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Abstract. We consider lower and upper bounds on the difference of differential entropies of a
Gaussian random vector and an approximately Gaussian random vector after they are “smoothed”
by an arbitrarily distributed random vector of finite power. These bounds are important to establish
the optimality of the corner points in the capacity region of Gaussian interference channels. A
problematic issue in a previous attempt to establish these bounds was detected in 2004 and the
mentioned corner points have since been dubbed “the missing corner points”. The importance of
the given bounds comes from the fact that they induce Fano-type inequalities for the Gaussian
interference channel. Usual Fano inequalities are based on a communication requirement. In this
case, the new inequalities are derived from a non-disturbance constraint. The upper bound on the
difference of differential entropies is established by the data processing inequality (DPI). For the
lower bound, we do not have a complete proof, but we present an argument based on continuity and
the DPI.
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1. INTRODUCTION

The bounding problem we consider is motivated by the Gaussian interference channel.
To simplify the discussion we investigate a simpler version, the Z Gaussian interference
channel, where interference is restricted to only one direction. This model is depicted
in Fig. 1. The channel outputs are given by Y ′1 = X ′1 + Z′1 and Y ′2 = X ′2 + aX ′1 + Z′2,
where X ′1 and X ′2 are input (transmitter) signals constrained to have average powers Q1
and Q2, respectively, a is an interference gain in the interval (0,1), and Z′1 and Z′2 are
Gaussian noise variables of unit variance. The receivers are interested in messages sent
by their respective, same indexed, transmitters. Thus X ′1 encodes a message addressed to
receiver 1 and X ′2 conveys a message to receiver 2.

This model is a particular case of the general Gaussian interference channel, which
exhibits interference in both directions. Like in the general model, finding the channel
capacity region for arbitrary parameters has been an open problem for over 35 years. In
the case of strong interference, when a≥ 1, the capacity region is known [1, 2, 3]. In this
situation, the unintended receiver is sure to have the means to decode the interference.
Also, when a = 0, the problem has a trivial solution. The problem is open in the case of
weak interference, where the interference gain a satisfies 0 < a < 1.
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FIGURE 1. Z-Gaussian interference channel.

It can be shown that the capacity region of the Z Gaussian interference channel with
weak interference is identical to the capacity region of an equivalent degraded Gaussian
interference channel [4], a model shown in Fig. 2. For simplicity, we chose to use the
more common notation, without the primes, in this degraded channel, as this will be our
working model.

FIGURE 2. Degraded Gaussian interference channel.

Like the Z-Gaussian interference channel, the degraded Gaussian interference channel
is characterized by three parameters, namely the two powers P1 and P2, and the additional
independent noise in the second receiver, of power N2. These parameters are related to
the parameters of the original Z-channel by P1 = Q1, P2 = Q2/a2, and N2 = (1−a2)/a2.
Moreover, since 0 < a < 1, the additional noise power N2 is positive. This degraded
version of the interference channel is more amenable to evidentiate the effects of the
interference caused by X1 over Y2.
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2. PRELIMINARIES

The capacity of an additive white Gaussian noise channel Y = X +Z, with X constrained
to power P and Z distributed according to N (0,N), is well known to be C = 1

2 log2(1+
P/N) bits per transmission, or bits per dimension.

The degraded interference channel of Fig. 2 has outputs given by

Y1 = X1 +Z1

Y2 = X1 +Z1 +Z2 +X2
(1)

We use the usual notation of denoting vectors by boldface types and scalar random
variables by capital Roman types. H(.) is used to denote Shannon’s entropy and h(.)
denotes differential entropy. I(.; .) denotes mutual information.

One of the corner points of the capacity region of this channel is known as the
Sato point. Its coordinates are (R1,R2) = (1

2 log(1+P1),
1
2 log(1+ P2

1+P1+N2
)), the rate

pair produced when transmitter 1 occupies the channel at its maximum possible rate
and transmitter 2 takes up whatever is leftover, considering X1’s signal as noise. Sato
obtained this corner point by showing that it is also in the border of the capacity region
of the broadcast channel with power P = P1 +P2 [5].

The two corner points in the achievable region of the degraded Gaussian interference
channel are shown in Fig. 3. The Sato point is the star in the lower right.

FIGURE 3. Achievable rate region for degraded Gaussian interference channel.

