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Abstract. This paper first presents joint source and channel coding in an
information theoretic manner, and precises what can be expected from such
an approach compared to a classical procedure. Then, we present the main
methods that have been already proposed for performing joint source and
channel coding and relate them to the general framework.

1 Introduction

Joint source and channel coding has attracted a lot of attention recently, after a few
years where only a small group of people were working hard on this topic. For people
first jumping in the field, the first impression can be somewhat awkward: what are these
people doing, if Shannon has shown the separation theorem? By the way, many people
remember Shannon’s work only vaguely. This is the first question we shall address: we
carefully explain the origin of the separation theorem, provide the source bound, as well
as the channel bound, and provide the optimum theoretically performance attainable
(OPTA) that can be obtained when sending a given source on a given channel. When
doing so, the expectations one can have when working jointly on source and channel
coding can be made explicit.

Then, we provide a generalized framework in which many recent approaches can be
stated. Finally, we give a comprehensive overview of the litterature on joint source and
channel coding, insisting on the common characteristics of the proposed approaches.

In summary, the purpose of this paper is to merge theoretical comprehension of the
problem together with the presentation of practical algorithms.

2 Information theoretic preliminaries

This section gives the basic information theoretic tools that are needed to fully un-
derstand the Shannon bounds in their various versions. In fact, it is quite common in
the channel coding field to check the performance of some proposed system against the
best, attainable performance. In source coding, even if one knows the existence of R(D)
curves, actual performances are seldom checked against bounds. Furthermore, it is less
known that the same kind of bound exists for the joint source/channel coding situation.
This point is clarified in this section.

2.1 Situation of interest

Deriving bounds clearly requires a simple model of the situation of interest. We use here
the classical transmission model, as depicted on figure 1. Let us consider carefully the



situation, as well as the constraints that are required for the results to have practicfa
usefulness.
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Figure 1: Shannon’s paradigm

We consider only block processing: inputs as well as all variables in the scheme are
vectors, as defined below:

e The initial and reconstructed source words have m components (the source sym-

bols), U = (U, Uy, ... \Up) and ¥V = (V}, Vo, .., Vi ).

e The channel input and output words have n components (the channel symbols)
Xo={X1,Xo,..., Xp),and Y = (¥1, Y5, ..., Ya)

All the above variables are modelized as random variables that can be discrete

or continuous. For this reason, we have adopted the following notation: denotes

summing, where a discrete sum is considered for discrete variables, and an integral
(continuous)is considered for continuous variables (the measure symbol d(.) will be
omitted, for simplicity). For example, the expectation reads

EX= EL( zp(z)
’:&l

. This common notation allows to address at the same time a large variety of sources
and channels.

The source is characterized by its probability distribution p{u) = p(uy, -+ ,%n). For
example, a Gaussian source is modelled by p(u) = Uu\i/% exIJ(m%%?), where o2 is the
source variance. A binary symmetricsource (BSS) is modelled by a uniform distribution
plu) = 5.

The channel is described by its impact on the input: given an input z, it provides an
output y, and a probabilistic model description is given by the transition probabilities
ply|z), i.e. the probability distribution of the output y, for a given input z. For example,
an additive white Gaussian noise (AWGN) Channel is modetled by

plylz) = “‘}—‘Cxp(——M)
T o2 207

, where o} is the noise variance. A binary symmetric channel (BSC) is modelled by
its raw error probability p, such that p(y|z)} = p*{1 — p)*~¢ where d = dy{z,y), the
Hamming distance between the channel input and output.

Any type of transmission can be considered: Gaussian signal onto a GGaussian chan-
nel, or onto a BSC, or a binary signal on a Gaussian or BS channel, or even multivalued
signals. The equations we provide hold in all these cases, unless otherwise stated.

Of course, there is a need for adapting the source to the channel: this is the role
of the encoder. The encoder is given by z = C{u). Specifying C amounts to designing
channel codewords characterized by their probability distribution p(z).



Conversely, the decoder has the task to convert the channel output to a reconstructed
word in the source domain. The decoder is given by v = D(y), and specilying D amounts
to designing source codewords according to the distribution p(uju).

At this point, our model is not complete. When tuning transmission systems, one
has more degrees of freedom: For example, one can choose the power of the source,
and increasing the source power clearly also improves the performance of the system.
Hence, it is realistic to consider some constraint on it, in order to take the cost of the
system into account. In the same way, one has to choose a distortion measure on the
reconstructed source V: will it be a probability of error, a mean square error (MSE),
or some other criteria? This depends on the precise situation.

Hence, one has to consider two constraints:
1. Average cost per channel input:

LEnx) <P
T

where N(z) is a cost function, chosen in such a way that
T
N(z) =Y N(z) 20
i=1

For example, the channel input can be power limited 1E || X||*> € P. This is a
constraint on p(z).
2. Reliability criterion;
1 .
—E dU,Vy< D

m

where d(u, v} is some distance, chosen in such a way that

.

d(u,v) = Zd(ui,vi) = 0.

i=1

This is a constraint on p(v|u) because E d(U, V) = %{ plu)p(viu)d(u, v).

uu
A few common situations are:
o Lossless coding, in which ) = 0
rrry O SR ) N, S T _ 2

o Mean Square Error (lossy case): ~E ||/ - V|* < D

¢ Bit Error Rate (BER): P, = +E dy(U,V) < D, where dy(.,.} denotes Hamming

distance.

Note that the distortion measure is considered here as a constraint, rather as a
criterion to be minimized. The reason is that information theory concentrates on the
global rate, defined as

n

p = — channel symbol/source symbol
e

and tries to minimize this global rate p under constrainsts (1) and (2}. On the other
hand, practically, one usually minimizes I under given p and constraint (1).
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It is rather easy to derive a source/coding performance bound, without showing that it
is actually atfainable. This is obtained through the definition of the mutual information
between X, Y, two random variables or vectors (again, discrete or continuous).

