regarding the degree, we
have, for all t, u ∈ Fn

2 :

δu(t) =
∏

i/ui=1

ti
∏

j/uj=0

(1 − tj).

Expending this sum we see that it includes the term (+1)wH(u)(−1)n−wH(u)

φ(1,...,1), where (1, . . . , 1) is the all-one n-bit vector. Since the latter has Hamming
weight equal to n, the corresponding φ(1,...,1), and so δu, has degree n. ⊓-
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6 S. Guilley et al.

As a consequence, the canonical functions δu, albeit simple, are not of prac-
tical interest since being all of degree n they are not easily interpretable in terms
of “interactions between bits”.

On the other hand, the monomial basis is considered in the seminal paper
on stochastic side-channel analysis by Schindler et al. [15, Eq. (23)], and is cus-
tomary in side-channel analysis and well understood by engineers because the
basis functions have staggered degrees 0, 1, . . . , n: While φ0 is the constant 1,
the basis vector φu simply represents the interactions between those bits ti for
which u1 = 1. These basis functions, however, are not even orthogonal:

Lemma 3. Any monomial basis function φu has degree equal to wH(u) ∈
{0, 1, . . . , n}, but the monomial basis is not orthonormal (not even orthogonal):

⟨φu|φv⟩ = 2n−wH(u∨v)

where u ∨ v denotes the bitwise inclusive ‘or’ of u and v.

Proof. By definition deg(φu) = wH(u). We have

⟨φu|φv⟩ =
∑

t

φu(t)φv(t) =
∑

t0,...,tn−1

n−1∏

i=0

tui+vi
i (4)

=
n−1∏

i=0

(∑

ti

tui+vi
i

)
=

∏

i|ui=vi=0

2 (5)

which is always nonzero. ⊓-

3 Orthonormalizing the Monomial Basis

The monomial basis is ordered by increasing degree (or Hamming weight). For
exemple for n = 3, the basis vectors are enumerated in the following weighting
order : φ(0,0,0), φ(1,0,0), φ(0,1,0), φ(0,0,1), φ(1,1,0), φ(1,0,1), φ(0,1,1) and φ(1,1,1). Vec-
tors of same weight represent the same number of interacting bits. We proceed
to carry out an orthonormalization process that preserves the weight ordering.

3.1 Gram-Schmidt Orthonormalization in Weighting Order

The new orthonormal basis ordered by degree is obtained from the monomial
basis by the well-known Gram-Schmidt orthonormalization, yielding an ortho-
normal basis (ψu)u∈Fn

2
which can be constrained to preserve the degree (as we

shall prove in Proposition 4). Algorithm 1 below is Gram-Schmidt procedure
operating on vectors φu with u sorted by weighting order. We write interchange-
ably u = (u0, . . . , un−1) ∈ Fn

2 and its equivalent u =
∑n−1

i=0 ui2i in {0, . . . , 2n−1}.
As the set {0, . . . , 2n −1} is totally ordered, this induces the natural lexicograph-
ical order on Fn

2 .
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Stochastic Side-Channel Leakage Analysis via Orthonormal Decomposition 7

Input : (φu)u∈Fn
2
, a basis of E

Output : (ψu)u∈Fn
2
, an orthonormal basis of E

// Creation of the weighting order ........................................
1 W ← ∅
2 for w = 0 to n do
3 for j = 0 to 2n − 1 do
4 if wH(j) = w then
5 W ←W ∪ {j}

// Orthonormalization using Gram-Schmidt process ........................
6 for j = 0 to 2n − 1 do

7 ξW [j] ← φW [j] −
∑j−1

i=0

⟨φW [j]|ξW [i]⟩
⟨ξW [i]|ξW [i]⟩

ξW [i]

8 ψW [i] ←
ξW [j]

||ξW [j]||2

9 return (ψu)u∈Fn
2

Algorithm 1. Gram-Schmidt orthonormalization in weighting order

Proposition 4 (Degree Preservation of the Gram-Schmidt Orthonor-
malization in Weighting Order). Let (φu)u∈Fn

2
be a basis of E, such that

deg(φu) ≤ deg(φv) if u is smaller than v with respect to the weighting order
(that is wH(u) ≤ wH(v)). Then the Gram-Schmidt orthonormalization process
in weighting order (Algorithm1) applied on (φu)u∈Fn

2
yields a new basis (ψu)u∈Fn

2

where deg(ψu) = deg(φu), for all u ∈ Fn
2 .

