Chapter 10

Information Theoretic Comparison

of Side-Channel Distinguishers: Inter-class
Distance, Confusion, and Success

Annelie Heuser, Olivier Rioul, Sylvain Guilley, and Jean-Luc Danger

Abstract Different side-channel distinguishers have different efficiencies. Their
fair comparison is a difficult task because many factors come into play—in
particular, their intrinsic statistical properties and the quality of their estimation.

In this work, we first evaluate two related information-theoretic distinguishers:
mutual information analysis and inter-class information analysis. The latter requires
the same underlying probability distributions but uses a different comparing strat-
egy. These distinguishers are not only interesting on their own and suitable for
a mathematical study, but they also exhibit an example where the theoretical and
empirical evaluation framework agree. The ITA was found to distinguish better than
MIA in theory as well as in practice.

Moreover, we develop a new metric, called success metric, capturing the relevant
parameters of the success rate, while providing more feedback about the distin-
guishing power. We additionally state closed-form expressions of the theoretical
success metric for additive distinguisher like CPA and DPA and highlight that
these expressions are much more convenient than for the theoretical success rate.
In the case of a low signal-to-noise ratio (realistic practical condition), we derive
the conditions on the cipher’s substitution boxes (sboxes) to minimize the success
metric (hence the success rate). This result supersedes a previous characterization
on sboxes known as transparency order, which is derived from a metric on a
distinguisher, and not from a success metric/rate. Moreover, we are also able to
formulate a closed-form expression for MIA, which has not been shown before.
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10.1 Side-Channel Analysis

Side-channel analysis (SCA) constitutes a serious threat against modern
cryptographic implementations. They exploit unintentionally emitted physical
leakage—such as power consumption or electromagnetic emanation—in order
to reveal secret information. The introduction of differential power analysis by
Kocher et al. [16] gave rise to many developments of new attacks, countermeasures
and models for the evaluation of physical security. In particular, a large variety of
distinguishers have been proposed as statistical tests in order to discriminate the
correct key. To overcome limitations such as the restriction to linear dependency
between the leakage and the assumed leakage model, new types of distinguishers
have been proposed.

First, mutual information analysis (MIA) was proposed by Gierlichs et al. [11].
It uses mutual information (MI) to measure the total dependency between the mea-
surements and the leakage model. Extensive previous work [3,17,21,23,24,38,40]
has shown that this distinguisher is indeed able to cope with non linearities between
the leakage model and the measurements.

Second, to avoid explicit density estimations as required for MIA, the
Kolmogorov-Smirnov (KS) test was proposed by Veyrat-Charvillon and
Standaert [38] and the corresponding Kolmogorov-Smirnov analysis (KSA) was
studied in [40,42,44]. Although it has been highlighted in [42] that KSA may have
disadvantages compared to MIA, a recent study [44] has identified variants of KSA
that may perform better than MIA in some circumstances.

In [18], the authors suggested an alternative inter-class Kolmogorov-Smirnov
analysis (IKSA) that compares the conditional distributions between themselves
instead of comparing them with the global distribution of the leakage. This novel
approach is shown to be of a different nature (non equivalent), and can outperform
KSA in terms of success rate.

Similar ideas have also emerged in the literature: The single-bit DPA [16] can
already be seen as a comparison of (means of) different classes without referring to
the marginal distribution. Moreover, in [2] a cluster approach has been introduced
that compares the inter- and intra-class variance of conditional classes. Also, in [39]
a copula-based distinguisher has been introduced that compares each conditional
distribution internally without referring directly to the global leakage distribution.

It is important to note that in general, a distinguisher’s performance also depends
on the choice of the leakage model. As pointed out in [43] a distinguisher would fail
to distinguish if the model consists of a bijective function of the secret and plaintext.
Therefore, in this chapter, we restrict ourselves to leakage models for which the
studied distinguishers are able to distinguish.

Because so many types of side-channel distinguishers have become available,
their fair evaluation and comparison is an important topic. One cannot rely on one
single experiment carried out on raw leakage measurements from one particular
device to draw unequivocal conclusions about the relative efficiency of competing
distinguishers (see e.g., the discussion in [33]). Therefore, we seek to compare
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statistical procedures and methodologies in ideal scenarios with clearly defined and
fixed leakage models, where in particular the signal-to-noise ratio can be varied as
a parameter.

Now, there has been two distinct evaluation frameworks considered in the
literature so far:

1. A theoretical framework proposed by Whitnall and Oswald [40] that uses the
exact values of the distinguishers to evaluate the capability to recover the
correct key hypothesis. One relevant metric is the so-called relative margin, that
computes a normalized distance between the distinguisher’s value for the correct
key guess to that of its nearest rival.

2. An empirical framework proposed by Standaert et al. [34] in which the distin-
guishers are estimated on empirical data. The performance evaluation can be
typically carried out using one of the following two metrics: the success rate,
which estimates the probability of ranking the correct hypothesis first, and the
guessing entropy, which estimates the average ranking of the correct hypothesis.

It should be emphasized that the theoretical framework is based on the exact compu-
tation of the distinguisher to evaluate its intrinsic distinguishing power—as if it was
estimated on a infinite number of samples. In contrast, the empirical framework uses
simulations or measurements to evaluate the ability of a distinguisher to succeed
efficiently: it depends not only on the choice of the theoretical distinguisher, but
also on the efficiency of its estimation. Roughly speaking, it can be said that the
empirical framework encompasses the theoretical one plus the estimation algorithm.
For this reason, it appears to be more practical. On the other hand, the theoretical
framework is more amenable to a mathematical analysis, since it only involves
the distinguisher’s values. So far, no link between the theoretical and empirical
outcomes of a given distinguisher has been shown in the literature.

10.1.1 Owur Contributions
10.1.1.1 Interclass Distinguisher

As a first contribution we introduce a new information-theoretic metric, referred to
as inter-class information, that compares conditional probability density functions
between themselves. Before applying it to side-channel analysis, we first carry
out a detailed mathematical study on the metric itself. In particular, we show that
inter-class information (II) shares similar properties with mutual information (MI).
Interestingly, both can be computed from the same probability density estimates.
But we also prove that the two metrics are not equivalent with a precise definition
of the term.

Next, we extend the inter-class information to the scenario of side-channel
analysis and refer to the corresponding distinguisher as inter-class information
analysis (IIA). We continue our mathematical investigation by proving soundness of
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ITA. Finally, we use the above-mentioned frameworks to investigate the efficiency
of both MIA and ITA. From the theoretical framework we select the relative
distinguishing margin as the relevant metric. From the empiral framework we select
the success rate as the relevant metric. The results from both frameworks agree: IIA
is shown to outperform MIA for the theoretical and empirical metric.

10.1.1.2 Success Metric

Second, we introduce a new metric, called success metric (SM), which evaluates
estimated distinguishers while providing more feedback about the efficiency. There-
fore, the SM is more suitable when comparing and evaluating distinguishers than
the currently state-of-the-art. In fact, SM relies on the estimation parameters of the
distinguisher affecting the theoretical success rate. To be precise, the key features of
the success metric are:

* Monotony with the success rate (theoretically and empirically);

* Quantification of the relationship between the distinguishing value of the correct
key and its nearest rival;

* Consideration of the noise probability distribution function (e.g., its variance),
number of measurements, and estimation method

* Simplicity of the closed-form expressions for additive distinguisher (e.g., DPA,
CPA) compared to the success rate;

e Ability to derive a closed-form expression for MIA when estimated with
histograms, which has not been shown for any other metric before.

Furthermore, we show further benefits of the closed-form expression of SM:
We are able to connect the closed-form of the success metric for DPA/ CPA with
properties of the sbox in case of a practical signal-to-noise ratio. Remarkably,
unlike previous works [12,22] we first not only derive bounds but achieve direct
links, and second utilize a success rate/metric instead of only using properties of
a distinguisher. However, our new metric, transparency metric, follows the same
intuition as the transparency order introduced in [22], but is more reasonable and
simple. Additionally, we are able to answer the question how the size of the keyspace
is influencing the success metric and therefore the success rate.