The mutual information is a dependancy measure between X and ¥ and is defined
as:
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It is measured in bits (binary units). One can easily understand that it is a dependancy
measure: it corresponds to the average amount of “information” that the knowledge of
one realization of X brings to knowledge of Y. When applied to vectors (e.g. 1(X,Y)
and I(U,V)) it denotes bits/word, while in terms of the individual source or channel
symbols 2/ (U, V) and ;11«](_)_(_, Y) are measured in bits/symbol.

The plain definition given above can also be rewritten for quantities concerning the
channel as:

plylz)
p(ylz’)p(z’)

Hiﬂﬂjpwm@mg
ELY - ’ Z:‘Q’

When written as such, I{X,Y) depends on (1) the probability density of the inpui:
p{z) and, (2), the transition probabilities p(ylz).

Concerning the source-related quantities, one has:

p{v|u)
p(uly)p(w')

Huw:jy@m@m&zl

which depend on the probability density of the source: p{u) and, (2}, the reconstruction
error probabilities p(viu).

Irom the flow graph of figure 1 , and the above comient, it seems intuitively obvious
(and can be proved rigorously) that

(U, V) < I{X,Y)

i.e. any processing cannot increase the mutual information. This is widely known in
information theory as the date processing theorem. We may rewrite this theorem as

LU, Y) € p-1(X,Y) (1)
m n

Recall that, as usual in information theory, we intend to minimize the global rate p.
In the above inequality, the lower bound on p will be minimum if /(/, V} is minimized
and I(X,Y) is maximized. These quantities (min of I(U, V) and max of I{(X,Y)) are
precisely the quantities that are important in information theory:

Capacity: The capacity of a channel is obtained by maximizing /(X,Y} on all
possible p{z) for a given channel, characterized by p(ylz). Of course, this has to be
undertaken under constraint (1), and taking the supremum on n:

, 1 |
C{P) = sup ma§<{m](2§_, Y)| “EN(X) < P}
n n

n P (.32 -



Rate-distortion: The Rate-Distortion curve R(1) is obtained by minimizing I{{/, 1{5}
on all possible p(viu) and m for a given p(u) under constraint (2):

R(D) =l mm{ HU, V) | ——E d(U,V) < D}

m plylu) M

Note that in the lossless case (D = 0), the R(D) limit is exactly the entropy of
the source (H(U) = I(U,U)). In practical situations, this quantity is bounded (for U

taking finitely many values)

OPTA (Optimum Performance Theoretically Attainable): By taking both Shannon’s
limits, (1) becomes

R(D)
PZ ey
C(F)
It turns out that this limit is actually attainable, and is the ultimate performance of our
communication system. The proof that this limit is actually attainable can be found in
[18].
Typical curve shapes are given below for a memoryless Gaussian source sent over a
memoruless Gaussian channel. In this case the capacity reads
]J

1
C(P) = logy(1 + ;‘E‘)

shown on figure 2

08 0y 1

Figure 2: Channel capacity of a Gaussian channel (shape)
and the source rate-distortion function reads
1 2
R(D lo
(D) = 5 loga( %)

shown on fig 3
The global rate thus reads :

_RW) log, (% )
PTCP) T tog(lt L

which depends on the channel SNR £ —g and on the source SNR 4— For a given channel

SNR, the global rate is only a dilation of the R(D) curve.
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Figure 3: Rate-Distortion function for a Gaussian source (shape)

2.3 Three Shannon theorems
The previous considerations are very general, and often apply to any type of signal (con-
tinuous, discrete-valued, correlated, ...). (Note that Shannon’s theorems were initially
proved in the memoryless case, but can also be proved under more general assumptions)
However, the techniques that are often used for signal protection when sending it
on some channel usually assume more specific properties, in order to obtain simpler
algorithms, of wider application. The actual system is thus decomposed in more ele-
mentary tasks than depicted in figure 1. For example, the encoder can be separated
in a transform, followed by vector quantization, followed by an index assignment, and
0 on... As a consequence, actual systems involve many processing blocks, and one of
their tasks is to enforce the inputs or outputs of some blocks to meet some desired
property. For example, the input of the channel coding device has usually to be binary
and memoryless.

2.3.1 Channel Coding theorem

In channel coding, the soiirce is assumed o be discrete: the “information word” can take
M different values, with equal probability. The information word is usually represented
in binary form, and thus correspond to log, M information bits.

Of course, in actual systems, a preprocessing is necessary so that this assumption
reasonably holds. The encoder output is a code word X, on n symbols. The channel
coding rate is defined as H, = lﬁi’f{"ﬂi and ils unit is in bits of information per coded
symbol sent on the channel.

In this case, the OPTA equation reads

and Shannon’s channel coding theorem states that for any arbitrary small ¢ > 0, and
for any R, < C/(P), there exists a code of rate 2 I, such that the probability of error
satisfies F, < e.

2.3.2 Source Coding theorem

Here, the channel is assumed to be perfect, that is, y = z (no errors). The source
vector has size m, and the output of the source encoder is an information word which



. . - log, M .
can take M different values. Hence, the source coding rate is f; = 8= encoded bité
per source symbol.

In this case, the OPTA inequality gives :
_log, M

m

R, > R(D)

Shannon’s source coding theorem states that for any arbitrary small ¢ > 0, and for any
R, > R(D), there exists a code of rate € R, such that the distortion introduced by this
code is < D + ¢

2.3.3 Separation theorem: OPTA

Thanks to the first two Shannon’s theorems, it is more or less obvious that (at least
theoretically), the source/channel bound can be approached as close as desired using
the following strategy:

e The source coding procedure gives a source rate as close as possible to its bound
R(D), for a given distortion < D;

o The channel coding procedure has the task of transmitting the resulting informa-
tion bits with “no” errors (P, arbitrarily small), while the channel rate is as close
as desired from its bound R, = C(F).