The corner point in the other side of the capacity region (the upper left star), known
as the missing corner point [6], is produced when transmitter 2 takes up the channel
at its maximum possible rate and requires that transmitter 1 do not inflict a reduction
in its rate (R2) by more than an infinitesimal drop. The point coordinates are (R1,R2) =

(1
2 log(1+ P1

1+P2+N2
), 1

2 log(1+ P2
1+N2

)). Note that R1 is the capacity of a Gaussian channel
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with signal power P1 and noise power 1+P2 +N2, and R2 is the capacity of a channel
with signal power P2 and noise power 1+N2.

To establish that this is indeed a corner point in the capacity region of the degraded
channel we need to demonstrate that all communication between X1 and Y1 will have
to be fully decoded by Y2 as well, even if this is not a requirement of the interference
channel model. The difficulty in demonstrating this bound arises from a lack of a Fano
type inequality that requires the conditional equivocation of X1 given Y2, H(X1|Y2), to
be n times a small number ε that goes to zero as the probability of error of decoding X1
at Y2 goes to zero, where n is the code length. This Fano type inequality does not exist
because Y2 is not required to decode X1 in the interference channel model.

To produce a Fano type inequality that leads to the desired demonstration, we con-
sider the difference between H(X1|Y2) and H(X1|Y3), where Y3 is an auxiliary random
vector produced by the sum of X1 and an independent Gaussian noise vector of covari-
ance (1+N2 +P2)I, I being the identity matrix. This is the motivation for the title of
this paper. We need to bound the difference in the equivocation of X1 when it is seen at
Y2, a signal that is produced by X1 added to the almost Gaussian signal Z1 +Z2 +X2,
and when it seen at the output of a channel with X1 in the input and additive white
Gaussian noise of power (1+N2 +P2). To simplify the model we let Y3 be given by
Y3 = X1 +Z1 +Z2 +Z3, where Z3 is Gaussian with variance P2.

Consider scalar variables for a moment. By the chain rule we have

H(X1|Y2) = H(X1)+h(Y2|X1)−h(Y2) = H(X1)+h(Z1 +Z2 +X2)−h(Y2), (2)

and

H(X1|Y3) = H(X1)+h(Y3|X1)−h(Y3) = H(X1)+h(Z1 +Z2 +Z3)−h(Y3). (3)

Subtracting gives

H(X1|Y3)−H(X1|Y2) = h(Z1 +Z2 +Z3)−h(Z1 +Z2 +X2)+h(Y2)−h(Y3) (4)

Since the Gaussian distribution maximizes entropy given a power constraint, and from
the hypothesis related to the extreme point where R2 is maximal, we have that h(Z1 +
Z2 +Z3)−h(Z1 +Z2 +X2) is bounded below by zero and above by a diminishing ε1 [4]
(the almost Gaussian assumption).

Now we consider the vector version of (4). We have that

h(Y2)−h(Y3)≤ H(X1|Y3)−H(X1|Y2)≤ nε1 +h(Y2)−h(Y3) (5)

Therefore to bound the difference of equivocations we need to bound the difference
between the differential entropies of Y2 and Y3. The first attempt to bound this difference
[4, Appendix B] used Pinsker inequality [7], but the achieved bound had a dependence
on n that grew faster than linearly, as pointed out in [8]. In the sequel we consider lower
and upper bounds for this difference of differential entropies.

3. UPPER BOUND

In this Section we obtain an upper bound on h(Y3)−h(Y2). Since X2 needs to commu-
nicate with Y2, we have from Fano’s inequality that H(X2|Y2) ≤ nε2, where ε2 goes to
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zero as the probability of error disappears. Since X1 and X2 are independent, we observe
that

I(X1;Y2) = I(X1;Y2|X2)− I(X1;X2|Y2)

≥ I(X1;Y2|X2)−nε2

= H(X1)−H(X1|X1 +Z1 +Z2)−nε2

= I(X1;X1 +Z1 +Z2)−nε2

≥ I(X1;Y3)−nε2,

(6)

by the data processing inequality (DPI). Equivalently,

h(Y3)−h(Y2)≤ h(Y3|X1)−h(Y2|X1)+nε2

= h(Z1 +Z2 +Z3)−h(Z1 +Z2 +X2)+nε2

≤ n(ε1 + ε2),

(7)

by the almost Gaussian assumption.