10.1.2 Side-Channel Analysis Model

Calligraphic letters (e.g., Z°) denote finite sets, capital letters (e.g., X) denote
random variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. We write P{X = x} or p(x) for the probability
that X = x and p(x|y) = P{X =x \ Y = y} for conditional probabilities.

Let k* denote the secret cryptographic key, k any possible key hypothesis from
the keyspace %', and let T be the input or cipher text of the cryptographic algorithm.
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The mapping g : (7, %) — .# maps the input or cipher text and a key hypothesis
k € ¢ to an internally processed variable in some space .# that is assumed to relate
to the leakage X . Usually, 7, %', . are taken as I}, where n is the number of bits
(for AES n = 8).

Generally it is assumed that f is known to the attacker. A common consideration
is g(T, k) = Sbox|T &k] where Sbox is a substitution box. The measured leakage
X can then be written as

X = y(g(T.k*)) + N, (10.1)

where N denotes an independent additive noise.y is a device-specific deterministic
function, which we assume to be known to the attacker in this contribution. For any
key guess k € ¢ the attacker computes the sensitive variable

Y(k) =y (g(T.k)). (10.2)

Without loss of generality we may assume that Y is centered and normalized, i.e.,
E{Y} = 0 and Var{Y } = 1, and that the values in % are regularly spaced with step
Ay. For ease of notation, we let Y* = Y(k*) and Y = Y (k).

10.2 A New Distinguisher Based on Intraclass Information

In this section, we introduce a new information-theoretic metric, referred to as
inter-class information, that compares conditional probability density functions
between themselves. Before applying it to side-channel analysis, we first carry
out a detailed mathematical study on the metric itself. In particular, we show that
inter-class information (II) shares similar properties with mutual information (MI).
Interestingly, both can be computed from the same probability density estimates.
But we also prove that the two metrics are not equivalent with a precise definition
of the term.

Next, we extend the inter-class information to the scenario of side-channel
analysis and refer to the corresponding distinguisher as inter-class information
analysis (IIA). We continue our mathematical investigation by proving soundness of
ITA. Finally, we use the above-mentioned frameworks to investigate the efficiency
of both MIA and ITA.

We review some information-theoretic tools to evaluate the dependence between
two random variables X and Y, and refer to [7] for more details. We focus
in this section on metrics and postpone the application to side-channel analysis
to Sect. 10.4. However, since for this application one random variable (X) is
continuous and the other (Y') is discrete, we adopt this convention whenever it is
possible.

Let p(x) be the probability density function of the continuous random variable
X and p(y) = P{Y = y} be the probability mass function of the discrete random
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variable Y. The corresponding expectations are E(X) = f_ozox - p(x)dx and
E(Y) = Zy y - p(»), respectively. The variance is defined as 0)2( = E{(X —
E(X))?}, and similarly for Y. Let p(x|y) = p(x|Y = y) be the conditional
probability distribution of X knowing that ¥ = y and p(x,y) be the joint
probability distribution of X and Y. Notice that the marginal distribution p(x)

becomes the average over Y of the conditional distribution p(x|y):

px) =) plx.y) =Y p(»)pxly) = E(p(x|V)). (10.3)
y y

10.2.1 Information Divergence

Definition 10.1 (Kullback-Leibler divergence [7]). Let g(x) be another prob-
ability distribution defined over the same space as p(x). The Kullback-Leibler
divergence of g with respect to p is defined as

Dalplal= [ pto-loe 23

dx. (10.4)

Itis well known that Dy [p || ¢] = 0 and equals zero if and only if p(x) and g (x)
coincide. The divergence is sometimes termed “distance” in the literature although it
is not a distance in the mathematical sense of the word, because it is not symmetric:
Dki[p |l 9] # DkiLlg || p] and the triangle inequality is not satisfied in general. To
achieve symmetry, Kullback and Hajek made the following definition:

Definition 10.2 (Symmetric Kullback-Leibler divergence). The symmetric
divergence between distributions p and ¢ is defined as

Dki(p | g + Dxilg || p]

Su(p @) = 5 (10.5)

_ % /_ (pl) — q()) -log

p(x)
q(x)

dux. (10.6)

10.2.2 Conditional-to-Unconditional Metric

To evaluate the dependence between X and Y, one possibility is to compute the
distance between conditional probabilities p(x|y) and the unconditional probability
p(x) = E(p(x|Y)) (see Fig. 10.1). Using Kullback-Leibler divergence, we obtain

1(X;Y) = E{Dx[p(x|Y) || p(x)]} (10.7)
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Fig. 10.1 Conditional vs Conditional to Unconditional
Unconditional. Illustrations to
compare probability Xe =10

distributions (the “distance”
is depicted with an arrow)

X|Y=1 ‘\\‘ i A/’/' X|Y=4
X

/

Xea=2 | =8

=> " p()Drelp(x]y) || p(x)] (10.8)
y

_ > o p(]y)

—Zy:/_wp(x,y) tog £ 757 d. (10.9)

This is well-known as the mutual information between the two random variables X
and Y. Mutual information can also be written as

I(X;Y) = H(X)— HX|Y) (10.10)

where
o0
H(X) = —/ p(x) -log p(x)dx (10.11)
—00
is the (differential) entropy of X and

H(X|Y) =) p(y)-HX|Y =y) (10.12)
y

= —Z/ p(x,y)-log p(x|y)dx (10.13)
y —0Q

is the conditional entropy of X knowing Y. Note that unlike the (discrete)
entropy [7], differential entropy can be negative and hence should not be interpreted
as a measure of uncertainty.! For more details on the relationship between differen-
tial and discrete entropy and the absolute entropy we refer to [7].

! Another reason is that differential entropy is not “coordinate-free” — it depends on the underlying
coordinate system.
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Fig. 10.2 Conditional vs Conditional to Conditional

Conditional. Illustrations to

compare probability X|Y=0

distributions (the “distance” v ANY

is depicted with an arrow) P .
XIY_1L¢ — >"X|Y_4

A1/ Ny
X =2 = > X|Y=3

10.2.3 Conditional-to-Conditional Metric

As suggested in [18], instead of referring to the average distribution p(x), a more
direct strategy would be to consider all pairwise distances between conditional
probabilities p(x|y) (see Fig.10.2). Therefore, we may replace the Kullback-
Leibler divergence of p(x|y) with respect to the average distribution p(x) =
E(p(x]Y)) by all Kullback-Leibler divergences between conditional probabilities
p(X|Y = y)and p(X|Y = y’) for all pairs (y, y"). This yields to the following
definition.

Definition 10.3 (Inter-class information). The inter-class information between
random variables X and Y is defined as

H(X:Y) = S E{Dx.[p(x|Y = y) || p(x|Y = y")]} (10.14)

l\)l'—* NI'—‘

Z PP Drelp(x[y) I p(x[y")] (10.15)
y#£y

where the summation over y = y’ has disappeared because divergence vanishes for
identical distributions.

Proposition 10.1. The inter-class information can also be written in terms of the
symmetric Kullback-Leibler divergence as

H(X:Y) = Efdk(p(x[Y) | p(x))} (10.16)

p(x,y)

d 10.17
popp 1D

-1 / (p(x.7) = p(x)p(y)) log—2 )
Proof. We show equivalence between Egs. (10.15) and (10.16).

1
5 2 PPN Dlp(x(y) || p(xly")]
y#EY

p(x|y) .
p(x[y’)

1
= EZp(y)p(y/)/p(XIy) log (10.18)
vy
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1
2 Z/ZP(Y)p(y’)p(x|y)1og P&y o
y ¥

p(x)
1 , p(x)
- 1 d 10.19
+5 ;/Xy:p(y )P()p(xly)log 0 d (10.19)
1 p(x1y)
=320 [ psitog ZE a
1 / p(x)
+5 ;p(y )/p(X) log — =y 9% (10.20)
1
= E(E{DKL[P(X|Y) I pOT} + E{DkL[p(x) | p(x[Y)]}) (10.21)
= E{dx(p(x[Y) || p(x)} (10.22)
Equation (10.17) then follows easily from Definition 10.1. O

Interestingly, Eq. (10.16) is similar to Eq. (10.7) where the divergence (Definition
10.1) is replaced by the symmetric divergence (Definition 10.2). The latter is also
sometimes referred to as inter-class divergence (see e.g., [30]).