By doing so, one indeed obtains a global rate close to Shannon’s limit p &~ R(D)/C(P)
{(but higher), with a total distortion ~ D (butl smaller).

This is the content of Shannon’s source and channel coding theorem. Note that,
under these conditions, the channel has negligible contribution to the overall distortion:
onty by the source compression distorts the source.

2.4 Trivial examples
In Shannon’s strategy as explained above, each task (source compression as well as
channel coding) is incredibly difficult, and practically requires the use of huge data
blocks. This motivated the search for making the source and channer coders work
together, with the hope that this joint effort will be less costly than for a separated
system, while providing performances close to the optimum.

At first glance, this approach does not seem to be compatible with Shannon’s results.
However we show below two trivial examples for which such an approach can even be
optimal.

Example 1 Consider a memoryless binary symmetric source (BSS} to be transmitted
via a memoryless Binary Symmetric Channel (BSC) with error probability p, at a
global rate R = 1. We choose the Bit-Irror Rate (BER) as a distortion measure
D. In this case, it can be shown that R = R(D) = 1 — Hy(D), where Hy(z) =
wlogy L 4 (1 - xz)log, &= is the binary entropy function. The channel capacity is
I =1 — Hy(p), and Shannon’s bound becomes

R(DY 1= Hy(D)

e T < H=1
o 1 -~ Ha(p)

which simplifies to
D=z p.



Following Shannon, an optimal procedure is to build a source coder characterized b§
R, 2= 1 — Hy(D) for D = p, and a channel coder with rate R. = 1 — Hy(p), realizing
almost no error.

However, it is easily realized that, by sending straightforwardly the source on the
channel, we obviously have D = p and p = 1. As a resulf, another optimal solution
is: “don’t do anything”, which is the simplest system. Note that at this other optimal
solution, all errors are introduced by the channel, while there is no source compression.
This is the opposite situation compared to Shannon’s approach.

a 4
s Channel e U“*"Dﬁ* Channel ﬂ% (%
(a) (b)

Figure 4: Two optimal systems: (a) binary symmetric and {b) Gaussian source and channel.

Example 2 The situation is quite similar when considering a memoryless Gaussian
source with variance o2 to be transmitted through a Gaussian channel (adding & vari-
ance o} ), with global rate p = 1. The natural distortion measure here is the quadratic
NOrm.

In this case, the optimal rate-distortion function is R(D) = 1 log, s, where v, =
o2 /D is the source to noise ratio,and the capacity is C(P) = $logy(l + ), where
7, = P/o} is the channel to noise ratio. In this case, the Shannon bound is given by

R(D) _ logs, s <p=1,
C(P) = Toay(l 1 %)

which simplifies to
Vs S 1 + Fe-

A trivial optimal solution is that illustrated on figure 4 (b), where the gains o and 3
2 S .

are such that % = o + 7% It is easily checked that, here again, the OPTA is also

attained.

2.5 Possible benefits

These two examples, although quite trivial once the actual problem is understood, are
compatible with Shannon theorems. They only show that a “separated system” is not
the only solution at the optimum: a solution involving a joint optimization can heavily
reduce the complexity of the global system, while maintaining the performance close to
the optimum.

Another situation can also appear: due to some external contraint (i.e. complexity,
processing delay, ...} the source encoder or the channel encoder can be largely subop-
timal. In this case, an optimal solution taking the constraints into account is not the
cascade of the suboptimal blocks. This is a well known fact. Consider an example fairly
ohvious in the Signal Processing area: the filter banks. Although ideal filters can lead to
perfect reconstruction (PR}, the best PR filterbank is not only the best approximation
of the ideal brickwall filter...



This tends to show that actual gains in terms of performances can be obtained b?
joint source/channel coding, compared to a classical separated system. However, this
gain is expected to be negligible if one uses close to the optimum separated source and
channel coders.

Conversely, if the design of the system is heavily constrained {(complexity, delay, ...),
one can expect noticeable gains when using jointly optimized source and channel coders
(or even a fully integrated source/channel coder).

Why it is not always as simple The previous trivial examples are not really usable,
since they work only under the following restrictions:

o When p = 1, rate for which the system performances are limited by the noise level
in the channel;

e When the channel and the source are ideally “adapted” to each other.

A really useful result would require more flexibility and robustness towards (i) the global
rate (ii) the source, (iii) the channel.

The problem, once stated as such, however, is quite intractable in its full generality.
People who have addressed the problem directly in this way know that it is in fact very
difficult to obtained performances that are better than those of the trivial system for
p = 1, even when trying to work with larger global rates.

This is the reason why, practically, most results were obtained by starting from a
separated communication system, and trying to tune some blocks of the system accord-
ing to a joint source/channel criterion. Many variants were obtained, depending on the
channel models, the blocks that are merged, and so on This is the way we present actual
systems in section 5, while making the connection with the theory we just outlined.

We now devote a few paragraphs to describing the basic tools that are used in such
a process (section 2.6). These tools are somewhat generalized in section 4.

2.6 Other situations of interesl

Note also that the above study was completed in the {classical) situation of a one way,
one-to-one communication link. However, other situations are also to be considered,
since the problem can be stated in a quite different manner. Two such examples are:

¢ Broadcast channels: This is a one to many transmission situation. Iere, the tuning
cannot be performed for each user, and the problem is rather to allow cach user
to recover as much as he or she can from the received signal. This is not really the
case in the classical situation considered above, which is more on a “all or nothing”
basis: either you recover the full quality signal, or you completely loose it. The
solution in this case clearly involves embedded coders and progressive protection.

o Channels with feedback: This situation has already been studied in the channel
coding situation. Shannon has shown that feedback does not increase capacity.
However, it is much easier to get very close to the capacity of the channel. Thus,
it should be easier to obtain performances close to the OPTA situation.

