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Abstract—Previous works have shown that regular distribu-
tions with differential entropy or mean-squared error behavior
close to that of the Gaussian are also close to the Gaussian
with respect to some distances like Kolmogorov-Smirnov or
Wasserstein distances, or vice versa. In keeping with these results,
we show that under the assumption of a functional dependence
on the Gaussian, any regular distribution that is almost Gaussian
in differential entropy has a mean-squared error behavior of an
almost linear estimator. A partial converse result is established
under the addition of an arbitrary independent quantity: a small
mean-squared error yields a small entropy difference. The proofs
use basic properties of Shannon’s information measures and can
be employed in an alternative solution to the missing corner point
problem of Gaussian interference channels.

I. INTRODUCTION

Throughout the paper we consider random vectors of
dimension n and let | · | denote the Euclidean norm in Rn. Let
X ∈ Rn be an random vector with finite second moments and
differentiable density pX , and XG be its Gaussian counterpart
of the same covariance matrix as X . Loosely speaking, we say
that X is almost Gaussian if X is close to XG in distribution.
The precise definition depends on the criterion used to evaluate
the “distance” between the two distributions PX , PXG .

There are two well-known informational distances. The
differential entropy difference h(XG)− h(X) where h(X) =
h(pX) = −E log pX(X) coincides with the Kullback-Leibler
(KL) “distance” or divergence DKL(X‖XG) where

DKL(X‖Y ) = DKL(PX‖PY ) = E
{

log
dPX

dPY
(X)

}
. (1)

Similarly the Fisher information difference J(X) − J(XG)
where J(X) = J(pX) = E

{
|∇ log pX(X)|2

}
coincides with

the Fisher information distance DF(X‖XG) where

DF(X‖Y ) = DF(PX‖PY ) = E
{∣∣∇ log

dPX

dPY
(X)

∣∣2}. (2)

Many other distances can be also considered, such as total vari-
ation DTV(X,Y ) = ‖pX−pY ‖1 (the L1 norm of the difference
of pdfs), Kolmogorov-Smirnov DKS(X,Y ) = ‖PX − PY ‖∞
(the L∞ norm of the difference of cdfs), and (L2) Wasserstein
distance D2

W (X,Y ) = inf E{|X − Y |2} where the infimum
is taken over all joint distributions of (X,Y ) with the given
marginals X ∼ PX and Y ∼ PY .

That two distributions PX , PY are “close” in distance D—
i.e., D(X,Y ) is “small”—can be more precisely defined
depending on the application. A useful definition for solving
multi-user information-theoretic problems is an upper bound

of the form D(X,Y ) ≤ nε(n) where ε(n) > 0 is a sequence
that tends to 0 as the dimension n increases.

A general problem is the determination of all situations in
which X being close to XG with respect to some distance(s)
carries over under the addition of another random variable Y
(or a Gaussian random variable Z) independent of (X,XG),
possibly with respect to another distance, or vice versa.

We shall not attempt to develop a general theory here but will
focus on some simple derivations. We first review some known
results in the area in Section II. As a preliminary, Section III
then shows that there exists an appropriate function F such
that if X is almost Gaussian, then making the corresponding
change of variable F (X) is truly Gaussian. In Section IV we
show that if X is almost Gaussian in differential entropy, then
in a certain sense X and XG are almost linearly dependent
and F is almost linear, the corresponding mean-squared error
being necessarily small. Section V establishes a partial converse
under the addition of an arbitrary independent random quantity.
Finally, Section VI applies these results to the two-user Z-
interference channel by deriving a new simple solution to the
missing corner point problem.

II. PREVIOUS RESULTS

A. Well-Known Results

We first review three related results that come from well-
known inequalities in Shannon’s information theory.

If X is almost Gaussian, that is, close to XG (in KL
distance), then X + Y is close to XG + Y (in KL distance).
This is an immediate consequence of the Data Processing
Inequality (DPI)

DKL(X + Y ‖XG + Y ) ≤ DKL(X‖XG) (3)

which holds similarly for Fisher and Wasserstein distances.
Another related result is that if X,Y are independent and

both almost Gaussian (in KL distance), then their sum X + Y
is also almost Gaussian (in KL distance). This was shown
in [1] to be an immediate consequence of the Entropy Power
Inequality (EPI):

e(2/n)h(X+Y ) ≥ e(2/n)h(X) + e(2/n)h(Y ). (4)

Notice that when Y = Z is Gaussian, the stated result reduces
to the fact that if X is almost Gaussian, then so is X + Z—
the same result as the one above for the DPI. In this case,
the DPI appears to be a (strictly) weaker form of the EPI.