Moreover, similarly as for mutual information, it can be expressed in terms of
entropies as shown in the following proposition.

Proposition 10.2. Let
o0
H@ 1) ==Y [ pep0)-1og ptaly) ax, (10.23)
y —00

be the conditional cross-entropy of X knowing Y. The inter-class information can
be expressed as

H'(X|Y)— H(X|Y)

11(X;Y) = 7 (10.24)
Proof. We show the equivalence between Eqs. (10.17) and (10.24). Since
Z p(x,y) = p(x)p(y) =0, (10.25)
y

we can remove p(x) inside the logarithm in (10.17). Furthermore, since p}g’(‘;})’) =

p(x|y), we can write
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p(x.y)
Z(p(x ¥) = p)p(y)log —Z5s
=5 Z(p(x, ) = p(x)p(y)) log p(x|y) (10.26)
x.y
_H'(X| Y)z_ H(X|Y) 1027
O

It is important to notice that cross-entropy is, contrary to Eq.(10.13), aver-
aged over the product distribution p(x)p(y) instead of the joint distribution

px[y)p(y) = p(x, ).

10.3 Theoretical Analysis

Inter-class information has some important properties that are similar to well-
known properties of mutual information. These are summarized in the following
proposition.

Proposition 10.3. For any two random variables X,Y :

(a) (Symmetry) [1(X;Y)=11(Y;X)

(b) (Independence) I1(X;Y) = 0 ifandonly if X, Y are independent

(c) (Markov Chain Inequality) For any Markov chain X — Y — Z, the following
hold: II(X;Y)>11I(X;Z)and 11(Y;Z) > 11(X; Z)

(d) (Relation to Mutual Information)

211(X:Y) = E{Di[p(x]Y) || p(0)]}
+ E{DkL[p(x) || p(x|Y)]} (10.28)
= I(X:Y) + E{Dx.[p(x) || p(x[V)]} (10.29)

It follows in particular that I1(X;Y) > %I(X; Y).

Proof. The symmetry is obvious from Eq.(10.17). Independency is an obvious
consequence of the following well-known property of (symmetric) divergence:
Dki[p || g1 = 0 and Dki[p || ¢] = 0 if and only if p = ¢ [7]. Markov Chain
Inequality: Recall that X — Y — Z forms a Markov chain if p(z|x, y) = p(z]y)
for all x; in other words X and Z are independent given Y [7]. Since X — Y — Z
is a Markov chain if and only if Z — Y — X is a Markov chain [7], it is sufficient
to prove the first inequality //(X;Y) > I1(X; Z). Furthermore we already have
I(X;Y) = I(X;Z) from the corresponding property for mutual information.
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Since the latter is equivalent to the inequality H(X|Y) < H(X|Z), thanks to
Proposition 10.2, it is sufficient to prove the inequality H'(X|Y) > H'(X|Z) for
cross-entropies.

Now since p(x|y) = p(x|y,z) by the Markov chain condition, it is easily
checked that

HX[Y)=-Y" / p()p(y.2)log pxly.)dx = H'(X|Y.Z)  (10.30)

which can be rewritten as

HEr2) =3 / PP 3 010 o s doan

By the strict concavity of the logarithm, we have the following inequality

1
H'(X|Y,Z) > / p(x)p(2)log dx (10.32)
Z Zy p(rl2)p(xly.2)
= Z/p(x)p(z) log G )dx =H'(X|2) (10.33)
Finally, the relation to mutual information is obvious from the definition. O

10.3.1 A Normal Example

In order to illustrate the difference between MI and II, we give the exact expression
of I(X:;Y) and I1(X:;Y) for two jointly normal random variables.?

Proposition 10.4. Let the two random variables X,Y be identically distributed,
zero-mean and jointly normal, with covariance matrix 02(/1) A ) where |p| < 1is the

correlation coefficient and 6 is the common variance of X and Y . One finds

1 1
I(X:Y) = 5 log ——— (10.34)
1—p?
1 2
I(X:y)=28¢_F (10.35)
2 1—p?

Proof. Since X follows the normal density .4 (0,0?), its differential entropy is
easily computed as [7]

2Note that, unlike in our previous definitions, the random variable Y is also continuous in this
example. Thus sums have to be replaced by integrals.
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H(X) = —E{log p(X)} (10.36)
= log v270? + (loge)E{X?/20?} (10.37)
1
= E1og(2neoz). (10.38)
Now for every y, X given Y = y follows the density p(x|y) = % which is
easily seen to be the normal .4 (py, 0 (1 — p?)). It follows that
1
H(X|Y) = 3 log(2mea®(1 — p?)). (10.39)

Subtracting Eq.(10.39) from Eq.(10.38) yields the announced expression for
I(X;Y)=H(X)—- HX|Y).

To calculate inter-class information, we use Eq. (10.24). The conditional cross-
entropy can be similarly computed as

[e.0]

p(y) - Eflog p(X|y)}dy (10.40)

H'(X|Y) = —/

(X — py)? }dy_

2070 — D) (10.41)

= %log(Zrmz(l —p%) + (loge) /_ oop(y)-E{

Using (10.39) and expanding E{(X —py)?} = E(X?) + p?y?—0 inside the integral,
we obtain

1 2 2E Y2
H'(X|Y) = (HX|Y) — %) + (loge)%_{pz)} (10.42)
2 + 2.2 1
— H(X|Y) + (loge)(ﬁ - 5) (10.43)
2
= H(X|Y) + (logo) fp2 (10.44)

Subtracting H(X|Y) and dividing by 2 yields the desired expression for
II(X:Y) = 3(H'(X|Y)— HX|Y)). O

The limit case p = 0 corresponds to independent random variables X, ¥ in this
example, while p = 1 corresponds to total dependency. From Proposition 10.4,
both mutual and inter-class informations vanish when p = 0 in accordance with
Proposition 10.3 (b). However, when p — 17, I1(X;Y) is increasing to infinity
much faster than 7(X;Y). This shows that 71/(X;Y) is more sensitive in the
dependency of the random variables. We found that this behavior is quite general for
many probability distributions including the case of discrete random variables. This
gives a first intuition, confirmed in the next section, why II may be more efficient
than MI as a side-channel distinguisher.
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10.3.2 Non-equivalence of Mutual and Inter-class
Informations

Since 1(X;Y) and I1(X;Y) share similar properties (see Proposition 10.3 (a)—(c)),
and since we aim to compare these two informations as side-channel distinguishers
to measure dependency between the measurements and the leakage model, it is
important to assert generally whether /(X;Y) and //(X;Y) are equivalent or not.
Although this does not reflect the ability to distinguish in the context of side-channel
analysis, it would give a necessary condition whether 7 /(X ; Y') could be applicable.
For this we need a clear definition of equivalent metrics (see e.g., [29]).

Definition 10.4 (Equivalence). Two distances Z(p, ¢) and 2’ (p, ¢q) are said to be
equivalent if there exist finite constants &« > 0 and 8 > 0 such that for any p, g,

2(p.q) < a-Z'(p.q)and Z'(p.q) < B-2(p.q). (10.45)

In particular, whenever one of two distances becomes small, so does the other
and mathematically speaking, both “distances” define the same “topology”.?
Just to illustrate the usefulness of Definition 10.4 we provide the following

example.