3  Some basic tools used in source and channel coding

As explained above, both source coding and channel coding operations are usually
performed separately. By doing so, one is working on a subset of fig. 1, and one makes
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another quantity (the indez) apparent.

3.1 Veclor Quantization

A common tool for data compression is vector gquantization (VQ). It is a redundancy
removal process that makes effective use of four interrelated properties of vector param-
eters: linear dependencies (correlations), nonlinear dependencies, shape of the proba-
bility density funclion and vector dimensionality itself. In fact, it is exactly the general
situation of source compression, with full flexibility {yet usually large complexity)

1 I I Vv
source -+ Source encoder =~ Source decoder Faronstructed
word emitted  received source word
(m symbols) index index {m symbols)

Figure 5: Source coder

Let u = [ugus...upm)? be an m-dimensional vector whose components {u),1 < &k <
m} are real-valued continuous amplitude random variables, (also usually assumed to
be of zero-mean, stationary and ergodic), v the output of the V@ (another real-valued,
discrete-amplitude, m-dimensional vector). We write v = ¢(u), where g is the quanti-
zatlon operator.

The values of V are to be taken from a finite set of L elements: v = {v;,1 < ¢ < L},
which is called a codebook. The design of a codebook consists of partitioning the m-
dimensional space of the random vector I/ into L non overlapping regions or cells
{C;,1 <1 < L} and associating with each cell C; a vector ;. The VQ is designed so as
to minimize a given error criterion. The most usual criterion is the average Huclidean
distance D), that is minimized over a large number of samples.

=
fl

E d(v,,u,) ‘ (2)

=N =n

(vg = i)’ (3)

)=

du, v} =

ES
i

1
which simplifies, assuming ergodicity and stationarity, to

L

D= [ . d{w, v;)p(w)du.

=1

A well known algorithm for VQ design is the Lindé-Buzo-Gray algorithm (LBG)
[16]. This algorithm is also known as generalized Lloyd algorithm (GLA) or K-means
algorithm and is based on an iterative use of two concepts:

o Nearesl neighbor condition: Fach input vector shall be encoded into its closest

codevector. This is the result of optimizing the encoder for a given decoder.

e Cenlroid condition: The optimum codevector assignment for each cell is the cen-

troid of all input vectors being encoded to that cell. This is the result of optimizing
the decoder for a given encoder.
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Channel coding (Also known as error protection and error correcting coding (ECC).)
consists of various methods that add some protection to the message given at the output
of the source coding process. This is done by adding some redundancy to the message
which is used later in the channel decoder to detect and to correct the errors due to the
channel noise.

~

L] X = Yol X ol coder | L
—+ [incoder mykﬁagnel rerervear| Decoder semmardd coder inverpe—=—-

SOUTICE sabimal
ree word word word stimated

index (n symbols) (n symbols) (m symbols) mdex

Figure 6: Channel coder

As depicted on figure 6, the information index is translated to some channel code-
word by the channel encoder. What is received at the input of the decoder in generally
not a codeword. Usually, the decoding process begins first by an estimation of the code-
word that has most likely been sent on the channel, followed by an inverse mapping to
recover the estimated information index.

One usually tries to minimize the overall error probability F.. Assuming equiprob-
able indexes, the optimal solution is given by maximizing over all possible [ the condi-
tional probability p(y|z). This is known as the Maximum Likelihood detection.

When working on a BSC, this amounts to computing

& = argminge eoacj drr {2, ¥ )-

When working on a Gaussian channel, one has to work with the Euclidean distance

£ = argmin, e geoqq iz — ylI*

3.8 Hierarchical Protection

One way to maintain the performance in the noisy environment transmission 1s o
better protect the more “sensitive” information bits which are suspected to contribute
to greater errors. This method is known as unequal error protection (ULP) in the
literature. Another use of the hierarchy of information will be discussed in section 7.2,
page 21.

As an example one can mention an LPC vocoder. The human auditory system 1s
more sensitive to pitch and voicing errors than the errors in the other LPC parameters.
In the LPC-10 algorithm, pitch and voicing are encoded so as to prevent single-bit
transmission errors from causing gross pitch and voicing perturbations, while no channel
coding is provided for the other parameters.

As another example, in one realization of the CELP vocoder, the most significant
bits of the binary representations of the codevectors are more sensitive to channel errors
than the least significant bits. This property has been used to protect only the most
significant bits [20].

Of course, one can imagine a progressive use of channel coders: use the very simple
channel coders (even none at all) for the least sensitive bits and the stronger channel
coders for more sensitive bits. This approach can be employed in networking problems
where many types of data with different sensitivities to noise are to be transmitted. In
{10} an example of such a system is explained: for each bit, a factor of sensitivity to



channel error is defined. Using this factor, the optimal error rate allowed for each it
that minimizes the effects of channel noise, is estimated. Finally, a UEP coder is used
to achieve different levels of protection.

In our opinion, UEP is a preliminary step compared to full joint optimization: In
a UEP-based system, the study of the sensitivity of errors on certain bit is used to
determine the level of protection that has to be given to it. However, it is not clear
whether UEP leads to poorer performances than full source/channel coding or not.

As an example, consider the transmission of a memoryless uniform source on a BSC.
Figure 7 compares the Shannon source/channel bound (OPTAY) for this situation to the
one that is obtained by the following procedure: First, the (real-valued) Gaussian source
is represented in terms of individual bit streams, weighted by 27*. Then, the system
send separately the various bit streams, with the appropriate rate corresponding to
its importance in the representation of teh Gaussian source. More precisely, we are
comparing the unconstrained bound (denoted as Shannon bound) to that which would
be obtained by a separate system in which each bitstream is considered as such, and
optimally tuned according to its importance in the Gaussian source. This is the best
situation an UEP-based system would achieve. Clearly, both bounds are close to each
other, and when considering practical situations, with coders of similar complexity, it
is not clear which procedure will win.