Interestingly, in the determination of Sato’s corner point of the
two-user Gaussian weak Z-interference channel as was made
in [1], the stronger form (EPI) is in fact not necessary as the
same conclusion easily follows from the DPI applied to the
Kullback-Leibler divergence.

Finally, if X and Y are close in KL distance, then they
are also close in squared total variation distance by Pinsker’s
inequality

D2
TV(X,Y ) ≤ 2DKL(X‖Y ). (5)

This was used by Costa [2] along with the concavity of the
entropy power in his determination of the other corner point
of the two-user Gaussian weak Z-interference channel which
considers the maximal rate that an interfering signal may have
when the interfered link operates at maximal rate. As detected
by Sason [3], it turns out that Pinsker’s inequality was not
strong enough to settle the problem, which has since been
known as the “missing” corner point problem [4].

B. Lesser Known Results

The following results come from transportation-information
inequalities known in optimal transport theory (see e.g., [5],
[6] for reviews).

The (Gaussian) logarithmic Sobolev inequality1

DKL(X‖XG) ≤ c ·DF(X‖XG) (6)

implies that if X is almost Gaussian in Fisher distance, than
it is also almost Gaussian in KL distance.

Talagrand’s inequality

D2
W(X,XG) ≤ c ·DKL(X‖XG), (7)

implies that if X is almost Gaussian in KL distance, then it is
also almost Gaussian in squared Wasserstein distance. This is
one of the ingredients used by Polyanskiy and Wu in [7].

Conversely, if X is close to Y in squared Wasserstein
distance, then under the addition an independent Gaussian Z,
X + Z is also close to Y + Z in KL distance. This is a
consequence of the inequality [8]

DKL(X + Z‖Y + Z) ≤ 1

2
D2

W(X,Y ) (8)

which can be used to show the following HWI inequality2:

DKL(X‖XG) ≤
√
D2

W(X,XG)DF (X‖XG), (9)

which in turn implies that if X is almost Gaussian both in
squared Wasserstein distance and in Fisher information distance,
then it is also almost Gaussian in KL distance.

1The notation c stands for some universal constant which depends only on the
covariance matrix of XG.

2H is for (relative) entropy (i.e., KL divergence), W is for Wasserstein and I is
for (Fisher) Information.

C. Recent Results

We mention two recent results.
Calmon et al. [9] have shown that if X is almost Gaussian

in the sense that the linear minimum mean-squared error
(LMMSE) is close to the (non linear) MMSE when estimating
X from a noisy observation X + Z (the output of an AWGN
channel), then X is also almost Gaussian in Kolmogorov-
Smirnov (KS) distance. It is perhaps worthwhile to note that
this result can be interpreted as follows. Define

mmse(X|X + Z) = min
f

E
{
|X − f(X + Z)|2

}
lmmse(X|X + Z) = min

f linear
E
{
|X − f(X + Z)|2

} (10)

As noticed e.g. by Rioul [10], [11] one has the following
identity which states that the MMSE and Fisher information
are complementary quantities:

mmse(X|X + Z) + J(X + Z) = n. (11)

Since X and XG have identical covariance matrices, it
follows that lmmse(X|X + Z) = lmmse(XG|XG + Z) =
mmse(XG|XG + Z) = n− J(XG + Z). Hence the MMSE
difference:

lmmse(X|X+Z)−mmse(X|X+Z) = J(X+Z)−J(XG+Z)
(12)

is identical to the Fisher distance DF(X + Z‖XG + Z). Thus
the result of Calmon et al. can be rewritten as follows: if
X+Z is almost Gaussian in Fisher distance, then X is almost
Gaussian in KS distance. In this statement the Fisher distance
can be replaced by the KL distance by integration using the
I-MMSE method [9] or de Bruijn’s identity.

Another recent result of Polyanskiy and Wu [7] is that under
some regularity conditions on pX and pY , if X and Y are
close in squared Wasserstein distance, then they are also close
in KL distance:

DKL(X‖Y ) ≤ c ·
√
n ·D2

W(X,Y ). (13)

The entropy difference h(Y )−h(X) is also shown to be small
in this case. This is the key result used by Polyanskiy and
Wu [7] to settle the missing corner point problem.