Example 10.1. Consider the linear correlation coefficient

Cov(X,Y
p(X.y) = V&Y (10.46)
OxOy

versus mutual information /(X;Y). Although correlation implies dependence, it
is possible that X and Y are linearly uncorrelated while still being dependent—
take e.g., ¥ = X2 where X ~ .#(0, 1). It follows that an inequality of the form
I(X;Y) <a-p(X,Y) cannot hold. Therefore, correlation and mutual information
are not equivalent. The same conclusion goes unchanged if linear correlation is
replaced by higher-order or nonlinear correlation—take e.g. X ~ .47(0,1) and
Y = +£X where the random sign is uniformly distributed and independent of X.
This explains why correlation power analysis (CPA) and MIA are not equivalent.

Regarding IIA vs. MIA, Proposition 10.3 (d) shows the inequality in one
direction: I(X;Y) <2-11(X;Y). However, we have the following.

Proposition 10.5. Mutual information 1(X;Y) and inter-class information
11(X;Y) are not equivalent.

3Note that this equivalence of metrics is not the same as the equivalence between distinguishers
stated in [8].
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Proof. Tt is sufficient to give the following counterexample. Consider X,Y as in
Sect. 10.3.1. Letting A = 1_—1/02 we have

2I(X;Y)=1logA and 2I11(X;Y)=(A—1)loge. (10.47)

Because the fraction % is unbounded as A — oo, letting p — 1~ shows that no
inequality of the form /7/(X;Y) < « - I(X;Y) may hold for some finite constant
o> 0. O

The fact that mutual and inter-class informations are not equivalent and at the
same time require the estimations of the same conditional probability distributions
p(x|y) for their computation motivates for a formal comparison study in the context
of side-channel analysis. This is investigated in the next section.

10.4 Side-Channel Analysis Scenario and Soundness

10.4.1 Side-Channel Scenario

There exists some necessary conditions on Y (k) for MIA—and hence IIA—to be
able to distinguish. In particular, [23, 43] show that there should be at least one
k € 2 such that Y (k) is not an injective function of Z. Hence, if for all k, f(-, k)
is injective the attacker has to choose ¢ to be non-injective. In the following, we
assume that these necessary conditions are satisfied. As in [23,24] we deduce the
following scenario for wrong or correct key assumptions.

10.4.1.1 Wrong Key Assumption

The conditional distribution p(x|y) of the measured leakage X knowing the
predicted leakage Y is given by

pxly) =D p(*[y) - p(x]y. y*) (10.48)
y*

=Y pO*y) - plx = y*[y) (10.49)
y*

=Y pO*y) - pulx—y*). (10.50)

y

where py denotes the noise pdf and Eq.(10.48) follows from the law of total
probability. The equivalence between Eqs. (10.49) and (10.50) follows from the fact
that N is independent of the leakage predictions Y. Thus, as proved in [24], if the
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key guess is incorrect we have a nontrivial linear mixture of shifted noise densities,
whose coefficients depend on the relationship between Y and Y *.

10.4.1.2 Correct Key Assumption

In contrast, if the key guess is correct, one obtains a Kronecker symbol p(y*|y) =
8y« so that the density mixture simplifies to

p(x]y) = py(x = y"), (10.51)

which is simply identically distributed as N + y*.

10.4.2 Soundness Proofs

Recall the following definition.

Definition 10.5 (Soundness). A given distinguisher & is said to be sound if the
value of the distinguisher for the correct key k* is strictly greater than for all other
keys k # k*:

2(k*) > 9(k) (Vk # k%) (10.52)

Under this condition, it is an easy consequence of the law of large numbers that
the corresponding success rate tends to 1 as the number of measurements increases
indefinitely. For mutual information used as a side-channel distinguisher [11]:
2(k) = 1(X;Y(k)), the soundness condition is expressed by the strict inequality
I(X;Y*) > [(X;Y) forall k # k*.

Proposition 10.6. Mutual information analysis is sound for arbitrary (not neces-
sarily Gaussian) noise.

Proof. Moradi et al. [21] proved that 7(X;Y*) > I(X;Y) which relies on the fact
that Y — Y* — X forms a Markov chain [7, Thm 2.8.1]. Their paper [21] was
written (as the title states) “under a Gaussian [noise] assumption” but the argument
goes unchanged for non-Gaussian noise; in fact, the Markov chain condition
p(x|y,y*) = p(x|y*) relies only on the fact that N and Y are independent and
not on the Gaussian nature of the noise.

To prove strict inequality, we use the fact that X given ¥ = y is a nontrivial
linear mixture of densities py(x — y*) of the same entropy as H(N). Since the
entropy is strictly concave in the probability density function [7, Thm 2.7.3]* we
have the strict inequality

“A well-known information-theoretic property commonly referred to as “mixing increases
entropy”’.
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HX |Y =y)> > p(*[y)HIN + y*) = H(N) (10.53)

y*
for all y. Taking expectations over Y yields H(X|Y) > H(N) = H(X|Y™), that
is, I(X;Y*) > I(X;Y). O

For inter-class information used as a side-channel distinguisher: Z(k) =
I11(X;Y(k)), soundness is similarly expressed by the strict inequality /(X ;Y *) >
11(X;Y) forall k # k*.

Proposition 10.7. IIA is sound for arbitrary noise.

Proof. Let k # k*. By strict concavity of the logarithm (or by strict convexity of
function x > log(1/x)):

H'(X | Y)=)p»p0") Y pG"™y)

y’y/ y/*

1
— ™)1 d 10.54
X/pN(x Y leg > PO =y (109
<Y pMprG) D PO Y )PG*Y)
vy yEy*
x/pN(x—y/*)log—dx (10.55)
pN(x —y*)
= > p(™p(*)
y*’y/*
x/pN(x—y’*)log;dx (10.56)
pn(x —y*)
=H'(X | Y™). (10.57)

Now as in the proof of Proposition 10.6, we still have H(X|Y) > H(X|Y™).
Combining the two strict inequalities yields

H'(X | Y)— HXX|Y)
2
_H'(X | Y9 - HX|Y?)
2

11(X:Y) = (10.58)

=1I(X;Y"), (10.59)

which is the required soundness statement for IIA. O
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10.5 Why Inter-class Information Analysis is more
Discriminating than Mutual Information Analysis

In this section, we theoretically compare MIA and IIA under a Gaussian noise
assumption using the scenario and the hypothesis of Sect.10.4. We start by a
theoretical investigation of 7(X;Y ™) and 71(X;Y™), which is then extended with
the help of some numerical calculation to /(X;Y) and I1(X;Y).

10.5.1 Theoretical Comparison of I(X;Y*)and I1(X;Y™*)

A key feature of ITA is that inter-class information is no less than mutual information
for the correct key guess.’

Proposition 10.8. Let X be as in Eq. (10.1) with Gaussian noise N ~ .4 (0, 0?).
One has

1 2,
TI(X:Y*) = 8¢ . % (10.60)
2 o?
and
IX:Y*) < TI(X:Y"). (10.61)

Proof. To proof Eq. (10.60) we evaluate /1(X;Y™*) using Eq. (10.24). Conditional
cross-entropy can be written as

1
H(X|Y)= log —— dx. 10.62
X | 7) ;p(y)/p(x) 0p ———dx (10.62)

Plugging the expressions p(x) = }°, p(y)p(x[y) and p(x|y) = 3>« p(y*|y)
pn(x — y*) yields

H'X|[Y)=Y p»mp0") Y pO™y): (10.63)

y,y/ y/*
1% 1
/ pn(x —y™)log

dx. 10.64
e PO*Y) PN (x — y*) * (1069

SInterestingly, it is not true that I1(X;Y) > I(X;Y) for general random variables X and Y. For
example, we can find a counterexample when X, Y are binary variables with small p(x|y) for all

x,y # 0.
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For k = k™ this boils down to

ol !
HOY) =3 00700 [ o=y lor———ar. (1069)

(*)

Substituting £ = x — y’* in (*) and assuming N ~ .4 (0, 0?) results in

1
1 d

/pN@) o8 pnE+ Y™ —y*) g
= %log(ZJroz) + @E{(}V +y* =y (10.66)
= %10g(27t02) + log(e )( + (= y")?) (10.67)
— HV) + 98O (2 (10.68)

202

So, by letting Y"* denote a random variable independent and identically distributed
as Y'*,

1
H'X T = HN) + 122 S PPN =y 069)
yE Y
— H(N) + lzg(e)E((Y* Y'™*)?) (10.70)
where
E((Y* —Y™)?) = 2B((Y* —E(Y*))?) (10.71)

= 207+. (10.72)

Combining using Eq. (10.24) and that fact that H(X|Y*) = H(N) for k = k*

gives the announced formula:

H'(X|Y*)— H(N) loge oy
2 2 ot

TI(X;Y*) = (10.73)

To prove Eq. (10.61) we use the fact that the differential entropy is maximum for
normal densities [7]:

1
H(X) < > log(2meay) (10.74)

Since X given Y* is normal, we obtain

I(X:Y*) = H(X) — H(X|Y*) (10.75)
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1 1

< 3 10g(27te0§) —3 10g(2ne0§‘y*) (10.76)
1 2

= —log % (10.77)
2 " Oypys
1. o2, +0?

