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Abstract. Second-order side-channel attacks are used to break first-
order masking protections. A practical reason which often limits the
efficiency of second-order attacks is the temporal localisation of the leak-
ing samples. Several pairs of leakage samples must be combined which
means high computational power. For second-order attacks, the com-
putational complexity is quadratic. At CHES ’04, Waddle and Wagner
introduced attacks with complexity O(n log2 n) on traces collected from
a hardware cryptographic implementation, where n is the window size, by
working on traces auto-correlation. Nonetheless, the two samples must
belong to the same window which is (normally) not the case for software
implementations. In this article, we introduce preprocessing tools that
improve the efficiency of bi-variate attacks (while keeping a complexity of
O(n log2 n)), even if the two samples that leak are far away one from the
other (as in software). We put forward two main improvements. Firstly,
we introduce a method to avoid losing the phase information. Next, we
empirically notice that keeping the analysis in the frequency domain can
be beneficial for the attack. We apply these attacks in practice on real
measurements, publicly available under the DPA Contest v4, to evalu-
ate the proposed techniques. An attack using a window as large as 4000
points is able to reveal the key in only 3000 traces.
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1 Introduction

Side-Channel Attacks (SCA [1]) and corresponding protection techniques have
been a hot research topic for over a decade now. Data masking [6] is one of few
popular side-channel countermeasures, which motivates thorough investigations
of higher-order SCA as e.g., in [12,15]. The following study deals mainly with
second-order SCA which is used to break a first-order masking countermeasure. A
particular case of second-order SCA is when the two shares used by the masking
scheme are processed or leak simultaneously. In this case, Waddle and Wagner
introduced an attack at CHES ’04 [15], which consists in raising the traces to
the power two. Such an attack, a so-called zero-offset SCA, is commonly used
against hardware or parallel implementations. However, for software implemen-
tations, the two shares naturally leak at different dates or time samples. The
second-order attacks which combine two different time samples are termed bi-
variate SCA. The two different leakage samples are referred to as L(t0) and L(t1)
in the following. Despite bi-variate attacks may be powerful, a practical imple-
mentation might need a large amount of effort from the part of the attacker.
The main problem of bi-variate attacks is to find the exact temporal localization
(t0, t1) corresponding to leakages L(t0) and L(t1). Incidentally, depending on the
implementation, there might exist several such pairs.

To avoid finding the pair (t0, t1) explicitly, Waddle and Wagner introduced
a method called FFT-2DPA, which only requires to find a window in which both
leakages are included. More precisely, the attacker computes the auto-correlation
on this window, which combines the two leakages L(t0) and L(t1) multiplica-
tively. Thus, it is possible to utilize a regular zero-offset SCA on the auto-
correlation trace. The authors of [15] suggest, to compute the auto-correlation as
the inverse Fourier transform of the square modulus of the trace Fourier trans-
form of the window of size n. This way, the preprocessing time has O(n log2 n)
complexity, which is sub-quadratic.

Another category of second-order SCA are collision-based attacks. A par-
ticular case where collision attacks are efficient, is when the same mask is
reused for each substitution box (S-box) of the crypto-algorithm. There exist
two sub-categories of collision attacks: correlation-collision attacks and collision-
correlation attacks. If the unmasked input of the S-box is biased, then
correlation-collision attacks (see for instance [10]) can be applied. Otherwise,
collision-correlation attacks [2] are more suitable. However, when the masking
scheme does not reuse one mask to protect multiple unrelated sensitive variables,
collisions attacks in general are not appropriate.

Summing up, apart from FFT-2DPA, bi-variate attacks usually require the
knowledge of the samples L(t0) and L(t1). If the leakage models M0 and M1

corresponding to the leakages L(t0) and L(t1) are known, then the optimal strat-
egy consists in combining them with a centered product [12]. We denote this
attack as “2O-CPA”. Note that, if the leakage can be approximated, then a
linear-regression approach can mitigate the absence of accurate knowledge of
the models M0 and M1 [4].
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Fig. 1. Analyses on traces collected from the first round of a masked AES in software

Figure 1(a) shows the trace L of the beginning of an AES encryption on
a smartcard. We see about 3100 clock cycles (435000 time samples). It is not
possible to distinguish individual operations by visual inspection of the trace.

