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I Outlook

= side-channel €= communication channel
= optimal distinguisher

= known model

= partially known model
‘= empirical Results

= what comes next!




I Votivation

= questions raised by the community
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‘» What dlstlngwshes known dlstlngmshers In termsof R
dlstlnctlve features’?

t leen a side-channel context what is the bestdlstlngwsher
| 'among all known ones?
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= question we would like to answer
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| leen a S|de channel scenario what IS the best dlstlngmsher |
| 'among all possible ones?




_ SCA as a communication channel

leakage input/output \ /secret key |
noise
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I Optimal distinguishing rule

= minimize the probability of error

P, = P{k # k*}

Theorem (Optimal distinguishing rule) The optimal distinguishing rule is
given by the maximum a posteriori probability (MAP) rule

D(x,t) = arg max (P{k} - p(x|t, k)) :

If the keys are assumed equiprobable, i.e. P{k} = 27, the equation reduces to
the maximum likelihood distinguishing rule

— Poet) ety - '%—/Templéte aftéck
| ﬁ - [Chari+2002]




N Optimal attack when the model is known

X = gO(f(T, k*)) + N

Proposition (Maximum likelihood) When f and ¢ are known to the at-
tacker such that Y (k) = p(f(k,T)), then the optimal decision becomes

D(x, t) = arg max (P{k} - p(x|y (k) .
and for equiprobable keys this reduces to

D(x,t) = arg max p(x|y(k)) .
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N Optimal Attack when the model is known

Proposition When the leakage arises from X = Y (k*) + N, then

p(xly(k)) = pn(x—y HpN (k) -

This expression depends only on the noise probability distribution pN.

e ——_—

= most publications considered Gaussian noise

= furthermore we investigate in uniform and Laplacian
noise




_ Gaussian noise distribution

Theorem (Optimal expression for Gaussian noise) When the noise is zero
mean Gaussian, N ~ N(0,0?), the optimal distinguishing rule is

Dol (x.t) = arg max <X!y(k)>[— %HY(’C)H%J
1

= the optimal attack is independent on o

= for large number of traces the last term becomes key-
independent but plays an important rule otherwise

= for large number of measurements the optimal

distinguisher approximates to the covariance and the
correlation '

= but not with the absolute value!
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I Uniform and Laplacian noise

Detinition (Noise distributions) Let N be a zero-mean variable with vari-
ance o® modeling the noise. Its distribution is:

1 B
e Uniform, N ~U(0,02) if px(n) = {%ﬁ for n € [=v/30,v/30]

0 otherwise .

e Laplacian, N ~ £(0,02) if py(n) = —t—e 7/¥2
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I Uniform and Laplacian noise

Theorem (Optimal expression for uniform and Laplacian noises) When
f and ¢ are known such that Y (k) = o(f(k,T)), and the leakage arises from
X =Y (k*) + N with N ~ U(0,0%) or N ~ £(0,0?%), then the optimal distin-
gquishing rule becomes

M,U

e Uniform noise distribution: D, ;" (x,t) = argmaxy —|x — y(k)||oc,
o Laplace noise distribution: Dom (x,t) = argmaxy —||x —y(k)|1.
L — . B

= novel distinguishing rules
= cannot be approximated by correlation or covariance




I Vodel known on a proportional scale

= Model only known on a proportional scale

X=aY(k*)+b+ N
where a and b are unknown and a,b € R
= One has to minimize ||x — ay (k) — b||2

Theorem (Correlation Power Analysis) Where N is zero-mean Gaussian,
the optimal distinguishing rule becomes

k= arg mlgn mibn |x —ay(k) — bH2 ,

which 1s equivalent to maximizing the absolute value of the empirical Pearson’s
coefficient:

Cov(x,y(k))

k = arg max |p(k)| = .
\/ Var(x) Var(y (k))

k
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I Mono-bit leakage model

= wlo.g. Y(k) ==+l
= then ||ly(k)||5 is equal to the number of measurements

M,G _ _ _ .
D, i bit)(x,t) = argmax (x|y(k)) = arg max Z T Z T; .
ilyi (k)=1 ilyi(k)=—1

e —

= not equivalent to the difference-of-means test [Kocher+1999]

M,G _ S —
Dy iy (x,t) = arg max Xi1 —X-1

= nor to the t-test improvement [Coron+2000]




I Model only partially known

= |eakage arising from a weighted sum of bits

X = Zaj F(T,k*)]; + N

T

= weights are unknown, epistemic noise is present

= assumption about the weights 4
= unknown EAE A i S G
. . < 2l \*\./"‘A N /
= normally distributed : ' !

= fixed over over one experiments/ &%+
over a set of traces




I Model only partially known

Theorem (Optimal expression when the model is partially unknown)
Let Ya(k) = 375, oy[f(T,k)]; and Y;(k) = [f(T,k)];. When assuming that
the weights are independently deviating normally from the Hamming weight
model, i.e., Vj € [1,8],a; ~ N (1,02), the optimal distinguishing rule is

Doyt (x,t) = arg max (y(x|y(k)) +1)" - (vZ(k) + )" - (v(x[y(k)) + 1)
— o2 Indet(vZ(k) + 1) ,

where v = Z—% is the epistemic to stochastic noise ratio (ESNR), (x|y) is the
vector with elements ((x|y(k))); = (x|y;(k)), Z(k) is the nxn Gram matriz with
entries Z; (k) = (y;(k)|y;/(k)), 1 is the all-one vector, and I is the identity
matrix.

= if ESNR is small we recover the distinguisher when the model
is known

= in contrast to linear regression the weights are not explicitly

estimated
TELECPI“:




I Enpirical evaluation: known model

= known model, only stochastic noise
X = HWI[Sbox|[T ® k*]] + N Y = HW/|Sbox|T & k]

= Compared distinguisher

D (x,t) =argmax (xly (k) — 5 |y (k)]3, (Euclidean norm)
Dé\ﬁ;i(x, t) =arg max x|y (k)), (Scalar product)
D(JJ\Z{;L(X, t) =arg max —lx = y(k)|1, (Manhattan norm)
D%@U(x, t) =arg max —||x = ¥(k)||co, (Uniform norm)
Dcou(x,t) =argmax [(x —X[y(k))], (Covariance)
Deopa(x,t) =arg max x - i|y(l<:)>— (CPA)

Ix =2 - [y (k) — ¥ ( )II




_ Gaussian noise
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I | aplacian noise
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I Uniform noise
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I Gaussian noise: partially unknown model

= stochastic scenario
Y, = |Sbox|T'® k||; for y =1,...,8
X =" a;Y;(k*)+ N
Qg ~ N(17 Ja)

= optimal distinguisher compared with Linear regression
attack (LRA)

)

— v (k) - B(k)|?
Dina(x.t) = argmax K=Y/ (®)-BE)3
k Ix — XI5

y'(k) = (1,y1(k), y2(k), ..., ys(k))




I Gaussian noise: partially unknown model
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I Gaussian noise: partially unknown model
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_ Conclusion

= Transformed the problem of SCA into a
communication theory problem to derive optimal
distinguisher in a given context

= known leakage model:

= Gaussian noise: optimal distinguisher close to CPA
for low SNR

= apart from Gaussian noise: optimal distinguisher
differ from any known distinguisher

= partially unknown leakage model: optimal distinguisher
performs better than LRA in the given context

———

j: A mathematical study should prévail In sidichnnel anal
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_ Future work

= Quantify the gain in terms of numbers of traces
required to break the key, in concrete setups
(feasibility OK on DPA contest v4).

= preliminary step to determine the underlying scenario
= application to higher-order attack (under submission)
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I Thank you!!

Questions?

to appear in CHES 2014, extendedpaper oneprlnt ]
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