=1 rr - 10.78
S log = (10.78)
loge 012,* N

< =11(X:Y") (10.79)

2 o?
where we have used the well-known inequality log x < (loge)(x —1). O

10.5.2 Distinguishability of I(X;Y) and I11(X;Y)

We now investigate the ability to distinguish between the correct key k* and the
incorrect keys k # k* for MIA and for ITA. For this purpose, we use the theoretical
metric given by the relative distinguishing margin introduced in the SCA evaluation
framework in [40] and defined by

D(k*) — MaXp£g* D(k)

v/ Var D(K)

where K is the random variable uniformly distributed in the keyspace JZ".

The theoretical evaluation for both MIA and IIA involves the determination
of the Gaussian density mixture of the leakage X given each possible input Z,
with mean value y* and variance o>. That of the conditional densities of p(x|y)
follow similarly for all possible values of y. Given the expressions for p(x) and
p(x|y), we are able to compute the required entropies given in Egs. (10.11), (10.13)
and (10.23) with the help of numerical integration with arbitrary precision. To
compute Eq. (10.80) we have chosen the following practical side-channel scenario:

RelMarg(D) =

(10.80)

Y(k) = HW(SBox,'[Z & k*]) (10.81)
X =Y(k*) + N, (10.82)

where SBox}' is the inverse substitution box operation in PRESENT (F3 — F3),
HW is the Hamming weight, and N ~ .4(0, 0?).

Figure 10.3 displays the relative distinguishing margin for various signal-to-noise
ratios (SNR), defined as

SNR = Yar() _ 2 (10.83)
© Var(N) o2’ '
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Fig. 10.3 Relative distinguishing margin for MIA (black) and IIA (red) for various SNRs

It is clearly observed that RelMarg(IIA) lies essentially above RelMarg(MIA)
for high SNR while at smaller SNR the two curves tend to the same asymptote.

10.6 Simulation Results

In order to compare the practical and theoretical evaluations, we consider the
same leakage scenario as before (Eqgs. (10.81) and (10.82)). Again N ~ .4#(0,0?)
with 0 = {1,4} in our simulations. Although the assumption of additive white
Gaussian noise may not be always realistic, it is common in numerous works in the
community.

The maximum distinguisher’s value gives the key prediction lg*, viz.,

k* = arg max I(X:Y)ork* = arg max 11(X:;Y). (10.84)

To compare the performance of MIA and ITA empirically we used the first-order
success rate (SR), which we computed over a set of 230 independent experiments
for 0 = 1 and 120 experiments for o = 4, where the secret key is chosen randomly
for each experiment. In order to guarantee a fair comparison, we choose the same
data set for both MIA and ITA.
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Sucocess rate

Number of measurements

Fig. 10.4 Success rate for MIA (red) and IIA (black) with error bars using 0 = 1

We used the kernel density estimation to estimate the required probability
densities. The parameters were chosen as recommended in previous publications
(see e.g., [3,24,38]). To be specific, the bandwidth was chosen according to normal
scale rule [31] and we used the normal kernel.

Moreover as suggested in [18], we highlight the standard deviation of the SR by
computing error bars. More precisely, since SR follows a binomial distribution for

multiple retries R with variance 4/ m, we obtain confidence intervals

[SR_ [SR(1 — SR) rt [SR(1 — SR)}
R R

that are drawn as error bars to provide a fair comparison.

Figure 10.4 shows the success rate with error bars for 0 = 1. One can see that
ITA reaches the threshold of the SR of 0.9 before MIA. The success rate for o = 4
is displayed in Fig. 10.5, which again highlights the same classification for MIA and
ITA. Interestingly, one can see that the difference between MIA and IIA is smaller
for low SNR than for high SNR. Thus, the empirical results confirm our theoretical
results and mathematical study made in the previous sections.
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Fig. 10.5 Success rate for MIA (red) and IIA (black) with error bars using 0 = 4

10.7 Comparing Side-Channel Distinguishers

10.7.1 Existing Evaluation Metrics
10.7.1.1 Comparing Empirical Distinguishers

The success rate (SR) is a classical evaluation metric when comparing empirical
side-channel distinguishers Z,,(K). In most publications, SR is derived empirically
as defined in Definition 10.6 (e.g. in [8, 18, 19]). Moreover, in [34] the authors
tackled the essential question how to compare two implementations? or how to
compare two side-channel adversaries? by presenting an empirical framework
including the empirical success rate.

Definition 10.6 (Empirical success rate). Letk = arg max D (K) denote the key
k

guess maximizing the experimental distinguisher @m (K) for one experiment and let
k = [ky, ..., k,] define a vector of key guesses of r independent experiments. Then
the empirical success rate is defined as

— . 1 —
SR(Zy) = - Z Lperj (10.85)

i=1
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Even if the empirical success rate directly describes the practical outcome of a
distinguisher, the given feedback is very limited. In particular, it only outputs the
average probability of success without revealing influencing factors or quantifying
how close the outcome of the correct key to its rivals is.

Apart from comparing the empirical SR, contributions tackled the questions on
determining the theoretical success rate of distinguishers:

Definition 10.7 (Theoretical success rate). The theoretical success rate is
defined as

SR(Dy) = P(@m(x; Y(k*) > Du(X:Y(k)) (Vk # k*)) (10.86)
- P(Am(k*,k) >0 (Vk # k*)). (10.87)

In [27] Rivain determined the theoretical® SR for CPA and Bayesian attacks.
Recently in [9], Fei et al. provided a closed-form expression for the theoretical
success rate of DPA. Interestingly, their approach consists in estimating the
theoretical success rate depending on the relationship between the correct and
incorrect key hypothesis (named as confusion), the number of measurements
and the SNR. Following this approach, Thillard et al. [37] extended the idea of
confusion coefficients to the general case and reformulated the theoretical success
rate of [27]. Thus, it is possible to determine the success rate without the need of
measurements or simulations. Even more, the influencing factors of the success
rate as the number of measurements, SNR and the confusion due to the leakage
model are determinable. Unfortunately, the computation of the closed-form is not
straightforward as mentioned in [27] and it again gives no quantification of the
goodness of the distinguisher. Further, up to now only closed-forms for DPA and
CPA exists.

10.7.1.2 Comparing Theoretical Distinguishers

A different approach to classify the efficiency of side-channel distinguishers has
been presented in [41]. The authors aim at characterizing the behavior of theoretic
distinguishers D(K) instead of %,,(K). Thus, the distinguisher is provided with
full information about the leakage distribution without the need of estimation. The
framework overall consists in six metrics, however, the most common metric is the
relative distinguishing margin (RDM) that has been used as a reference in [40,42]7:

%In [27] the term exact instead of theoretical is used.

"Note that, in some publications, the relative distinguishing margin is also called nearest-rival
distinguishing score.
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Definition 10.8 (Relative distinguishing margin [41]). Let D(k*) be the theoret-
ical distinguishing value of the correct key and D (k) the theoretical distinguishing
value of any incorrect key hypotheses, then the relative distinguishing margin RDM
is defined as

AN - N B 1) H0s8)
Var(D(K)) k#k* /Nar(D(K)) .