One way to identify the precise timing of individual operations, consists in
using a clone device, where the masks can be set to zero or are known. In this case,
several monovariate CPAs [1] can be computed to disclose the exact sample(s)
in which each operation leaks as illustrated in Fig. 1(b). Such an analysis seems
impossible, without the access to a clone device. However, without any informa-
tion on the masks, an attacker can compute the several moments or filter the
traces. Figure 1(c) plots the variance of the average of the traces computed over
each clock cycle. It clearly reveals the structure of one AES round: AddRound-
Key (16 identical operations), followed by SubBytes (16 identical operations),
ShiftRows (3 identical operations on rows — indeed, the first row is unchanged by
ShiftRows), MixColumns (4 identical operations on columns), and AddRound-
Key again (corresponding to the second round). The notations in Fig. 1 are as
follows: L0 and L1 (L0,L1 ⊂ L; L(t0) ∈ L0 and L(t1) ∈ L1) are the windows
in which the shares #0 and #1 are expected to leak (they correspond to the
so-called educated guesses coined by Oswald et al. [11]); n0 and n1 are the width
of windows L0 and L1, in terms of sample count. For the sake of simplicity, we
assume n0 = n1 = n. Typically, L has few hundreds of thousand samples (e.g.,
435000 in Fig. 1), whereas n0 and n1 may vary from a few hundreds to a couple
of thousands.

Our Contributions. In this paper, we propose five practical methods to make
2O-CPA attacks feasible on first-order masking schemes. All five proposed meth-
ods are generic in nature and need no knowledge of leaking time samples. The
common feature of our attacks is to turn a bivariate leakage into a monovariate
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leakage (thanks to a combination that creates a sum of weighted products), that
can be exploited by a classical zero-offset second-order attack. We base ourselves
in the role of an attacker, who has a rough estimate of the zones in L where the
leakages t0 and t1 are likely to be situated (that we call time intervals L0 and L1).
In particular, our preprocessing methods convert two leakage windows of size n
into a new window of size 2n or n, depending on the applied technique. Remark-
ably, these operations remain in complexity O(n log2 n), i.e., sub-quadratic. We
show that our methods allow faster attacks (in terms of number of queries for
the 2O-CPA to reach 80% success rate) than the generalization of FFT-2DPA
on two windows. This gain comes from two major factors:

1. The phase information is kept intact, and
2. The operation is performed in frequency domain.

As shown later, the leakage has a specific signature in terms of waveform shape,
and in our implementation, there are multiple occurrences in time of the leakage.
The representation in the frequency domain allows to regroup all these leakages,
that combine constructively because they share the same waveform. Thus, the
gain in terms of success rate is evident, since the signal is magnified at constant
noise. Besides, from a computational point of view, the attack still stays on a
linear number of points (n or 2n).

Outline of the Paper. The rest of the paper is organized as follows. Pre-
liminaries of tools related to time-frequency conversion are introduced in Sect. 2.
Section 3 describes the five proposed preprocessing techniques, using time-
frequency conversion tools. The attacks are then applied on a real masking imple-
mentation running on an 8-bit AVR smartcard (in Sect. 4). Section 5 provides
further insights into the proposed attacks and their standing as compared to the
state-of-the-art. Finally, conclusions and perspectives are drawn in Sect. 6.

2 Tools for Time-Frequency Analysis

This section provides a short background on common tools used in time-frequency
analysis, which are then used in the proposed attacks in Sect. 3.