T OPTA wnitommy |
U == Lagrango (unilom

Figure 7: Unconstrained OPTA vs “bitstream” OPTA (Lagrangian bound)

4 Generalized Lioyd Algorithm

As explained above, information theory aims at minimizing the global rate. In actual
situations, however, the overall system is generally constrained, and when the general
architecture is decided, one tries to carefully tune its parameters in order to minimize
the distortion D, for a given global rate p. (In this section, the underlines are dropped
for convenience, although all quantities are random vectors)

This work is classically performed separately on the source and channel: First min-
imize the distortion, assuming that the channel does not introduce any errvor, and then
tune the error correcting codes in such a way that the transmission errors are not
“disturbing”.

However, this can be performed jointly by a procedure very similar to a Lloyd
algorithm, as used in classical vector quantization.



The aim here is to minimize jointly the distortion introduced by the joint sourbs
coder. The underlying criterion is easily written as:

D= 5113 W — VI = ?i: %L(W(U) jp(ylc(u))ﬂu - DI

In a Lloyd algorithm, the minimization of I is performed by an iterative procedure,
in two steps:

1st step: Generalized centroid condition The encoder C(.) is fixed, and one
optimizes the decoder D(.). This minimization is casily performed by first rewriting

the criterion as:
i 1 .
p=Ly [g[ p(up(ylC(u) I — D)
m T, [T

The term between brackets is a distortion term, depending only on y, say D), and
the minimum D is the sum of the minimal contributions for each y , as given by:

Donin = %[{ Dymin. Hence, the optimal decoder v = D*(y) providing the minimum
v

distortion is obtained by setting the derivative of D, with respect to v = D{y) to zero:

0= gf p(u)p(y1C(w))(u — D*(y),
and we obtain:
g{ p(u)p(y|C(w))u

Di(y) = == (4)
gf p(u)p(y1C(x))

2. Pyiz) %l(lc( . plu)u
5. ool 3f s

2. plyle) %{{ulc(u):x pluju
> Plyle)p(a)

Here (4) is true whatever the type of signals and channels, and (5) only holds when
the channel symbols take discrete values. This formula shows a strong similarity with
the classical centroid update, but for the appearance of the weighting by > p(yl@)
which is only due to the channel model.

Note that, even if it is not easily demonstrated, this formula corresponds to the
classical result that this optimum decoder computes the conditional expectation of the
source vector based on the channel output, i.e.. D(y) = B (U]Y = y).

2nd step: Generalized nearest neighbor condition Here we optimize the en-
coder C(.) for a given decoder D(.}. First rewrite the distortion as:

D= L5f o [g{ pylC(w) e — D()|[?

m T, .
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and the optimal encoder is obtained as:

€ (w) = asguin, 3f plulC()llu =~ DO

v
which is the minimum of the “generalized distance” (taking into account the effect of the
channel) between u and its reconstructed value D(y). When there is no channel error
(i.e. p(y|z) = &8(=,y)), this formula reduces to the classical one. Note that, when the
channel is not very noisy, this is a reasonable approximation. Now, if v takes discrete
values (depending on the channel model), this formula is easily rewritten:

C*(Uy = argmin, Z || — vi]? #n){ . p(y|C(u)) (7)
= argmin, Z || — vi]*p(v]z) (8)

The algorithm As classically done, the algorithm repeatedly performs both steps
until the distortion (or the encoder/decoder) remains stable. Note that equations (6)
and {8) can be practically evaluated in many situations.

5 Practical approaches

The methods that have been proposed for performing joint source and channel cod-
ing were initially performed on simple models. Since then, more and more efficient
algorithms were proposed, and we propose here an organised review of these methods,
pointing to the previous considerations relying on information theory and the general-
ized Lloyd algorithm when relevant.

These methods are presented with reference to a scheme in which all tasks that
have to be completed in sequence are explicitly shown. Depending on the assumptions
on which these methods rely, some blocks are merged, and have to perform a more
commplex task which is then to be optimized for minimum distortion under noisy channel
conditions.

5.1 Communication Model
A general model of the transmission block diagram is depicted on figure (8):
o the message emitted from the source is first passed from a transformation block
(for taking correlations into account)
s source compression (quantization) is performed in order to eliminate some redun-
dancy;
o indez assignment (IA), also known as Labeling then gives a good bit pattern to
each codevector;
e the resulting bits are then protected by a channel encoder;
o the modulation shapes the signal before transmitting it to the physical channel;
o this channel introduces some perturbations, according to some model
o a series of “inverse” operations: demodulator, channel decoder, inverse index as-
signment, codebook search and inverse transformation are applied to recover the
original message.
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Figure 8: Block diagram of the transmission system.

This general model can be simplified in different ways. In fact, each method de-
scribed in this paper makes its own assumption on the model and combines some of the
blocks in figure (8) into a single block and /or easily omits some of the blocks. For exam-
ple, a BSC, simply models the modulator, channel noise, demodulator and hard limiter
set as in one block. Some methods make a single block from two or three other blocks
and apply some optimization routines to it. As an extreme example, in Modulation
Organized Vector Quantization, all the blocks: vector quantization, index assignment,
channel coding and modulation are merged together and locally optimized.

5.2 Inder Assignment
The Indexing step makes the translation of the discrtete real-valued centroids to some
code {the index) rthat is transmitted to the channel.

In a perfect channel situation, and if the source coder has used VQ, any index
assignment will have the same performance. The reason for this is that after LBG, all
centroids have equal probability, and index assignment does not change the bit rate.
Furthermore, it does not affect the average distortion, either.

However, when a non-trivial channel is present, this assignment plays an important
role in determining the overall VQ performance. Basically, LBG by itself does not
provide any protection against channel noise because any change of bit can redirect one
codevector to any other one in the codebook. So, even a low bit error rate (BER}) can
heavily distort the signal if no index assignment strategy is used.