Proof. The weighting order is computed in Algorithm1 between its lines 1 and 5.
It consists in a permutation W of {0, . . . , 2n − 1}, which is such that:

∀j, j′ ∈ {0, . . . , 2n − 1}, j ≤ j′ =⇒ wH(W [j]) ≤ wH(W [j′]). (6)

In Algorithm 1, the first vector fetched from the monomial basis is φ0, which has
degree zero. Thus, the degree of ψ0 = φ0/||φ0||2 is also zero. Then, by induction
on the loop index j (see line 6 of Algorithm 1), we see that the degree of ψW [j]

is equal to that of φW [j]. Indeed:

– at line 7, we see that ξW [j] is equal to φW [j] minus terms of lower (or equal)
degree, owing to the weighting ordering of W [j] (recall Eq. (6));

– at line 8, we see that the degree of ψW [j] is the same as that of fW [j], because
ψW [j] is the unitary scaling of fj , operation which keeps the degree unchanged.

⊓-

The application of Algorithm 1 on (φu)u∈Fn
2

thus yields a new basis (ψu)u∈Fn
2

which meets our requirements: it is orthonormal and ordered by degree.
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8 S. Guilley et al.

3.2 Link to Walsh-Hadamard Matrix or Fourier Transform

The Walsh-Hadamard matrices of dimension 2n for n ∈ N+ are given by the
recursive formula:

H(2n) =
[
+H(2n−1) +H(2n−1)
+H(2n−1) −H(2n−1)

]
(n > 1)

where the lowest order of Walsh-Hadamard matrix is

H(2) =
[
+1 +1
+1 −1

]
.

A matrix built according to this definition is also referred to as a lexicographical
ordered Walsh-Hadamard matrix. Walsh-Hadamard matrices are specific square
matrices with dimensions of some power of 2, entries of ±1, and the property
that the dot product of any two distinct rows (or columns) is zero.

It is well known that the Walsh-Hadamard matrix Hn is of the form Hn =
2n/2(ψu(t))u∈Fn

2 ,t∈Fn
2
, where u and t are listed in lexicographical order (that is,

u ∈ Fn
2 ordered by increasing values of

∑n−1
i=0 ui2i), and where

ψu(t) =
1

2n/2
(−1)u·t

(where u · t =
⊕n−1

i=0 uiti is the dot product of bitvectors u and t) forms a basis
of E known as the Fourier basis.

Theorem 5 (Main Theoretical Result of the Paper). The basis (ψu)u∈Fn
2
,

obtained by Algorithm1 from the monomial basis (φu)u∈Fn
2
, coincides with the

Fourier basis.

Proof. Let u ∈ Fn
2 . We have that

ψu(t) =
1

2n/2
(−1)u·t =

1
2n/2

n−1∏

i=0

(1 − 2ti)ui .

The development of the product yields a sum of monomials of degrees at most
wH(u). The (only) monomial of degree wH(u) is cφu(t), where the constant c is
equal to 1

2n/2 (−2)wH(u). Thus, we have that:

ψu(t) = cφu(t) − monomials of degree strictly smaller than that of ψu︸ ︷︷ ︸
orthogonal projection of φu on ψu′ ,

for each u′ is smaller than u in the weighting order.

.

This is exactly the procedure of the Gram-Schmidt orthonormalization process
in weighting order (line 7 in Algorithm1). ⊓-

Therefore, we have proven that using the Fourier basis (ψu)u∈Fn
2

for the
projection of the leakage function, the evaluator keeps the mapping between:
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Stochastic Side-Channel Leakage Analysis via Orthonormal Decomposition 9

– the basis vector ψu : t 2→ 1
2n/2 (−1)u·t, and

– the bit lines which interact (namely, the bits {0 ≤ i < n, s.t. ui = 1}).

Therefore, the leakage can be directly interpreted from the orthonormal projec-
tion of the leakage on ψu. and the corresponding coefficients au of f : Fn

2 → R
are those on the Fourier basis:

f(t) =
∑

u

⟨f |ψu⟩ψu(t) =
1

2n/2

∑

u

au(−1)t·u (Eq. (2) in Fourier basis), (7)

which is a Fourier transform. The coefficients au can be recovered as:

au =
1

2n/2

∑

t

f(t)(−1)t·u, (8)

which is the corresponding inverse Fourier transform. Notice that direct (Eq. (7))
and inverse (Eq. (8)) Fourier transforms are the same in characteristic two
(because ∀u ∈ Fn

2 , −u = u); put differently, the Fourier transform is involutive.