In the sequel we shall not use the above inequalities and
results but only derive a few simple related facts.

III. FROM NOT GAUSSIAN TO GAUSSIAN

To simplify the following derivations we assume without
loss of generality that the considered random vectors have
zero mean. We also assume that the covariance matrix XG is
proportional to the identity matrix: XG ∼ N (0, P In) where
P is the average power of X .

In order to compare the distributions of X and XG, it is
immaterial whether or not X and XG are independent of each
other. We find it convenient to assume a functional dependence
of the form

X = F (XG). (14)

This is made possible by the following “not Gaussian to
Gaussian” lemma, by means of an invertible transformation.



Lemma 1 (Not Gaussian to Gaussian). There exists a diffeo-
morphism F of the form

y1 = F1(x1)

y2 = F2(x1, x2)
...

yn = Fn(x1, x2, . . . , xn)

(15)

where for all 1 ≤ k ≤ n and any fixed value of xk−1 =
(x1, . . . , xk−1),

xk 7→ F (x1, x2, . . . , xk) is nondecreasing, (16)

such that F (XG) has the same distribution as X .

Proof: We first prove that we can choose F satisfying (15)–
(16) such that F (X) is uniformly distributed in [0, 1]n. We
proceed by induction on n. For n = 1 this is a well-known
result (which is at the basis of the inverse transform sampling
method): Take

F (x) = P(X ≤ x) (17)

be the cdf of X . Clearly F is nondecreasing differentiable and
for any u ∈ [0, 1],

P(F (X) ≤ u) = u (18)

so that F (X) is uniformly distributed in [0, 1]. Now suppose
that Fn−1(Xn−1) is uniformly distributed in [0, 1]n−1 where
F1, F2, . . . , Fn−1 satisfy conditions (15)–(16) and take

Fn(x1, x2, . . . , xn) = P(Xn ≤ xn | Xn−1 = xn−1) (19)

As above xn 7→ Fn(x1, x2, . . . , xn) is nondecreasing differen-
tiable and for any un ∈ [0, 1],

P(Fn(X1, X2, . . . , Xn) ≤ un | Xn−1 = xn−1) = un (20)

which show that Fn(X1, X2, . . . , Xn) is uniformly distributed
in [0, 1] independently of Fn−1(Xn−1), hence the resulting
n-dimensional transformation F (X) is uniformly distributed
in [0, 1]n.

In particular, the diagonal transformation Φ(XG) =
(Φ(XG

1 ),Φ(XG
2 ), . . . ,Φ(XG

n )) is uniformly distributed in
[0, 1]n, where Φ denotes the c.d.f. of the standard Gaussian.
Thus F−1(Φ(XG)) is identically distributed as X where the
diffeomorphism F−1Φ has the prescribed form.

Lemma 2. Let X be a random vector with density and F be
any diffeomorphism Rn → Rn. Then

h(F (X)) = h(X) + E log JF (X) (21)

where JF (x) is the Jacobian of the transformation y = F (x).

Proof: Well known and easily checked by making the change
of variable.

Remark 1. Let F be such that U = F (X) is uniformly
distributed in [0, 1]n as in the proof of Lemma 1. Then h(U) =
0 so that

h(X) = −E log JF (X) (22)

(an interesting formula, which is non trivial for dependent
vector components).

IV. FROM ALMOST GAUSSIAN TO GAUSSIAN

Hereafter we assume that (14) holds with conditions (15)–(16).

Proposition 1. The component-wise correlation coefficients
defined as

ρ(XG
i , Xi) =

E
(
XG

i ·Xi

)
P

∈ [0, 1] (23)

are such that

−
n∑

i=1

log ρ(XG
i , Xi) ≤ h(XG)− h(X). (24)

Thus if X is close to XG in differential entropy (or KL
distance), this inequality forces all correlation coefficients to
be close to 1. The condition ρ(XG

i , Xi) = 1 means that XG
i

and Xi are linearly dependent. In other words, the components
of an almost Gaussian vector are almost linearly dependent on
the Gaussian components.
Proof: One has

h(XG)− h(X)
(a)
= h(XG)− h(F (XG)) (25)
(b)
= −E log JF (XG) (26)