4. LOWER BOUND

We now consider a lower bound for the difference h(Y3)− h(Y2). Let f denote the
probability density function of Z1 +Z2 +X2, the almost Gaussian density, and let g
denote the Gaussian density of Z1+Z2+Z3. We assume that the covariance matrices of
f and g are identical and that 0 ≤ h(g)− h( f ) = nε1. Then we can write the Kullback-
Leibler (KL) divergence of f from g as D( f‖g) = h(g)− h( f ) +

∫
(g− f ) logg =

h(g)−h( f )≤ nε1, using the assumption of equal covariance matrices.
Now we assume that X1 has density p, arbitrary except for the finite power, and

consider the effect of smoothing f and g by the addition of X1. Strictly, X1 may not
have a density as it is typically drawn from a finite set of codewords. We assume the
existence of p for ease of notation since Gaussian smoothing guarantees the existence of
all considered densities. We denote the convolution of g and p by g∗ p. By the DPI we
have that

0≤ D(g∗ p‖ f ∗ p)≤ D(g‖ f )≤
∫
( f −g) log f . (8)

Expanding as before we get

0≤ h( f ∗ p)−h(g∗ p)+
∫
( f ∗ p−g∗ p) log f ∗ p≤

∫
( f −g) log f , (9)

or
h( f ∗ p)−h(g∗ p)≤

∫
(g∗ p− f ∗ p) log f ∗ p+

∫
( f −g) log f . (10)

Equivalently

h(Y3)−h(Y2)≥
∫
( f ∗ p−g∗ p) log f ∗ p+

∫
(g− f ) log f . (11)
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This inequality is key to getting the desired lower bound. Since the second integral above
is strictly negative (cf. (8)) and by continuity of smoothing with increasing values of
variance, we argue that the first integral is positive. For the first integral to change sign
as a result of the “smoothing” by X1, it would have to equal zero for some density p.
At this point our argument is conjectural in nature as we do not have a proof of the
impossibility of the first integral being zero. We believe this would only happen if the
smoothed distributions, f ∗ p and g∗ p, were identical, a clear impossibility.

Fig. 4 shows extreme possible paths for the divergences between f and g before and
after smoothing by p. Note that

∫
(g− f ) logg= 0, by hypothesis, in one extreme (before

smoothing), and
∫
( f ∗ p−g∗ p) log( f ∗ p) is reduced to some arbitrarily small value in

the other extreme.

h(f) = -∫f log f 

�
h(g) = -∫g log g 

-∫f log g 

� �
-∫g log f 

h(Y3) = -∫g•p log g•p

�
-∫f•p log g•p

� �

-∫g•p log f•p

h(Y2) = -∫f•p log f• p 

D(f||g) D(g||f)

Smoothing by p:

FIGURE 4. Extreme relative positions of divergences between f and g, before and after smoothing
by p.

If we can circumvent this difficulty, we would obtain

h(Y3)−h(Y2)≥
∫
(g− f ) log f , (12)

a lower bound that does not depend on p. Now note that

0≤ D(g‖ f )+D( f‖g) =
∫
( f −g) log f . (13)

We argue that these two KL divergences approach zero at the same rate, based on their
variations with respect to f , as f approaches g, both of the same order. This is verified
simply by considering the variations of the two divergences with respect to f . Therefore∫
( f −g) log f ≤ 2nε1, and our lower bound for h(Y3)−h(Y2) is equal to −2nε1.
It is interesting to note, somewhat surprisingly, that the difference h(Y3)−h(Y2) can

be negative. This may happen if the arbitrary smoothing by X1 can somehow partially
compensate for the non-Gaussianity of f and make f ∗ p look more Gaussian than g∗ p.
This observation is in line with the interesting findings of Abbe and Zheng in [9].
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5. DISCUSSION

From (5), the argued lower and upper bounds on the difference of differential entropies
lead to lower and upper bounds on H(X1|Y3)−H(X1|Y2). This provides a Fano type
inequality that allows us to apply the lower bound on equivocation given in [4, Ap-
pendix C] to establish the legitimacy of the second corner point of the Z-Gaussian inter-
ference channel. This lower bound on equivocation is a consequence of the concavity of
the entropy power with increasing Gaussian smoothing.

In [10] Sason presents a detailed study of the corner points of the capacity region of
the two-user Gaussian interference channel. The present considerations are consistent
with his findings.

To whisper or to shout. One interesting observation of this result is that there seems
to be no way for X1 to communicate with Y1 without significantly disturbing the rate
of the second link other than by making its own signal understood at the unintended,
degraded output Y2. So, one may produce less inconvenience by shouting than by
whispering.
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