The RDM gives a quantified feedback about the margin between the correct
key D(k*) and its nearest rival, unfortunately, no link between the outcome of an
empirical and a theoretical distinguisher has been shown so far. Apart from this, the
denominator in Eq. (10.88) is highly dependent on the number of key hypothesis
used. For example, /Var(D(K)) with .# = F5 (8-bit key hypothesis) will be
smaller than for ¢ = IF‘z‘ (4-bit key hypothesis) and so RDM will be smaller for
smaller key spaces than vice versa, which does not seem intuitive and we prove in
Sect. 10.8.2 the contrary. Thus, it is not possible to make reasonable comparisons
between different cryptographic algorithms or implementations.

10.7.2 A Novel Approach to Compare Distinguishers

As pointed out above, both state-of-the art approaches, the SR and the RDM,
have significant drawbacks, which shows the need of a new metric. Our aim is to
develop a novel metric that on the one hand coincides with the empirical outcome of
distinguishers, like the SR, but on the other hand gives more quantified feedback as
the RDM. Our new metric, called success metric, captures the relevant parameters
of the theoretical success rate. We provide all necessary approximations from the
theoretical success rate to the success metric. In particular, we first define the failure
rate as the contrary to the success rate to apply the union bound. Following, we
give two different approximations identifying the same relevant influencing factors
with different convergence rate and, finally, we utilize a first order approximation to
achieve the success metric in Definition 10.11.

10.7.2.1 Theoretical Foundation

Complementary to the theoretical success rate (see Definition 10.86) we define:

Definition 10.9 (Failure rate). The failure rate is defined as

FR(Dn) = 1 — SR(Dy) = P(3k # k* | An(k) <0). (10.89)
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We first use the union bound (Boole’s inequality) to achieve an upper bound of
the failure rate:

P(3k #k* [ An(k) <0) < Y P(An(k) <0). (10.90)
k#k*

Next, we give two different approximations that both indicate the same properties
but with different convergence rates and pre consumptions.

Definition 10.10. Let X ~ .47(0, 1). The Q-function is defined as

0(x) = 1 /OO e (10.91)
2w J,
=P(X > x). (10.92)

Under the assumption of Aim(k*,k) ~ N(AKk*, k),EV(k*,k)) we use the
Q-function to approximate P (A,,(k*. k) <0) ,i.e.,

P(An(k* k) < 0) (10.93)
An(k* k) —E(An(k*.K)) _ (A" k) + EB(k*.k))

VEV(&*. k) - VEV(&*. k)

A(k* k) + EB(k*. k)
VEV(E&*, k)

since Q(x) = 1 — Q(—x). Accordingly, if EB(k*, k) is small with respect to
A(k*, k), we have

=}P>(

) (10.94)

= 0( ). (10.95)

P(An(k*, k) <0) —> 0 (10.96)
exponentially as

A(k*, k) + EB(k*. k)

VEV(E&*. k)

increases for large m. We recall the Chebyshev bound [36]: Let p > 0, then

(10.97)

Var(X)
P2

P(X > E(X) + p) = P(IX —E(X)| > p) < (10.98)
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Accordingly, we achieve

FR = P(A,,(k*.k) < 0) (10.99)
= P(An(k* k) < E{A,(k* k)} —A(k* k) — EB(K*, k)) (10.100)

—p

_ EV(k*, k)
= (EB(k*.k) + A(k*. k)2

(10.101)

EV (k™ k)
As p—> 0 the term m

Note that, a similar usage of the Chernov bound [6] allows to prove expo-
nentially convergence. Further, since we achieved exponentially convergence of
P(A,(k*, k) < 0) against 0, we use the following first order approximation

—> 0 exponentially.

> P(An(k* k) <0) ~ max P(A,(k*, k) < 0). (10.102)
k*#£k

Concluding, using the relationship between success and failure rate, we define
the success metric as

Definition 10.11 (Success Metric (SM)).

SM(D. 5, — min AK"-0) + EBG". )
kA JEV(K®, k)

= min E{An (K7, K)} . (10.104)

KEE IVar(An (k*, k)

(10.103)

Interestingly, the success metric includes the minimum distance between the
correct key and its nearest-rival as the RDM, however, it is, of course, based on the
estimated distinguisher and thus includes the variance of the estimated difference
A, (k*, k) in the denominator.

Remark 10.1. From Sect. 10.7.2.1 one can see that SR can be approximated from
SM. More precisely,

1
SR =1 —exp (—ESMZ) , (10.105)

so SM is the first order exponent of SR regarding the following definition of
equivalence [7, page 63, Eqn. (3.76)]:
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Definition 10.12. The notation a,, = b,, means that

|
lim — log Z—’" —0. (10.106)

m—oom m

Thus, a,, = b,, implies that a,, and b,, are equal fo the first order in the exponent.

As the success rate, the success metric can be derived empirically from simu-
lations/ measurements or theoretically from closed-form expressions. In the next
subsection we develop closed-form expressions for additive distinguisher (e.g.,
DPA, CPA). Even more, in Sect. 10.7.4 we derive a closed-form expression of the
information theoretic distinguisher MIA for the success metric, which has not be
done for any metric so far and cannot be straightforwardly extended to the success
rate.

10.7.3 Closed-Form Expression for Additive Distinguishers

Qeﬁnition 10.13 (Additive distinguisher). We call an estimated distinguisher
D (k) additive if it is unbiased (i.e., EB(k*, k) = 0) and takes the form

k) = 30 FX Vi(k)), (10.107)

i=1

where @(X i, Yi(k)) is a deterministic function of the i.i.d. sequence (X;,Y;(k))
and, therefore

E{ D (k)} = D(k). (10.108)

Remark 10.2. This definition implicitly assumes that the distribution of Y (k) is
identical for all k € J#. In other words, knowing the distribution of Y (k) does
not give any evidence about the secret (see [14,25] for similar assumptions). Thus,
Var{Y (k)} is constant for all k € £ . Furthermore, without loss of generality we
assume that the sensitive variable Y is normalized such that E{Y(k)} = 0 and
Var{Y(k)} = E{Y(k)?} = 1.

PAroposition 10.9. Considering Remark 10.2 one can simplify both .@m ppa [16] and
Ducea [4] to

1 ZX,-Y,-(k). (10.109)
m

i=1

Proo]i A proof for .@meA is given in the following. As formalized in [8] .@m DPA
and 9,,,cpa can be directly translated into each other. Recall the definition of CPA:
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Ly (X = X)(Yi(k) — Y (k))

Imcralk) = — —,  (10.110)
Vi T (G =T L S (k) — V()2
where
=ii m=ii¥(k) (10.111)
m — m — e ’

Due to Remark 10.2, (for large m) we have Y(k) = 0 and + Zl Yi(k) —

Y (k))? = 1. Straightforward computation yields Proposition 10.9 for D cea(k). For
more details on CPA (and side-channel distinguisher) we refer to [32,35]. O

To formulate a closed-form expression for the success metric for any additive
distinguisher, we extend the idea of confusion similar to [37], which we call general
2-way confusion coefficients.

Definition 10.14 (General 2-way confusion coefficients). For k # k* we define

k(k*. k) =E

* 2
(w) , (10.112)

2

K (k*, k) = (10.113)

2

Y2 (w)z} ,

Remark 10.3. The confusion coefficient introduced in [37] is defined as
k°(k*, k) = E{Y(k*)Y(k)} and we obtain the following relationship

K (k* k) = 1 — 2c(k*, k). (10.114)

Note that, our definition is consistent and a natural extension of the work in [9]. We
now precise our side-channel model from Eqs. (10.1) and (10.2) in case of additive
distinguishers. As these distinguishers are most usually used when the leakage X is
linearly depend on Y *, we assume X = aY* + N3

Proposition 10.10 (SM for CPA). Let ¢ = 2. The success metric for any additive
distinguisher takes the closed-form expression

eic(k*, k)

D, .@m
SM( ) = k?ék* \/SZ(K/(k* k) — k2(k*, k)) + 402k (k*, k)

Jm.  (10.115)

Proof. We first give the following proposition.