2.1 Discrete Fourier Transform

Definition 1 (DFT). The discrete Fourier transform of a sequence Y ∈ R
n is

another sequence DFT [Y ] ∈ C
n such as

DFT [Y ] (f) =
1√
n

n−1∑

t=0

Y (t) · exp (−2πıft/n) ,

where ı is one of the (square) roots of 1 in C that is different from ±1.
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Property 1 (Inverse DFT). The DFT can be inversed with the inverse DFT such
that IDFT [DFT [Y ]] = Y , where IDFT [Z] (t) = 1√

n

∑n−1
f=0 Z(f) · exp (+2πıft/n).

Definition 2 (Cross-correlation). The (circular) cross-correlation of two dis-
crete sequences X and Y of n samples is defined by

(X � Y )(t) =
n−1∑

t′=0

X(t′) · Y (t′ + t mod n).

Theorem 1 (Cross-correlation theorem). Again let X and Y be two dis-
crete sequences of n samples in time domain, then

(X � Y )(t) =
√

n · IDFT
[
DFT [X] · DFT [Y ]

]
,

where · denotes complex conjugation.

2.2 Discrete Hartley Transform

The application of a DFT on a sequence of real numbers results in a sequence
of complex numbers. The discrete Hartley transform [7] (DHT) was proposed
as a real-valued alternative to the DFT as DHT multiplies each real input by
cos + sin instead of cos −ı sin as in DFT:

Definition 3 (DHT). The discrete Hartley transform of a sequence Y ∈ R
n

is another sequence DHT [Y ] ∈ R
n such as:

DHT [Y ] (f) =
1√
n

n−1∑

t=0

Y (t) · (cos (2π ft/n) + sin (2π ft/n)) .

Property 2 (Link between Fourier and Hartley transforms). The DHT of the
temporal signal Y can be obtained from the DFT by:

DHT [Y ] (f) = �eDFT [Y ] (f) − �DFT [Y ] (f).

Reciprocally, the DFT of the signal Y can be computed from the DHT with the
formula:

DFT [Y ] (f) =
1
2 (DHT [Y ] (f) + DHT [Y ] (−f)) − ı

2 (DHT [Y ] (f) − DHT [Y ] (−f)) .

Property 3 (DHT Involution). The DHT is its own inverse;
∀Y ∈ R

n,DHT [DHT [Y ]] = Y . The proof is given in [7].

As such, the DHT avoids two computationally undesirable characteristics of
the DFT:

1. the inverse DHT is identical with the direct transform — it is not necessary
to keep track of +ı and −ı versions;

2. more importantly, the DHT has real rather than complex values. As a con-
sequence, in a 2O-CPA, the computation of the correlation coefficient can be
done in the frequency spectrum without any loss of information.
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2.3 Fast Fourier Transform

The DFT (resp. IDFT) is directly obtainable from the FFT (resp. IFFT), that
runs in O(n log2 n) complexity [5]. The computational complexity of DHT is
also O(n log2 n), as it is simply obtained as the difference between the real and
imaginary parts of the FFT.

3 New Second-Order Attacks with Time-Frequency
Preprocessing

3.1 Why Do We Need New Attacks?

In first-order masking implementations, it is expected that each mask is reused
(at least twice). Unfortunately, as shown in Fig. 1, the distance between two leak-
ages using the same mask can be about 100000 samples. Therefore, the attacker,
in practice, needs two distinct windows where the mask is reused, assuming for
the sake of simplicity both of size n. Since the exact temporal localization of t0
and t1 corresponding to the leakages L(t0) and L(t1) is unknown to the attacker,
he would have to mount

(
n
2

)
2O-CPAs, resulting in O(n2) complexity, which can

become impractical for large n.
Another method would be to apply the approach of FFT-2DPA. However, one

window in which L(t0) and L(t1) are included would be too large (e.g., 100000
time samples), therefore to overcome this problem we straightforwardly extend
the idea of Waddle and Wagner to the case of two distinct windows L0 and L1.
In particular, we consider two different approaches to treat L0 and L1. First, we
use the concatenation:

Definition 4 (auto-corr). Let us denote L01 as the concatenation in time of
L0 and L1. Then auto-corr = (L01 � L01) = IDFT

[
|DFT [L01]|2

]
.