(c)
= −

n∑
i=1

E log
∂Fi

∂yi
(XG) (27)

(d)

≥ −
n∑

i=1

logE
∂Fi

∂yi
(XG) (28)

(e)
= −

n∑
i=1

log
E
{
XG

i · Fi(X
G)
}

P
(29)

where
(a) follows from Lemma 1;
(b) follows from Lemma 2;
(c) follows from the fact that by Lemma 1, the Jacobian

matrix of the transformation x = F (y) is triangular with
nonnegative diagonal elements;

(d) is Jensen’s inequality;
(e) is Stein’s Lemma for the normal XG ∼ N (0, P In).

Lemma 3 (MSE lemma). Under the above assumptions, we
have

E
{
|X −XG|2

}
P

≤ h(XG)− h(X). (30)

Proof: Expanding E
{
|X −XG|2

}
= E{|X|2}+ E{|XG|2} −

2E
{
XG ·X

}
we get

E
{
|X −XG|2

}
≤ nP + nP − 2E

{
XG ·X

}
(31)

= 2P ·
n∑

i=1

(
1−

E
{
XG

i ·Xi

}
P

)
(32)

≤ −2P

n∑
i=1

log
E
{
XG

i ·Xi

}
P

(33)

The conclusion follows from Proposition 1.

Remark 2. This result appears similar to the one of Calmon et
al. [9] mentioned above, yet in the opposite direction: if X is



close to Gaussian in differential entropy, then the mean-squared
error E

{
|X −XG|2

}
must be small, where X = F (XG) so

that F is “almost linear” (close to the identity). This is looking
much like a mean-squared error behavior of an “almost linear”
estimator although it is not clear to us what would be the
estimation problem at stake here.

V. A CONVERSE RESULT UNDER ADDITION OF ANOTHER
RANDOM QUANTITY

Let V be an arbitrary (not necessarily Gaussian) random
vector, independent of (X,XG) and consider

Y = X + V

Ỹ = XG + V
(34)

Since of course |Y − Ỹ |2 = |X −XG|2 it follows from the
MSE Lemma 3 that the MSE E{|Y − Ỹ |2} will be small if
X is close to Gaussian in differential entropy. In this section,
we establish a partial converse.

Although the entropy difference h(XG)− h(X) is always
non negative, the addition of V could make the difference
h(XG + V ) − h(X + V ) = h(Ỹ ) − h(Y ) negative, as was
observed e.g., in [12], [13]. The following proposition shows
how negative it can be. The negative part turns out to be small
if the MSE is small:

Proposition 2. Suppose V has zero mean and satisfies the
constraint |V |2 ≤ nQ. If E{|Y − Ỹ |2} ≤ nε(n) then

h(Y )− h(Ỹ ) ≤ nε′(n)

where ε(n), ε′(n)→ 0 as n→ +∞.

In other words, normalizing by dimension, the negative part of(
h(Ỹ )−h(Y )

)
/n will be small if 1

n E{|Y −Ỹ |2} = 1
n E{|X−

XG|2} is small.

Proof. Let the densities be Y ∼ p and Ỹ ∼ q. Since
DKL(Y ‖Ỹ ) ≥ 0, we have

h(Y )− h(Ỹ ) = E log
q(Ỹ )

p(Y )
≤ E log

q(Ỹ )

q(Y )
. (35)

The p.d.f. of Ỹ = XG + V takes the form

q(ỹ) = E{q(ỹ|Z)} =
E exp

(
−|ỹ − V |

2

2P

)
(2π)n/2Pn

. (36)

Since for any y ∈ Rn,

|y − V |2 ≤ |ỹ − V |2 + |y − ỹ|2 + 2|y − ỹ| · |ỹ − V | (37)

where |ỹ − V | ≤ |ỹ|+
√
nQ, we have

log
q(ỹ)

q(y)
≤ |y − ỹ|

2

2P
+
|y − ỹ|
P

·
(
|y|+

√
nQ
)
. (38)

Taking expectations, we have

h(Y )−h(Ỹ ) ≤ E{|Y − Ỹ |2}
2P

+E
( |Y − Ỹ |

P
·
(
|Ỹ |+

√
nQ
))
.