8Note that, a similar model was also implicitly used in [9,37].
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Proposition 10.11. The first two moments of Am(k* . k) are given by

E{ A, (k*, k)} = 2ak(k*, k),
Var(A (k*, k)) = 4[o? (' (k*, k) — 2 (k*, k) + ok (k*, k)].
Proof. Recall
Am(k* . k) = (@Y (k*) + N)(Y (k*) — Y(k)).
Since E{Y (k*)%} = 1 (see Remark 10.2), we obtain
E{Y (k") (Y (k™) = Y(k)} = 1 —E{Y (k") Y (k)}

k*)—Y(k
_ MDY,

= 2k (k™*, k).
Because N is independent of Y (k),
E{N - (Y(k*) = Y(k))} = E{N} - E{Y (k™) — Y (k)} = 0.
Therefore we obtain
E{ A, (k*, k)Y = 2ak(k*, k).
For the variance we obtain
E{A,(k* k)*} = E{(XY* — XY)?}

= E{N*(Y* - Y)*} + ’E{Y**(Y** - Y)%}
= 4o’k (k*, k) + o4k’ (k* k),

since all cross terms with N vanish. Hence, we have

Var(4, (k*, k) = E{A, (k* . k)*} — B{ A, (k* k)Y
= 4[a? (k' (k*, k) — k(K™ k) + o2k (k*, k).

215

(10.116)
(10.117)

(10.118)

(10.119)

(10.120)

(10.121)

(10.122)

(10.123)
(10.124)
(10.125)

(10.126)
(10.127)

|

Plugging Proposition 10.11 into the success metric given in Eq.(10.103) and
considering the normalizing factor of the variance +/m (see Eq.(10.107)) directly

derives Proposition 10.10.

|
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For DPA with one-bit variables Y (k) we can further simplify the success metric
such that it can be expressed directly through the SNR, number of measurements
and 2-way confusion coefficient « (k*, k):

Proposition 10.12 (SM for 1-bit DPA). Let ¢ = 2a, Y a one-bit variable (e.g.,
Y e {x1}) and @, (k) an additive distinguisher, then

Jm

SM(D, %)) = — , (10.128)
1=k (k* k) 1
\/,?Ef* c&* k) T kT ISR
with SNR = % = :“;—z, since ¢ = 2a is the difference between X when

Y=1andY = —1.
Proof. When Y (k) Vk € J¢ is a one-bit variable, we achieve the following

simplification:

Y(k*) Y (k)
2

Y(k*) — Y(k)

K (k*, k) = E{( :

)%y = By (k*)*( )y = k' (k*. k).

(10.129)

From this, Proposition 10.12 follows directly. O

Remark 10.4. Estimating the success rate from confusion coefficients includes a
computation of a multivariate normal cumulative distribution function [26] for
which (contrary as stated in [9]) no closed-form expression exists. Moreover, we
discovered that the calculated covariance matrices’ that directly depend on the
confusion coefficients are not of full rank. This effect was similarly discovered for
CPA by Rivain in [27], where the author propose to use Monte-Carlo simulation to
overcome this problem.

According to Remark 10.4, we stress that the computation of the success
metric as a closed-form expression is more convenient than using the closed-form
expression for the success rate for DPA and CPA, since only 2-way confusion
coefficients (k (k*, k), k' (k*, k)) without multivariate distributions are involved.

Additionally, with the help of x (k*, k) we can give a closed-form expression for
RDM (see Eq. (10.88)) for any additive distinguisher:

Proposition 10.13. For additive distinguisher the RDM(D) can be simplified as

ink(k*, k
}glélkg/c( )

VVar(k (k*, K))

RDM(D) = (10.130)

*Namely [k (k™. i, )] jyeniop and e (k™*, 1) X . (K™, )]G jen\to3-
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Proof Sketch: As the RDM takes as a input the theoretical value of a distinguisher D,
k(k*, k) directly describes the difference between D(k*) and D(k) for any k € K.
Thus, Prop. 10.13 directly follows. O

The comparison of the closed-form expressions of RDM in Eq. (10.130) and SM
in Eq. (10.115) again highlights the different aspects of both metrics.

10.7.4 Closed-Form Expression for Mutual
Information Analysis

Definition 10.15. The Mutual Information Analysis distinguisher (MIA) [11]
between a continuous variable X and a discrete variable Y is defined by

I(X:Y) = H(X) — HX|Y), (10.131)

where H(X) = — ffzo f(x) - log f(x)dx is the (differential) entropy of X and

HX|Y) =3 p(y)-HX|Y =y) ==Y, p(y) [Zo, f(x]y)-log f(x|y)dx is
the conditional entropy of X knowing Y.

In practice, I(X;Y) has to be estimated, while unlike for CPA or DPA the
estimation of MIA is a nontrivial problem. For a detailed evaluation of estimation
methods of mutual information distinguishers we refer to [38]. In the following,
we consider the estimation with histograms in order to formulate a closed-form
expression. To estimate MIA with histograms (H-MIA), one has to partition the
leakage X into & distinct bins b; of width Ax withi = 1,..., h. Note again that, Y
is already discrete.

Definition 10.16. Let p(x) = #Wb" with x falling into bin b; and let p(x|y) be the
estimated probability knowing ¥ = y, then

Ln(X:Y) == p(x)log p(x) + Y _ p(») D p(x|y)log p(x]y). ~ (10.132)
X y X

For simplification, we consider in the following only the negative conditional
entropy —H (X|Y) as a distinguisher, since H (X) does not depend on a key
hypothesis. Additionally, we reasonably assume that the distribution of Y is know
to the attacker and thus we use p(y) instead of p(y). So, H-MIA simplifies to

H-MIAX.Y) = > p(y) Y p(x|y)log p(x|y) + log Ax. (10.133)
y X

Note that, since we estimate the differential entropy the additional term log Ax
arises, which is eliminated in Eq. (10.132). For more information on differential
entropy and mutual information we refer to [7].
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First, we develop a closed-form expression for EB{Am (k*,k)}: Since Y is
discrete the bias only arise due to the discretization of X and the limited number of
measurements . Thus, we utilize the approximations given for the bias of H (X)
in [20] (3.14) to calculate E{Z,,(k)} and E{Am (k*, k)} for H-MIA. To be specific,
let & define the number of bins and Ax their width, then

E{m(k)} = —E{H (X|Y)} = =Y p(ME{H(X|Y =y)}.  (10.134)
y

Ax? h—1

X

(10.135)

~ A 2
E{A, (. K)y ~ Y pI[H(XY = y) + S-J(XIY = )]
y

A 2
= (X pOMHEY" =y + Sax Iyt = M),
' (10.136)

with J(X1|Y) = Zy pMJ(X|Y = y)and J(X|Y = y) being the Fisher

d 2
information ffzo % dx [10].

Next, to calculate Var{ @m (k)} we use the law of total variance [15] (Eq. (10.137)
< Eq.(10.138)) and the approximations for the variance given in [20] (4.9) for
Eq.(10.138) = Eq.(10.139) and Eq. (10.140) = Eq. (10.141):

Var{9,,(k)} = Var{H (X |Y)}} = Var{E{H (X|Y = y)}} (10.137)
= Var{H (X)} — E{Var{H (X |Y = y)}} (10.138)

~ Var{H(X)} — % > p(y) Var{—log f(x|y)}  (10.139)
y

Var{ A, (k*, k)} = Var{E{H (X|Y = y}} — Var{E{H (X|Y* = y*}}

(10.140)
—2Cov(B{H (XY = y}}, E{H (X|Y* = y*}})
1
~ — ) p(y) Var{=log /(x|y)}
y
1 * *
+— ijp@ ) Var{—log /(x|y*)} (10.141)

—2Cov(E{H (X|Y = y}}.E{H(X|Y* = y*}})
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1
< (Z p(y) Var{—log f(x|y)}
+ 3 p(y*) Var{~log f(x]y")}) (10.142)
y

Using the closed-form expressions for EB{Am(k*,k)} and EV{Am(k*,k)}
we formulate the following proposition.