Second, if the size of the windows, L0 and L1 have equal width (i.e., n0 =
n1 = n), the attacker can compute cross-correlation between L0 and L1, which
we call x-corr.

Definition 5 (x-corr). x-corr = (L0 � L1) = IDFT
[
DFT [L0] · DFT [L1]

]
.

Interestingly, both auto-corr and x-corr can be computed in a complexity
O(n log2 n), owing to the cross-correlation Theorem 1. Moreover, the preprocess-
ing stage turns a bi-variate leakage into a uni-variate leakage. Indeed, the expres-
sions auto-corr(t) and x-corr(t) contain the product L(t0)·L(t1), which is exploited
by a 2O-CPA. So, the optimal prediction function is the same as in any bi-variate
2O-CPA. Thus, after the preprocessing with either auto-corr or x-corr, an attacker
can simply perform a zero-offset SCA on the resultant trace to find the secret key.

However, we noticed two essential drawbacks when using the straightforward
extension from Waddle and Wagner:

– First of all, as the DFT of the signals are processed via a modulus (See e.g.,
Definition 4), the phase information is lost.
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– Second, returning in the timing domain is less efficient than staying in the
frequency domain: indeed, as will be seen with on our practical examples
(Sect. 4), the leaks in software usually feature many peaks in time domain,
that nonetheless have a common signature in frequency domain.

3.2 New Attacks in Frequency Domain

Based on the previous definitions and observations, we introduce 5 new pre-
processing methods, which intend to capture the leakage directly in frequency
domain without transferring it back into time domain. Similar as for auto-corr
and x-corr, we divide methods into two distinct classes. The first class consists
of so-called “one window” methods, which utilizes the concatenated window L01

from two individual windows L0 and L1 resulting in an output of 2n. The second
class of methods (“two windows” methods) are capable to combine two windows
of size n into a single window also of size n.

As analysis methods we use DFT and DHT (see Definition 3 in Sect. 2). The
four resultant preprocessing techniques are summarized in Table 1.

Table 1. Variants of considered preprocessing attacks

Function \ 〈name〉 DFT [·] DHT [·]
concat-〈name〉(f) |DFT [L01] |2 DHT [L01]

2

window-〈name〉(f) |DFT [L0] · DFT [L1] | DHT [L0] · DHT [L1]

In order to reveal the secret key an attacker applies a zero-offset CPA on the
output of these preprocessing techniques and the optimal prediction function
M01, which we specify in Sect. 4.

Additionally as a “heuristic” method, we consider the max-corr attack to cope
with a complex 2O-CPA (i.e., ρ( · , · ) ∈ C). More precisely,

max-corr = max(|ρ(�e(DFT [L01]),M01)|, |ρ(�m(DFT [L01]),M01)|).
Beware that the suffix “corr” in “max-corr” refers to the Pearson correlation
coefficient “ρ” of the high-order CPA, and not to any auto- or cross-correlation.

Concluding, in total we proposed five new methods of the same complexity
O(n log2 n) to mount second-order attacks on a first-order masking implementa-
tion. The described methods are applied on a real masked AES implementation
running on a smartcard in the following section.

4 Experimental Validation

4.1 Software Implementation of the Protected AES

To test our methods, we use the publicly available traces of DPA contest v4 [14],
which uses a low-cost masking protection applied on AES, called Rotating S-
box Masking (RSM). RSM is a first-order countermeasure in which the S-boxes
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F28 → F28 are (statically) precomputed. The same mask is XORed to one
plaintext byte (T ) and to some S-box output (corresponding to another plain-
text byte T ′). In this case, collision attacks might be applicable to the design.
However, we considered an attack based on the combination of two “heteroge-
neous” leakage models. The applicable (centered) leakage models are given by:
M0 = wH(T ⊕ M) − 4 and M1 = wH(Sbox[T ′ ⊕ K] ⊕ M) − 4, where T , T ′, K
are respectively two bytes of the plaintext and one byte of the key, and where
wH( · ) is the Hamming weight function. Thus, the prediction function M01 for
all our preprocessing methods is given by M01 = E[(M0 · M1)|T, T ′,K].