(39)

By Cauchy-Schwarz inequality, the second term is bounded by√
E{|Y − Ỹ |2}·

(√
E{|Ỹ |2}+

√
nN
)
/P where

√
E{|Ỹ |2} ≤√

nP +
√
nQ. Therefore, E{|Y − Ỹ |2} ≤ nε(n) implies

h(Y ) − h(Ỹ ) ≤ 1
P

(
nε(n)/2 + (

√
P + 2

√
Q)
√
n2ε(n)

)
=

nε′(n) where ε′(n)→ as ε(n)→ 0.

VI. APPLICATION TO THE DETERMINATION OF THE
“MISSING” CORNER POINT

As mentioned above, Polyanskiy and Wu [7] recently solved
the missing corner point problem using optimal transport
theory by showing Lipschtiz continuity of differential entropy
with respect to the Wasserstein distance and Talagrand’s
transportation-information inequality. An independent solution
using the I-MMSE approach was given by Bustin et al. [14],
[15] for a restricted subset of inputs—and later more generally—
by integration of the MMSE over a continuum of SNR values.

We provide yet another solution to the problem in continu-
ation of our previous investigations [1], [12], [13] that relies
only on basic properties of Shannon’s information theory. Our
proof is based on the MSE Lemma 3 and Proposition 2.

We follow the notations and definitions of [1], in particular:

Definition 1 (Asymptotic Almost Inequalities). Let ε(n) denote
any positive function of n which tends to 0+ as n → +∞.
Given real number sequences an, bn, we write an . bn (an
is almost less than bn) if an ≤ bn + nε(n) or equivalently
bn ≥ an−nε(n). We also write bn & an (bn is almost greater
than an).

Definition 2 (Almost Gaussianness). X (with average power
P ) is almost (white) Gaussian (AG) if

h(X) & h(XG) =
n

2
log(2πeP ). (40)

Definition 3 (Almost Losslessness). Let Z and Z ′ be mutually
independent (not necessarily Gaussian) vectors, independent
of X . The addition of Z ′ in X + Z + Z ′ is almost lossless
(AL) with respect to X if their mutual information is almost
nondecreasing:

I(X;X + Z + Z ′) & I(X;X + Z). (41)

We say that X+Z+Z ′ is almost lossless compared to X+Z
with respect to X , or more briefly that (X + Z) + Z ′ is AL
(w.r.t. X).

Using the concavity of entropy power [16] we have shown
the following [1, Cor. 2].

Proposition 3. Let a2 ≤ 1. If aX1 +X2 +Z is almost lossless
compared to aX1 +Z, and if X2 +Z is white Gaussian, then
aX1+X2+Z is almost lossless compared to X1+Z w.r.t. X1.

In this section we prove the following almost identical
version of Proposition 3, which differs from it only by the
addition of the word “almost”:

Theorem 1. Let a2 ≤ 1. If aX1 +X2 + Z is almost lossless
compared to aX1+Z, and if X2+Z is almost white Gaussian,
then aX1 +X2 + Z is almost lossless compared to X1 + Z
w.r.t. X1.



As we have shown in [1, Prop. 6], this settles a long standing
conjecture about the missing corner point for the Gaussian
interference channel. We have also shown [1, Prop. 7] that
it suffices to prove the following, which is essentially the
problematic Appendix B in [2]:

Theorem 2. If X2 + Z is AG, then I(X1; aX1 +X2 + Z) .
I(X1; aX1 +XG

2 + Z), that is,

h(aX1 +X2 + Z) . h(aX1 +XG
2 + Z), (42)

Proof: Let XG
2 ∼ N (0, P2In). The condition that X2 + Z is

AG is equivalent to h(XG
2 +Z)− h(X2 +Z) = nε(n) where

XG
2 + Z ∼ N (0, (P2 +N)In) and X2 + Z has a continuous

density (for a proof see e.g., [11, Lemma 1]). Let F be as
in Lemma 1 so that X2 + Z = F (XG

2 + Z). By the MSE
Lemma 3,

E
{
|X2 −XG

2 |2
}

= E
{
|(X2 + Z)− (XG

2 + Z)|2
}

= nε(n)
(43)

Upon addition of aX1 (which satisfies the constraint |aX1|2 ≤
na2P1), it follows from Proposition 2 that

h(aX1 +X2 + Z)− h(aX1 +XG
2 + Z) ≤ nε′(n) (44)

which ends the proof.
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