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Motivation

Consolidate state-of-the-art about optimal distinguishers with a
deeper look on the probability estimation

Perceived Information (PI): information-theoretic metric quantifying
the amount of leakage
Show that PI is related to maximizing the success rate through the
Maximum a posteriori probability (MAP)
Use the maximum likelihood (ML) to derive MIA and the
(experimental) template attack in case of profiling
Experiments: should theoretical values of probabilities be used or
should they be estimated on-the-fly?
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Motivation
Profiling device Attacking device

P̂ for an estimation offline P̃ estimated online on-the-fly

→ P exact probability
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Notations

secret key k∗ deterministic but unknown
m independent measurements x = (x1, ..., xm) and independent
and uniformly distributed inputs t = (t1, ..., tm)

leakage model y(k) = ϕ(f(k, t)), where ϕ is a device specific
leakage function and f maps the inputs to an intermediate
algorithmic state
x = y(k∗) + n with independent noise n
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Perceived information

Idea [Renauld et al., 2011]

Metric quantifying degraded leakage models
Testing models against each other, e.g., from the true distribution
against estimations
Generalization of mutual information

Ideal case

the distribution P is known
PI is MI

MI(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P(x|t, k) log2 P(k|t, x)
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Perceived information

Profiled case

the distribution P is known
test a profiled model P̂ against P

PI(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P(x|t, k) log2 P̂(k|t, x)

Real case

the distribution P is unknown
test a profiled model P̂ against an online estimated model P̃

P̂ I(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P̃(x|t, k) log2 P̂(k|t, x)
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Maximum a posteriori probability

MAP
The optimal distinguishing rule is given by the maximum a posteriori
probability (MAP) rule

D(x, t) = argmax
k

P(k|x, t).

With the help of Bayes’ rule...

P(k|x, t) = P(x|k, t) · P(k)
P(x|t)

=
P(x|k, t) · P(k)∑
k P(k)P(x|t, k)

.
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Relation between MAP and PI

Profiling scenario
Profiled model P̂, model P̃ estimated online on-the-fly

P̂(k|x, t) ∝
∏m

i=1 P̂(k|xi, ti)

We start by maximizing MAP:

argmax
k

P̂(k|x, t) = argmax
k

m∏
i=1

P̂(k|xi, ti)

= argmax
k

∏
x,t

P̂(k|x, t)mP̃k(x,t),

where P̃k(x, t) = P̃(x, t|k) is the "counting" estimation (online) of x and
t that depends on k. Now taking the log2 gives

= argmax
k

∑
x,t

P̃k(x, t) log2 P̂(k|x, t)
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Relation between MAP and PI (cont’d)

= argmax
k

∑
x,t

P̃k(x, t) log2 P̂(k|x, t)

= argmax
k

∑
x,t

P̃(x, t|k) log2 P̂(k|x, t)

= argmax
k

∑
t

P̃(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t)

Taking the average over k and adding H(K) gives P̂ I(K;X,T ) =

H(K) +
∑
k

P(k)
∑
t

P̃(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t).

(except P̃(t) vs. P(t))



13 June 29-30, 2015 Institut Mines-Télécom Cryptarchi 2015

Relation between MAP and PI (cont’d)

= argmax
k

∑
x,t

P̃k(x, t) log2 P̂(k|x, t)

= argmax
k

∑
x,t

P̃(x, t|k) log2 P̂(k|x, t)

= argmax
k

∑
t

P̃(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t)

Taking the average over k and adding H(K) gives P̂ I(K;X,T ) =

H(K) +
∑
k

P(k)
∑
t

P̃(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t).

(except P̃(t) vs. P(t))



14 June 29-30, 2015 Institut Mines-Télécom Cryptarchi 2015

Relation between MAP and PI (cont’d)

PI⇔ MAP
P̂ I (real case) is the expectation of the MAP over the keys.

Profiled case
If we have an infinite number of traces to estimate P̃→ P then we
recover PI(K;X,T).