4.2 Leakage Detection

In the following we ensure that both leakage models M0 and M1 are suitable for
our evaluation. We first perform a CPA on the traces, assuming the mask to be
a known quantity in order to identify the most leaking points and to verify our
assumed leakage models. The prediction functions knowing the mask are simply:
Mm

0 = E[M0|T,M ] and Mm
1 = E[M1|T ′,K,M ].

Figure 2(a) shows the correlation between the leakage L0 and the model Mm
0

using 10000 measurements. We additionally marked the time instants when the
correct key takes the highest correlation (i.e., k∗ = max

k
ρ(L1,Mm

1 )), which

amounts in 433 time instants over the window of 6000 points. Figure 2(b) shows
the correlations using Mm

1 , where in 94 time instants the correct key takes
the highest correlation, moreover, these instants are less spread than for the
XOR operation. Further, Fig. 3 shows the mean consumption of each class of the
highest correlation peak around the time instant ≈3000. One can clearly detect
that the classification according to Mm

0 (resp. Mm
1 ) is reasonable. We therefore

maintain our models M0 and M1 capturing the XOR and the Sbox[·] operation.
The average number of traces to break the key using Mm

1 is about 15 (very low! )
for a success rate �80 %, as can be seen in Fig. 4(a).

4.3 Empirical Evaluation

First of all, we confirm that a direct application of a 1O-CPA (Brier et al. [1])
using model M0 or M1 on the whole trace L does not allow to retrieve any
key byte using 100000 traces. No preprocessing was applied on the traces before
the attack. Then, we applied a bi-variate 2O-CPA by multiplying the two most
leaking samples for models Mm

0 and Mm
1 . The success rate is given in Fig. 4(b).

About 300 traces are sufficient to break the key with probability �80 %.
For our empirical evaluation we choose 3 different sets of window sizes n:

small n = {50, 200}, medium n = {500, 2000}, large n = {4000, 6000}. So, auto-
corr, concat-dft & concat-dht are calculated on a window of size 2n, whereas
x-corr, window-dft & window-dht utilize two windows each with size n. Since only
a fixed number of measurement traces (100000) are provided by the DPA contest
v4, we were restricted in the number of retries. More precisely, for small windows
we computed the success rate using up to 2000 traces and we were therefore able
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Fig. 4. Success rate of (a) univariate CPA attack on L(t1) knowing the mask and (b)
bi-variate 2O-CPA attack on L(t0) · L(t1) knowing (t0, t1) but ignoring the mask



Time-Frequency Analysis for Second-Order Attacks 117

Fig. 5. Success rate when using a small window size

to compute 100000/2000 = 50 retries, accordingly, for medium windows 25 retries,
and for large windows 10 retries were possible.

The success rate for a window of smaller size (n = 50 and n = 200) is shown
in Fig. 5. In both cases, auto-corr and x-corr are the most efficient preprocess-
ing methods, followed by the window-dht, concat-dft, and concat-dht, whereas
window-dft is not able to retrieve the correct key. This confirms that the pre-
processing of Waddle and Wagner is relevant when the time instants of the leak-
ages are well known a priori. However, we also note that for such small windows,
an exhaustive search of the interesting (t0, t1) is not deterrent (computationally
speaking), and would yield better success rates (recall Fig. 4(b)).

The efficiency of the attacks is changed when using a window of medium
size (see Fig. 6). The usage of x-corr seems only reasonable when the window
size is sufficiently small, whereas the efficiency of window-dft and concat-dht
increases when provided with more time instants. Interestingly, one can observe
that window-dht is more efficient when using a window size of 500 as x-corr with
smaller window size. This is an illustration that the attack manages to properly
combine constructively the plurality of leakage instants in the trace (recall the
multiple leakage peaks in Fig. 2(a) and (b)).