Once the origin of the problem is recognized, the task to be assigned to the TA
is clear: channel errors should change some index to other ones that are likely to
be “close” to the initial one. Hence, the problem is too find an IA for which the
distance (to be chosen according to the channel model) between indexes is similar to
the distance between centroids (Euclidian distance). This is called pseude Gray coding
in the literature[31].

It must be noticed that the IA is an non polynomial (NP)-complete task since
there are 5(5%:“()51; == QEE;EE possible distinct combinations to assign L = 2° codevectors to
L codewords. The 2 and the b! factors in the denominator eliminate respectively the
symmetric cases and the bit permutation cases. This results 8.3 x 10 distinct possible
combinations for b = 8 bits.
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Figure 9: Block diagram of the VQ based coding system used over a noisy channel.

Of course, some strategies provide better initial estimates of the codebook than
other ones. It has been soon recognized that the V@ codebook design stragegy known as
splitting training was efficient with that respect. In the splitting technique, the training
begins with a few {possibly just one) codevectors. Each codevector is then divided into
two sister codevectors each time with the small perturbations, and these new centroids
arc updated. Farvardin has observed [7] that when the splitting technique [16] is used for
VQ training, the resulting codebook has a natural ordering that can somehow protect
the signal in the presence of channel errors. This is due to the splitting mechanism
which makes sister codevectors behave similarly. However, this is not entirely efficient
because if an error occurs on the first splitted bits, the resulting distortion can be much
greater.

A general solution to the IA problem is to perform the VQ design first and then
permute the indices in such a way that the resulting codebook becomes more robust
against channel noise. It is shown in [5] that a non negligible reduction in distortion
can be obtained through a well designed A rather than a random one.

Note that this strategy is not a simultaneous optimization of source and channel
coding: only a “translation step” is optimized. A more global strategy will be discussed
in the next section. Note also that, when trying to address directly a general problem,
it is quite often found that solutions depend on some implicit indexing, that greatly
influence the system performances.

The problem can be formulated simply as explained in figure (9):

Simulated Annealing Since IA is an NP-complete problem, Farvardin used simu-
lated annealing (SA) to solve it [7]. SA is a Monte Carlo algorithm which has been
widely used to solve combinatorial problems {12], and is recalled below. An appropriate
temperature variable, T, is to be defined. This variable is initialized to a high value T5,,
in the beginning of the process and is decreased progressively until a sufficiently small
value T, is reached. A high value of 7' sigaifies a high degree of randomness while a
low value of it means that nothing is left at random. A high value of T at the begining
of the process, permits to avoid many local optima.

The SA algorithm can theoretically give the global optimum solution, uncondi-
tionally on the initial state, provided that the initial value, T\, and the schedule of
decreasing T, are chosen appropriately. Unfortunately, this is difficuit to achieve and
therefore good optima from SA might be difficult to obtain in most practical cases.

As an example, Farvardin reported a signal-to-noise ratio (SNR) of about 8.95 dB
for SA, compared to 8.87 dB for a naturally organized LBG with splitting. The test
parameters were: ¢ = 1072, N = b = 8 bits for a first order Gauss-Markov source with
correlation coeflicient p = 0.9.



Binary Switching Algorithm Another algorithm for an optimum IA was proposéa
by Zeger and Gersho {31]: binary switching algorithm (BSA). In B5A, to ecach codevector
v is assigned a cost function Cr(v). This cost function is a measure of the contribution
to the total distortion due to the possible channel errors when v is decoded, assumning
a certain permutation, 7. Then the codevectors are sorted in decreasing order of their
cost values. The vector that has the largest cost, say v, is sclected as a candidate to be
switched first.

A trial is conducted; v is temporarily switched with each of the other codevectors to
determine the potential decrease in the total distortion Dy = f;é Calvy), Tollowing
each switch. The codevector which yields the greatest decrease in D), when switched
with v is then switched permanently with it. The algorithm is then repeated for the
next highest cost and so on.

Although a global optimal IA is not necessarily obtained by BSA, good locally
optimal solutions have been reported [31]. Simulation tests have been made with a first,
order Gauss-Markov source as well as an independent identical distribution (iid) and
speech waveform. As an example, for € = 1072, N = 4, b = 8 bits, 1.5 dB gain has been
achieved compared to the initial state.

Link with the generalized Lloyd procedure Clearly, such IA strategies are small
subsets of a full source/channel optimisation procedure. this will be quite explicit when
making the connection with the general strategy explained in section 4.

In fact, this IA problem cannot really be cast into the generalized Lloyd frameworlk
defined previously, since changing an index assignment amounts to changing both the
encoder and the decoder. This explains the complexity of the task : an IA strategy
tries to optimize {partially) both sides of the system (emission and reception.

However, it has many advantages: the rest of the system remains unchanged, each
coder is tuned separately, and it can greatly improve the performances. Its drawback
are casily understood: the complexity of the tuning {but it has to be done once for
all), the link with plain VQ (for obtaining centroids with equal probability), and the
combinatorial nature of the optimization (it is not quite sure than constraining the
search to an indexing simplifies the procedure...)

6 Simultaneous Optimization of Quantizer and Channel Coder

When trying to make the connection with the generalized Lloyd procedure, one rec-
ognizes thal the centroid values should also be adapted to the presence of a specific
channel model. In this case, the full VQ is matched to the minimization of the global
distortion. Figure 10 illustrates the block diagram for this situation.

We outline below two methods: “channel optimized vector quantization” which is
a generalization of LBG for the noisy channel transmission and “self organizing hyper
cube” which is a generalization of Kohonen map into higher dimensions.