Fig. 2. (a) Walsh-Hadamard 256×256 matrix representation, (b) Truth table of Fourier
basis (multiplied by

√
256 = 16), in weighting order.

Application to the Case n = 8. In the case of byte-oriented block ciphers,
such as the AES, the manipulated data are bytes of n = 8 bits. The H(256)
Walsh-Hadamard matrix is illustrated in Fig. 2(a). Dark pixels are −1 whereas
white pixels are +1 values. The truth table of the Fourier basis (without the
scaling factor of 2−n/2), represented in weighting order, is depicted in Fig. 2(b).
This second matrix is simply the Walsh-Hadamard matrix where lines have been
permuted to match the weighting order. One can see that the H(256) matrix
is symmetrical. In contrast, the truth table of the Fourier basis is structured
as 9 horizontal stripes, comprising 1 (resp. 8, 28, 56, 70, 56, 28, 8 and 1) lines,
corresponding to Hamming weight 0 (resp. 1, 2, 3, 4, 5, 6, 7 and 8). It is not
immediate visually from Fig. 2(b) that the projection vectors have the same
degrees in each “stripe”.
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3.3 Attribution of Leakage Using the Fourier Basis

Owing to the above properties, the attribution of the leakage using Fourier basis
is straightforward:

– build a bitvector u ∈ {0, 1}n where the bits = 1 are those we intend to test
the interaction in terms of leakage. For instance, to extract the amount of
leakage of the Least Significant Bit (LSB), use u = (1, 0, 0, . . . , 0). Or to test
the joint amount of leakage of bits 0 and 1, use u = (1, 1, 0, . . . , 0);

– compute the projection of the leakage on vector ψu (see next section for an
estimation method).

4 Estimation of the Projection onto the Fourier Basis

4.1 Exact Solution for the Estimation of the Basis Coefficients

Suppose we have Q leakage values (x1, . . . , xQ) ∈ RQ and let a = (au)u∈Fn
2

∈ R2n

be the basis coefficients to be found. Due to the Gaussian nature of the noise,
the minimum likelihood determination of a is the following convex optimization
problem [10], which happens to be a linear regression problem:

min
a∈R2n

Q∑

q=1

(
xq − 2−n/2

∑

u∈Fn
2

au(−1)u·(tq⊕k)

)2

= min
a∈R2n

||x − aG||2, (9)

where in this case || · || is the norm-2 over RQ, and where G is a 2n × Q matrix,
whose elements are G[u, q] = 2−n/2(−1)u·(tq⊕k).

Proposition 6. The optimal value in Eq. (9) is a = xGT(GGT)−1.

Proof. This is standard; see [1].

4.2 Fast (Approximate) Solution for the Estimation of (au)u∈Fn
2

The expression of Proposition 6 is well known to be a Moore-Penrose pseudo-
inverse, see e.g. [16, p. 491]. However, it has never been explained in the field of
side-channel analysis that the coefficients au can be estimated with the following
fast formula (in the limit of the low of large numbers), which is an (inverse)
Fourier transform:

Theorem 7 (Second Main Result of the Paper). Given Q traces
(x1, . . . , xQ) and the Q corresponding texts (t1, . . . , tQ), where the texts are
assumed uniformly distributed over Fn

2 , the estimation of au in the law of large
numbers is:

au ≈ 2n/2

Q

∑

t∈Fn
2

( ∑

q/tq=t

xq

)
(−1)u·(t⊕k) when Q → ∞. (10)
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Stochastic Side-Channel Leakage Analysis via Orthonormal Decomposition 11

Proof. Let us notice that xGT is a vector of length 2n, whose value at index
u ∈ {0, 1}n is 2−n/2

∑Q
q=1 xq(−1)u·(tq⊕k). Using the reordering of sums put for-

ward in [12], this quantity is also 2−n/2
∑

t∈Fn
2

(∑
q/tq=txq

)
(−1)u·(t⊕k). Now,

assuming that T is uniformly distributed on {0, 1}n, the 2n × 2n matrix GGT

has coefficient at position (u, v) ∈ {0, 1}n × {0, 1}n equal to

2−n

Q

Q∑

q=1

(−1)(u⊕v)·(tq⊕k) = 2−n
∑

t∈Fn
2

(
1
Q

∑

q/tq=t

1
)