When increasing the window size up to n = 4000 and n = 6000 the difference
between window-dht, concat-dht, and concat-dft becomes greater. Remarkably,
even for large window sizes (two windows with each 6000 time instants), window-
dht is still able to efficiently reveal the secret key. It is about equivalent in terms
of efficiency with max-corr. Thus, this confirms that attacks remain very practical,
even though the attacker does not have a precise idea about the leakage location.

From Table 2, we can deduce that when the attacker knows the leakage sam-
ples, i.e., a small window size, x-corr is the best attack. Moving from small to
medium windows, window-dht proves to be the best attack. Finally, max-corr
seems to be the best attack for large window size. This means that max-corr is
well suited for practical cases because only a minimum assumption on the knowl-
edge of leakage samples is required, thus, the attacker is able to choose a large
window. As already underlined, another noteworthy observation from Table 2 is
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Fig. 6. Success rate when using a medium window size

Fig. 7. Success rate when using a large window size

that, x-corr takes more traces to disclose the key for a window of 200 points as
compared to window-dht for a window of 500 points.

5 Discussion

5.1 Benefits of the Proposed Attacks

Preprocessing Speed-up. Turning bi-variate into mono-variate leakage is
actually a matter of trade-off:

– the computational power is lowered while exploiting the traces (because the
research of (t0, t1) is skipped);

– at the expense of a greater noise in the estimation of the distinguisher (hence
more traces to guess the key), due to the inaccurate location of the leakages
in the window(s).

The use of our methods can be justified for software traces, that can be so
long (millions of samples) that a complexity in O(n2) is prohibitory. For instance,
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Table 2. Comparison of performance of proposed methods against attack efficiency.

Window size Best attack Number of traces for SR� 0.8

50 x-corr 450
200 x-corr 750
500 window-dht 550

window-dht
2000 550

max-corr
4000 max-corr 1950
6000 max-corr 3000

with window size n = 6000, the complexity of our preprocessing (in terms of
“multiplications” count) is roughly n log2 n ≈ 75300 or 0.0753×106, whereas an
exhaustive search of pairs (t0, t1) requires n(n−1)

2 ≈ 18 × 106 tries. So our attack
method is very light in computation time. Now, in terms of number of traces to
break the key, our method requires about 3000 traces instead of 300 knowing
the most leaking samples, which remains reasonable.

Resilience to Traces Desynchronization. Our techniques can withstand a
global desynchronization in the acquisition of the traces. It can happen that the
traces are offset one w.r.t. the others, due to the lack of a reliable synchronization
signal. It is already known that DFT based techniques (if the phase is ignored)
can work even in this case [8]. (We do not consider here countermeasures like
dummy cycles addition [3].) So concat-dft, window-dft and max-corr resist traces
disalignment.

5.2 Explanation of the Results: Why are Attacks in Frequency
Domain More Efficient when the Window Width is Large?

When the correlation is computed on auto-corr or x-corr signals, i.e., in the time
domain, the leakage L(t0)·L(t1) is “dissimulated” into the numerous other terms
L(t) · L(t′), for (t, t′) �= (t0, t1). Thus, when the window becomes too large, the
signal-to-noise ratio at each point of the auto-corr/x-corr becomes very small.
Of course, when the size of the window is small, it is possible to distinguish
efficiently.