6.1 Channel Optimized Vector Quantizalion

Farvardin proposed a joint. optimization for the source and the channel coders (8, 91.
It is in fact a straightforward application of the generalized Lloyd procedure in section
4, applied on a BSC, with a quadratic distortion as a criterion to be minimized. first
rewrite the general distortion measure involving both the quantization error and the
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Figure 10: Block diagram of the V(Q based coding system used over a noisy channel.
Here, the TA is included in the encoding process.

error due to channel perturbation [2] in the case of a BSC. Here C(u) denotes the
index associated with emitted centroid z and D(y) denotes the centroid associated to
the received index y. p{ylC(u)) represents the channel effects: probability that some
emitted index C(u) is changed to index Y.

The resulting algorithm is very similar to the LBG algorithm and is named chan-
nel optimized vector quantization (COVQ). The cells, C(u), are updated according to
equation (6) [9], and the centroids D(y) according to (8).

In a few words, each input vector u is classified into the cell with the least expectation
of distortion, while D(y) represents the centroid of all input vectors that are decoded
into D(y), even if the received index, y, is different from the emitted one C(z). Of
course, both equations can be simplified into the LBG learning equations by simply
assurming that:

p(y_[C(Q)):{é %;g% (9)

This way, LBG can be regarded as a special case of COVQ when the parameter of the
BSC is zero..

It can be shown that the obtained optimum encoding cells are convex polyhedrons
and that some cells might vanish thus creating emply cells [8]. This means that the
system trades quantization accuracy for less sensitivity to channel noise. Figure (11)
shows an example of COVQ for a two-dimensional (N=2), three-level (L=3) VQ and a
discrele memoryless channel (DMC) with the parameters as in the following Table.

Probability transition matrix P{i]j) in the DMC example.

iy 1 2 3
1| 1—2¢ € ¢
2 2¢ 1 — 4e 2¢
3 € € 1 — 2¢

This figure illustrates that when the channel noise is large, there is a risk that
some cells vanish. Assuming that there are L' nonempty encoding cells; L' < L, only
L' codewords need to be transmitted. Of course, any of I binary codewords may
be received and therefore the codebook must remain of size L. It is interesting to
observe the analogy that exists between the presence of empty cells (codevectors with
no corresponding input vector) and the added redundancy in channel coding.

Simulations have been reported [8, 9] for first order Gauss-Markov sources, as an
example, for p = 0.9, ¢ = 107%, N.= b = 8. COVQ and naturally organized LBG with
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Figure 11: Figures (a), (b), (¢) and (d) show the quantization cells for ¢ = 0.00,0.10,0.15
and 0.20, respectively for a simple DMC. The codevectors get closer when ¢ increases
and finally one of the cells, Cy, vanishes for ¢ == 0.20. The ¢; are the codevectors for a
non noisy environment.

splitting have resulted in 9.70 dB and 8.87 dB, respectively. COVQ has had L' = 26
empty cells {out of L = 256}, in this example.

6.2 Self Organizing Hyper Cube

When working with a BSC, it is clear that the channel introduces errors characterized
by their Hamming norm, as explained above. However, the norm that characterizes
the source errors is Euclidean. It is thus logical to propose a direct mapping from
the input space o the Hamming space as a good way to build Vector Quantizers
at the emitter side. This has been proposed in [28}; this mapping is roughly a b-
dimensional generalization of the 2-dimensional Kohonen, also known as self organizing
map and compelitive map. {13, 14]. Hence it is named as self organizing hyper cube
(SOHC). SOHC is trained with an algorithm similar to the Kohonen algorithm with
some modifications: the codevectors are arranged in a b-dimensional cube (instead of
a 2-dimensional map); the neighborkood function is defined in the hyper cube and
Hamming distance {dg) is used as the distance measure of the binary representations
of the indices (instead of Fuclidean distance in the Kohonen map).

As a result of such a definition of distance between the codevector indices, in SOHC,
there is almost no difference between the quantized bits. In other words, the least and
most significant bits have no sense in SOHC. Roughly speaking, the effect of noise on
each bit is almost the same.

Examining figure {12), if we consider that the chosen codevector to be transmitted
is 0000, a single bit of error can commute it to either of 1000, 0100, 8010 or 0001.
Since all these codevectors are the first order neighbors of 0000 (with dy = 1), this
commutation does not contribute a gross error.

Adding the splitting technigue to SOHC, improves further its performance [29]. In
SOHC with splitting, each time that the codewords are splitted, the dimension of the
codebook is increased, too. SOHC has been tested for quantizing and transmitting
log area ratio (LAR) parameters of speech, over a BSC. Better objective results were
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Figure 12: An example of SOHC. Left: input space. Right: SOHC. Codevector 0000
and its first order neighbors are highlighted in both spaces.

reported, compared to naturally organized V(Q and Kohonen map, specially for high
transition probabilities. For instance, with a transition probability ¢ = 107%, N = 10,
b = 8, the speciral density distortion (SD) [11] measure for SOHC, Kohonen map
and naturally organized LBG with splitting were about 3.3 dB, 3.4 dB and 3.5 dB,
respectively. With SOHC, a further protection is also possible, using some classic error
control coding technique, since SOHC provides the bit patterns in which all the bits
are (almost) equally likely to cause error.

7 Direct Modulation Organizing Scheme

Another possible source-channel configuration is the direct modulation organization.
In this configuration, the encoder includes the modulator and benefits directly from
the flexibility that is naturally present in a constellation. As shown in figure (13}, the
channel is considered with an additive white Gaussian noise (AWGN).

X y 5 s+ £ ),v
> q mod. chaanel demod., =

Figure 13: Block diagram of the Direct Modulation VQ based coding system, used over
an AWGN channel. The source encoder, channel encoder and modulator are represented
in one block. s € {setofallconstellationpoints}.

Several works have been done in this field. To mention some, we can indicate a
competitive learning algorithm which gives aft direct mapping from input space to the
signal space is presented [25]; the hierarchical modulation, in which the constellation
points are located to minimize the error expectation is explained [21, 4]. There exists
some other works that we will not extend in this paper: joint optimization of three
blocks {source coder, channel coder and modulator) [26]; Trellis coding and Lattice
coding which are special kinds of covering the signal space by the constellation points
15].