(−1)(u⊕v)·(t⊕k) −−−−−→
Q→+∞

1
2n

Iu,v,

by the law of large numbers, where Iu,v is the element at position (u, v) in the
identity matrix. The limit comes from the fact that 1

Q

∑
q/tq=t 1 ≈ 1

2n when
Q → +∞, hence the limit using Proposition 7 of [4]. Therefore GGT is inversed
trivially. ⊓-

1100

1110
1101

1111

1000

1010
1001

1011

0100

0110
0101

0111

0000

0010
0001

0011

t

1100

1110
1101

1111

1000

1010
1001

1011

0100

0110
0101

0111

0000

0010
0001

0011

u

1
Q

∑
q/tq⊕k=t xq

(denoted xt) (that is, 2−n/2au)

∑
t xt(−1)t·u

Fig. 3. Butterfly algorithm to compute au from the average 1
Q

∑
q/tq=t xq using (10)

The expression of au given in Eq. (10) is (proportional to) the (inverse)
Fourier transform of the average of leakage traces in each class (xq)q/qt=t. It
is easily computed as follows:

1. sum the traces per value of t, which yields the vector (
∑

q/tq=txq)t∈Fn
2
,

2. multiply this vector by the Walsh-Hadamard matrix 2n/2

Q H(2n).

The second step can be optimized with the classical butterfly FFT algorithm,
which is sketched in Fig. 3 for n = 4. Overall, the complexity of the computation
of (au)u∈Fn

2
from the pairs (xq, tq)1≤q≤Q is O(Q + n · 2n).
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Fig. 4. Estimation of coefficients au using Fourier transform
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5 Application of the Results

We first consider a simple example from synthetic traces with a linear model and
centered Hamming Weight (HW), i.e. wH(t) = n

2 − 1
2

∑n−1
i=0 (−1)ti , and Gaussian

noise of variance σ2 = 2. Figure 4 shows the coefficients a2
u for all u ∈ Fn

2 and a
varying number of profiling traces. One can observe in Fig. 4a that indeed the
coefficients are all converging to the same value due to the HW model. Next,
we change our model to additionally capture two second order terms, namely
1
4 (−1)t2+t4 and 1

4 (−1)t6+t7 , which are clearly observable in Fig. 4b (in grey).
Moreover, these results show that the estimation of au is already reasonable
stable using only a small number of profiling traces (approximatively 200).

Additionally, we compute a2
u for all u ∈ Fn

2 in the case of almost linear model
from real measurement traces. For this purpose, we use the traces from the DPA
contest v4 (knowing the mask). Figure 4c shows indeed that in this practical
scenario mostly first order coefficients are visible with a minor contribution of
second order terms. As these examples show, using our basis we can clearly
identify when higher order leakages are present, and directly pinpoint them.

6 Conclusion

In this paper, we have discussed the suitability of “classical” (canonical and
monomial) bases for side-channel leakage characterization by stochastic analysis.
We show that classical bases are not suitable for this purpose: The canonical basis
is of few interest to the evaluator because all elements have maximum degree. The
monomial basis, employed in all papers discussing stochastic attacks [6,7,10,11,
14,15] is neither interesting since it is not orthonormal: extracted contributions
of bit tuples in the leakage function overlap. Of course, the monomial basis can
still be used to attack, since the goal is to extract the key (the linear span of a
non-orthogonal basis is equal to that of its orthogonalized basis). By the use of
Gram-Schmidt orthonormalization of the monomial basis, we have found that the
Fourier basis with vectors ordered in Hamming weight first and lexicographical
second is the suitable basis. We explain that leakage characterization can be
computed fast using a Fourier transform on partially accumulated traces.

Acknowledgments. Part of this work has been funded by the ANR CHIST-ERA
project SECODE (Secure Codes to thwart Cyber-physical Attacks). This work was
supported in part by the National Natural Science Foundation of China under Grant
61472292.