On the contrary, we see from Fig. 8 that the leakage is well localized in a
few frequencies1. Those frequencies are around 20MHz, which corresponds to
the dynamic of the CMOS logic (see the duration of the bounces in Fig. 3: it is
about 25 samples, i.e., 50 ns). The clock frequency is equal to 3.57MHz, which is
much smaller. Interestingly, the leakage is not modulated by the periodic clock
signal.
1 Three or four frequencies are especially leaky, which is much less than the tens of

leakages dates in the time domain – cf. Fig. 2.
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Few peaks at ≈ 20 MHz

Fig. 8. Correlation coefficient on a 2O-CPA on concat-dft in frequency domain when
using n = 6000 and 10000 traces (we recall that the sampling rate is FS =
500 Msample/s)

When the window size n is large, the frequency resolution of the DFT or the
DHT is high, so it is more likely that the signal is decomposed close to the main
leaking frequencies (i.e., the 20MHz frequency value is well approximated in the
domain of the DFT/DHT — recall that frequencies are quantified, i.e., discrete
variables f ∈ FS/n × [[0, n − 1]], where FS is the sampling rate). Additionally,
there are many leaking samples in the timing window (recall Fig. 2), but the
Fourier transform manages to constructively sum them up.

5.3 Comparison with the State-of-the-Art

There are several existing methods to evaluate the resistance against second-
order attacks in the state-of-the-art. Among the most recent published methods
that can be applied to evaluate our masking scheme, we can consider a direct
2O-CPA with pointwise multiplication of L(t0) · L(t1) by using the detection
method proposed in [13]. As explained in Sect. 4.1, two heterogeneous leakage
variables that share information about the mask can be extracted from the
power traces. In our case these two leakages depend respectively on {T,M} and
{T ′,K,M}. Formally, in a fixed chosen plaintext scenario it is possible to identify
the leakage points by searching the couples of points that maximizes the quantity:
Î (L(t);L(t′)), where Î denotes the estimator of the mutual information.

This method, although more efficient than performing
(
n
2

)
2O-CPA, remains

of quadratic, i.e., O(n2), complexity. Besides, it cannot be applied directly to the
context of known plaintexts (random, not chosen) scenario. In [13], an extension
of this method is presented. It is possible to consider the couples of points that
maximize: Î (L(t);L(t′);M1), where M1 is a model of the leakage. This value
is high when the variation of the leakage depends on {T,M}. In our case (DPA
contest v4), the variation of the leakage also depends on another plaintext byte
T ′, thus this method will be less practical. This method could be extended by
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using: Î (L(t);L(t′);M0;M1). In this case, we have to consider a quadrivariate
mutual information analysis that is likely to be little efficient in the presence of
noise, and would require more traces to identify the leakage points. Our methods
(cf. Sect. 3.2) basically skip the detection step, and perform a direct 2O-CPA on
larger windows than in [15].

Among the state-of-the-art methods, Moradi and Mischke reported at CHES
’13 [9] a similar approach as [15], where the attack is performed in time basis
after point combination. In the case they report, the two leaking time samples
are close in time (a few tens of clock cycles), and the low-pass filtering of the
acquisition system mixes the two signals. The scenario of the attack is thus
the same. The difference is however that the “overlapping” of the two leaking
signals is done for free in Moradi and Mischke’s setup, whereas it is forced by
a preprocessing in our case. Indeed, in our masking scheme, the two sensitive
variables masked with the same mask M are not used consecutively.

6 Conclusions and Perspectives

We present five preprocessing techniques that turn a bi-variate attack into a
second-order zero-offset attack. Our technique applies even if the two leakage
samples to be combined are far from each other. Remarkably, the proposed
methods need only a rough estimate of the location of two windows (around t0
and t1), where the two leaks can be found purportedly. The regularity of encryp-
tion algorithms, such as the AES, facilitates the identification of the elementary
operations, like plaintext blinding and S-box calls.

In addition, we notice that our techniques have the potential to scale for
higher-order attacks. For instance, imagine d + 1 shares that are leaking at time
samples t0, t1, . . . , td. If the attacker is only able to know an approximate window
Li containing ti (i ∈ [[0, d]]), then window-dht becomes simply

∏d
i=0 DHT [Li].

The working factor of this dth-order CPA attack method is that this product,
once expanded, contains terms of the form

∏d
i=0 L(ti), which indeed combines

multiplicatively the leakage from all the shares.
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