7.1 Modulation Organized V()
Withdrawing any binary representation, Skinnemoen proposed the modulation orga-
nized vector quantization (MORVQ) [25]. This method uses a quantizer which maps



the codevectors directly into the constellation plane. It makes efficient use of the Kok
honen learning algorithm to map the N-dimensional input space to the 2-dimensional
signal space, in such a manner that the close codevectors in the modulation space, are
assigned to the close points in the input space. This property is obtained by proper
use of a neighborhood function [13, 14] and the resulting codeboolk has some organized
structure. Having this structure, most little changes due to channel noise make the
output codevector to be one of the neighbors of the source vector and so the distortion
will not be very important.

Skinnemoen observed a great difference between explicit error protection and the
structure of a codebook. He states that any transmission system (with or without error
protection) has a BER working threshold. Above that limit, the system’s performance
breaks down. The role of MORVQ is to increase this threshold. This is the great
advantage of MORVQ; however, in MORVQ, no more channel coding can be added
since it does not produce any intermediate bit pattern which can be processed by
classical channel coders.

(lood numeric results have been reported in quantizing first order Gauss-Markov
sources and line spectrum pairs (LSP) parameters of speech spectrum in an AWGN
channel. As an example, for quantizing LSP parameters with N = 10 and [ = 256,
SD was 2.11 dB and 7.82 dB, respectively for MORVQ and LBG, for a highly noisy
channel. Also it is observed that for MORVQ, the degradation curve by increasing
channel noise is rather smooth while for LBG there is a threshold above which the
system performance drops rapidly.

7.2 Hierarchical Modulation

Ramchandran et al. have proposed in [21] a Multi-Resolution broadcast system. One
basic idea in their proposition consists in partitioning the information into two parts:
the coarse information and the refinement or the detail information. This approach is
intended to be used in conjunction with transformation based source coding methods,
like subband and wavelet coding, since they have a natural multiresolution interpreta-
tion. The coarse information is to be received correctly even in a very noisy transmission
environment, while the detail information is mostly destinated to the receivers whose
channels have better qualities (graceful degradation) This classification can even be
made more precise, making several classes of importance.

It has to be noted that this approach is naturally well suited to a broadcast situation
rather than to a point to point link. Like the previous approach, the idea is to match
the transmission constellation to the source coding scheme, without mexging both steps.
Ramchandran et al proposed the use of a multi-resolution constellation as depicted in
figure (14). The coarse information is carried by the clouds, while inside each cloud, the
mini-constellations or satellites provide the details. The loss of coarse information is
associated with the receiver inability to decipher correctly which cloud was transmitted
while the loss of detail information occurs when the receiver confuses one intra-cloud
signal point for another. This property is already present in any QAM constellation,
but is reinforced by the uneven localization of the points in the cloud.

Of course, many other configurations could be thought of, yielding similar properties.
The same idea has been used in conjunction with Trellis modulation coding (TMC) as
well as with embedded channel coding [21].

Combelles et al. [4] have used the same idea of multi resolution. coding, in con-
junction with Turbo code, which was used to protect the coarse and detail information
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Figure 14: An example of Multi-Resolution Constellation. Each set of close points
constitutes a cloud with four satellites points surrounding it. The detail information is
presented in the satellites while, the course information is represented in the clouds. So
there is 2 bits of coarse information and 2 bits for detail. ‘Note also that the Gray code
is used for numbering the satellites (and the clouds) in such a way that the codewords
with Hamrning distance equal to 2 are far from each other. This is like the application
of Karnaugh map in digital design and can be used for larger constellations, too.

with 1 and 2 rates, respectively. They achieved 4 dB better performance for the coarse
information while 2 dB degradation for the detail information, compared to a single
resolution system using Turbo code, with the same overall spectral efliciency to obtain
the same error rate (107*), while for a Rayleigh fading channel their simulation shows
5 dB of better performance for the coarse information and 3 dB degradation for the
detail information.

In {21} an example is given where with a multi resolution system, the broadcast
coverage radius (64 km) is much greater than for a single resolution system (45 km)
while for the multi resolution system, the radius of full data availability is a little smaller

(38 km).

8 Other approaches

Another frequent approach, which will not be detailed here is based on an explicit use
on the residual correlations found in the information bit stream that is sent on the
channel.

In fact, as outlined above, many processing blocks inside the source coding procedure
aim at decorrelating the data. However, this decorrelation is not perfect, and can be
used for protecting the errors that may arise when {ransmitting the data.

1t was shown in [22] that this residual correlation could be used for reducing the
errors introduced by the channel., This approach was elaborated in a series of other
papers and explicitly models the correlated source [23], or tries to adapt the channel
encoder to that situation [1].

9 Conclusion

This paper considers the joint source and channel problem from both a theoretical and
practical point of view. As a result, we could present several methods in a unified
framework.



This method also allowed to make the general mechanisms more precise. Mo
specifically, the generalized Lloyd procedure, given in its most general formulation, and
valid for any type of source and channel could Iead to many applications in more specific
cases.

Many questions still remain unanswered, for example:

It is clear that the joint optimization of a source and channel coder aims mainly at
simplicity. What was it traded for? Namely, one has tuned the system according to
some knowledge of the channel performance. If ever the sensitivity of the performances
with respect to this tuning were too high, this could put the results into question.

Unequal error protection is a simple way of performing a precise adaptation between
the source and the channel coder. This mechanism can be pushed much more than
usually done, and in a practical situation, it is not clear yet which strategy will provide
the most efficient system.

However, many other questions are yet unanswered, and many methods are still to
be studied. The joint source and chanel coding is an area of increasing activity, which
is likely to last for some fime...
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