A Estimations of the Projections

A.1 Estimation of Coordinates in an Orthonormal Basis

We consider a profiling situation where the attacker knows the secret key k, but
does not know the model f in Eq. (1). Thanks to an orthonormal basis (ψu)u∈Fn

2
,

the model f can be profiled easily from (xq)1≤q≤Q measurements, corresponding
to (tq)1≤q≤Q (uniformly distributed) plaintexts.
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Lemma 8. Decompose the unknown function f as f =
∑

u∈Fn
2

auψu, where
au = ⟨f |ψu⟩. For every u ∈ Fn

2 , au is consistently estimated as âu, the empirical
correlation1 between X and ψu(T ⊕ k):

âu =
2n

Q

Q∑

q=1

xqψu(tq ⊕ k).

Proof. By the law of large numbers,

1
Q

Q∑

q=1

xqψu(tq ⊕ k) −−−−−→
Q→+∞

E(Xψu(T ⊕ k)).

But from Eq. (1),

E (Xψu(T ⊕ k)) = E ((f(T ⊕ k) + N)ψu(T ⊕ k)) (11)
= E(f(T ⊕ k)ψu(T ⊕ k)) + E(Nψu(T ⊕ k))︸ ︷︷ ︸

0

= E(f(T ⊕ k)ψu(T ⊕ k))

=
1
2n

∑

t∈Fn
2

f(t)ψu(t) =
1
2n

⟨f |ψu⟩ =
1
2n

au,

where the noise term disappeared because N is centered and independent from
T , and where the first expectation term is a balanced sum over t because T is
uniformly distributed. ⊓-

This theoretical result justifies rigorously why it is customary in the side-channel
literature to make use of correlation (or the sibling covariance tool) to profile a
leakage model [3].

A.2 Incorrect Estimation of Coordinates in a Nonorthogonal Basis

We illustrate in the following example why the monomial basis (though exten-
sively used in the side-channel literature [11,14,15]) is not appropriate for esti-
mating the deterministic part (that is, the function f in Eq. (1)) of the leakage
model.

Example 9. Let a leakage function f : Fn
2 → R, which simply consists in f(t) =

t0t1. In the understanding of the state-of-the-art, this function models the sole
interaction of bits 0 and 1 of bitvector t = (ti)0≤i≤n−1.

We show that the blind application of the above correlation method
(Lemma 8) does not allow to recover easily the fact that f consists in the inter-
action between bits 0 and 1. In fact, letting u ∈ Fn

2 , the correlation between the
monomial basis vector φu and leakage X (Eq. (11)) equals
1 The term correlation is used here in the sense of scalar product between two data

series. This shall not be confused with the Pearson correlation coefficient used, for
instance, in the Correlation Power Analysis [2].
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au = 2nE(Xφu(T ⊕ k)) (12)
=
∑

t∈Fn
2

t0t1 φu(t) (by the change of variable t← t⊕ k)

=
∑

t∈Fn
2

t0t1
∏

i/ui=1

ti =
∑

t∈Fn
2

∏

i∈{0,1}∪{i/ui=1}
ti = 2n−2−

∑n−1
i=2 ui

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n−2 for u = (0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (1, 1, 0, . . . , 0);
2n−3 for all u such that

∑n−1
i=2 ui = 1, e.g., u = (0, 0, 0, . . . , 0, 1),

(1, 0, 0, . . . , 0, 1), (0, 1, 0, . . . , 0, 1), (1, 1, 0, . . . , 0, 1), etc.
...
2 for u such that

∑n−1
i=2 ui = n− 3, and

1 for u such that
∑n−1

i=2 ui = n− 2.

(13)

While the value of au is indeed largest for u = (1, 1, 0, . . . , 0) as expected,
this maximum value (=2n−2) is also reached by u = (1, 0, 0, . . . , 0) and
=(0, 1, 0, . . . , 0), which represent single bits. Moreover, there are non-zero terms
(albeit smaller) for coefficients au such that wH(u) > 2.

Therefore, the covariance method is clearly ill-fitted to characterize that par-
ticular leakage function f . The reason for this failure is of course that Lemma 8
is applied in this (counter-)example using the monomial basis (φu)u∈Fn

2
, which

is not orthonormal.

In summary, we face the problem that the leakage model f cannot be charac-
terized using the covariance tool in the monomial basis. This explains why, from
Sect. 3 onwards, we investigate a suitable basis, which should have both prop-
erties of: (1) being orthonormal (for easy application of the covariance method
of Lemma 8) and (2) being interpretable in terms of bits interaction. This will
allow to select which vectors of the basis to keep when performing an attack.
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