Proposition 10.14 (SM for H-MIA).
SM(D, %)

< min (AGK*.K) + 47 (J(X|Y) = J(X|Y "))

k*’ék\/z p(y) Var{— logf(xly)}+2 p(y*) Var(—log f(x|y*)}
(10.143)

with A(k*. k) = H(X|Y) — H(X|Y*), J(X|Y) = ¥, pO0)J(X|Y = y) while

J(X|Y = y) is the Fisher information foo % dx [10].

Interestingly, the SM of MIA involves the number of traces as the /m in the
nominator like DPA and CPA, which seems reasonable.

Remark 10.5. If N is normal distributed with variance o> we can further simplify

HX|Y* = y*) = %log(Zneoz) since p(x|y*) = pny(x — y*). Moreover,
JX|Y*=y)= # and Var{—log f(x|y*)} = 5-.

2m

Remark 10.6. Remarkably, the variance is approximately independent of the size
of Ax. Only in extreme cases like Ax = 1 and Ax — oo is affecting the variance.
Also see [20] for more information. Interestingly, all linear terms have disappeared
in the expression of the SM. The Eq. (10.145) is for instance empirically evaluated
in [1].

10.8 Features of SM Expressions

10.8.1 Linking the Success to Properties of the Sbox

All previous studies about the relationship between the sbox properties and side-
channel analysis considered the direct link between a metric on a distinguisher
itself and the sbox. In [12], Guilley et al. use as a metric the maximal value of the
distinguisher divided by its standard deviation (SNR). The authors demonstrate that
for DPA the SNR is lower bounded by quantities that are expected to be large for
sboxes resisting against linear differential cryptanalyses. Prouff introduces in [22],
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an alternative metric for CPA, called the transparency order, that is defined as the
difference between the maximal value of CPA and the average of all rivals. Besides,
the power model is not the Hamming weight, but the Hamming distance; however,
strangely enough, the sensitive variable is not the Hamming distance, but instead the
average of the initial state which is exclusive-ored with all possible final states. This
leakage model is, to our best knowledge, rather unusual in practice. In both previous
works the relationship is only stated as an expected outcome but not proven. The
results have been further investigated by Carlet in [5].

In the following, we not only bound but directly link the success metric and the
sbox in case of low SNR (practical conditions). As DPA is a special case of CPA, we
further concentrate on the closed-form expression of CPA and simplify Eq. (10.115)
when o > «. More precisely,

A 4ok (k*, k)m
SM(D, 2,,) ~ mi _— 10.144
(0. Zn) ~ min \ o2k (k> k) ( )

= ‘/SNR‘%&@ Vi(k*, k). (10.145)

From Eq.(10.112), k(k*,k*) = 0 and k(k*, k) > 0, thus the argument of the
square root in Eq.(10.145) is always positive. Besides, by the Cauchy-Schwarz
theorem, we also have that «(k*,k) < 1. Now, the objective to minimizing
ming 4+ \/k(k*, k) (i.e., making side-channel attacks as hard as possible) is
tantamount to maximizing maxy,+ E(Y(k*)Y(k)). In the following, we assume
that Y* and Y explicitly depend on an sbox (or inverse sbox) and a Hamming
weight (wy) leakage model'® as for example wy (Sbox[T @ k]), so Y(k) =
27 Lim (DTN = = Qwy (S(T @ k) —n) and

BYEOYR)} = 1 30 LY (nySeekiesen (10.146)

i,j=0 tER;

As Va € {0,1},(—1)* = 1 — 2a, the goal to make CPA difficult is to minimize the
following quantity, that we call the transparency metric

n
i Si(t®k* Si(t k). 10.147
min 30 > St @k @ S &k (10.147)
i,j=01€F}
Remark 10.7. Note that, for single-bit attacks (n = 1), the criteria of Eq. (10.147)
simplifies to the one-sided criteria discovered in [13].

190ne can easily extend the calculation also for the Hamming distance model.
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So, minimizing the objective on the sbox in Eq.(10.147) is equivalent to min-
imizing ming,* k(k*, k), which can be understood intuitively on the illustration
of Fig. 10.6. The key corresponding to the nearest rival, i.e., argminy .« k€ (k*, k),
shall have a confusion coefficient as high as possible.

To further illustrate the transparency metric and show the relationship to the
transparency order [22], we use the same three sboxes as in [13]: Let & and ©
be respectively the inner addition and multiplication of the Galois field s of 256
elements, then the sboxes are given by

1. A “bad” Sbox][], termed S, of equation y > a © y & b,
2. An “average” Sbox|[-], termed Sjo;, of equation y > a © y'"' @ b,
3. A “good” Sbox[], termed S»s4 and used in AES, of equation y > a © y>** @ b.

Figure 10.7 displays the confusion coefficient for Sy, Sj9; and S»s4. One can see, that
the minimal ming = k (k*, k) is achieved by S, which is the hardest to attack with

Sk=k*®k
0 T 1T 1T T 1T 7 T T 1T T T 1T 1T 1T 1T 171 71"
o oo o i ecNeoNeoNel
XXX X XXX X
o o oo Hh Hh Hh
o~ N W Q Q O Hh

JBALL JSOIBIN] —

Fig. 10.6 Illustration of the confusion coefficients for CPA

S-box Power 1 S-box Power 101 AES S-box

Key Hypothesis k Key Hypothesis k Key Hypothesis k

Contfusion Coefficient x(k)
Confusion Coefficient »(k)
Confusion Coefficient »(k)

Fig. 10.7 Confusion coefficients for Sy, Sio; and Sys4 (courtesy of [13])
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Table 10.1 Comparison Transparency |Transparency metric

of side-channel metrics order [22] (Eq. (10.147))
for sb o
or sboxes Sy 5.84 7,424

Sio1 | 7.50 7,936

Sasa | 7.86 8,000

CPA, whereas S»s4 has the highest min .+ k (k*, k) being the most vulnerable.
Table 10.1 displays the transparency metric and order. The transparency metric
is different from the transparency order, nonetheless, it remains consistent with
it, meaning that the order of S;, Sj9; and Sys4 is the same for both metrics and
consistent with the rating through « (k*, k).

10.8.2 How Does the Size of the Key Space Influence
the SM/SR?

Hardware devices are known to leak approximately in Hamming distance. This
makes leakage models complicated, because they involve two consecutive states
of the cipher. Let us consider the example of an AES-128 computed one round per
clock period. The plaintext is P, the cipher C, and the first (resp. last) round key
K' (resp. K').

On the one hand, the uncentered and non-normalized leakage model at the first
round for the byte at position 0 is:

YNT,KY =wu(To®02-S(Ty ® K}) ® 01 - S(Ts ® K1) (10.148)
®01-S(Tio® K|) ®03-S(Tis®Kj5) , (10.149)

where 01, 02 and 03 are the MixColumns constants, and S is the SubBytes
operation. Clearly, a guess for this model requires an hypothesis on 4 bytes of the
key K.

On the other hand, the uncentered and non-normalized leakage model at the last
round for the byte at position 0 is:

Y'C, K" = wy (Co® S™H(Co® K}Y)) (10.150)

where S™! is the InvSubBytes operation. So, a guess for the model requires
simply one hypothesis on a key byte (namely K°). This is due to the absence of
MixColumns at the last round.

The transparency order (resp. metric) of InvSubBytes is 7.85 (resp. 7,964),
meaning that it is very close to that of SubBytes. So, the confusion coefficient
associated to Y' and to Y!° have similar distributions, meaning that the data
complexity (the number of traces m) of the attack is similar at either end of the
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AES. Specifically, the minimal nonzero confusion coefficient for Y'! is 0.468750,
whereas it is 0.404297 for Y'°. The most crucial difference is the computational
complexity, owing to the largest key space to explore at the first round.

Acknowledgements Annelie Heuser is partly founded by the Google Doctoral European Fellow-
ship in the field of privacy.
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