Ideal case
If we have an infinite number of traces to estimate P̃→ P and P̂→ P
then we recover MI(K;X,T).
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Assumptions for ML

The leakage model follows the

Markov condition
The leakage x depends on the secret key k only through the computed
model y(k). Thus, we have the Markov chain:

(k, t)→ y = ϕ(f(t, k))→ x.

Related to the EIS [Schindler et al., 2005] assumption.
Markov condition: invariance of conditional probabilities
EIS assumption: invariance of images under different subkeys
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Maximum Likelihood Attack

Maximum Likelihood Attack
Assuming we have y(k) = ϕ(f(t, k)) that follows the Markov condition,
then the optimal distinguishing rule is given by the maximum likelihood
(ML) rule

D(x, t) = argmax
k

P(x|y).

Proven and investigated in [Heuser et al., 2014].
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Maximum Likelihood Attack

Similarly, as in the previous derivation we have

argmax
k

P(x|y) = argmax
k

m∏
i=1

P(xi|yi) = argmax
k

∏
x,y

P(x|y)mP̃(x,y).

Taking the log2 gives us

argmax
k

∑
x,y

P̃(x, y) log2 P(x|y)

Now we add the cross entropy term that does not depend on a key
guess k

−
∑
x,y

P̃(x, y) log2 P(x).
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Maximum Likelihood Attack

This results to

argmax
k

∑
x,y

P̃(x, y) log2
P(y|x)
P(y)

.

In practise...

P is most likely not known perfectly by the attacker
either estimated offline by P̂
or online on-the-fly P̃
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Maximum Likelihood Attack

Profiled
P is estimated offline P̂ on a training device

argmax
k

∑
x,y

P̃(x, y) log2
P̂(y|x)
P̂(y)

,

which is the template attack [Chari et al., 2002].

Distinguisher resulting from the MAP with
A priori knowledge on the key distribution
Markov condition
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Maximum Likelihood Attack

Profiled
P is estimated offline P̂ on a training device

argmax
k

∑
x,y

P̃(x, y) log2
P̂(y|x)
P̂(y)

,

which is the template attack [Chari et al., 2002].

Non-Profiled
P is estimated online P̃ on a the device under attack

argmax
k

∑
x,y

P̃(x, y) log2
P̃(y|x)
P̃(y)

,

which gives the Mutual Information Analysis [Gierlichs et al., 2008].
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Believing or seeing?

Should probabilities be considered as precise as possible?
Many recent works (e.g., [Veyrat-Charvillon and Standaert, 2009])
showed that using kernel estimation is more efficient than using
histograms
Accordingly, if P(Y ) is known, should it be used instead of P̃(Y )
and P̂(Y )?

argmax
k

∑
x,y

P̃(y)P̃(x|y) log2
P̂(y|x)
P̂(y)

argmax
k

∑
x,y

P̃(y)P̃(x|y) log2
P̃(y|x)
P̃(y)
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Believing or seeing?

Simple scenario

X = Y (k∗) +N,

Y (k) = HW (Sbox(T ⊕ k))

As Y follows a binomial distribution with parameters (n, 1/2), we have

P(Y ) = {1/256, 8/256, 28/256, 56/256, 28/256, 8/256, 1/256}.

Template attack: replace P̃(Y ) and P̂(Y ) by P(Y )
MIA: replace: P̃(Y ) by P(Y )
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Believing or seeing?
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Conclusion

PI is the expectation of the MAP over the keys
ML is a simple alternative to MAP (with no penalty if keys are
uniform)
Maximum likelihood to recover
• template attack when probabilities are estimated offline (P̂)
• MIA when probabilities are estimated online on-the-fly (P̃)

All attacks work by "testing" a model (estimated offline or
"on-the-fly") against fresh samples
P(Y ) should be estimated instead of using its theoretical value
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Thank you!

Questions?

annelie.heuser@telecom.paristech.fr
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