SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES.
II. THE RATIONAL CASE"~

OLIVIER RTIOUL! AND THIERRY BILU?

Abstract. We study regularity properties of special functions obtained as limits of “p/g-adic
subdivision schemes.” Such “rational” schemes generalize—in a flexible way—binary (or dyadic)
subdivision schemes, used in computer-aided geometric design and in functional analysis to construct
compactly supported wavelets.

This finds natural applications in the signal processing area, where it may be desirable to decom-
pose a signal into compactly supported wavelets over fractions of an octave. This results in a finer
decomposition than in the dyadic case, which corresponds to an octave by octave decomposition.

The main difficulty here, as compared to the dyadic case, is the lack of shift invariance of the limit
functions. In this case, a direct extension of Daubechies and Lagarias ideas concerning regularity
order estimation becomes impossible, because what they call “two-scale difference equations” cannot
be obtained.

Using another, “discrete approach”, originally proposed in an earlier work for the dyadic case,
we extend most results on regularity properties of limit functions. In particular, we obtain sharp
Hélder regularity estimates. We also interpret these results in a Daubechies and Lagarias fashion,
by proposing a matrix-based approach.

As opposed to the dyadic case, it is interesting, in the p/g-adic case, to emphasize that the limit
function regularity order is equal to the maximum convergence rate of its associated subdivision
scheme. This new result leads to a simpler and more powerful presentation.
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1. Introduction. This is the second part of a series of papers investigating
regularity properties of functions, obtained as limits of iterative procedures called
subdivision schemes. The preceding paper [17] was devoted to the “binary” or “dyadic”
case, in which the subdivision scheme is an infinite collection of sequences g (n € Z),
labelled by j € N, and computed using the recursion

(1.1) gt =Glah}

where G is a dyadic operator which interpolates discrete sequences by convolving them
after a change of scale [17].

g
(1.2) Uy —> Uy = Z Uk Yn—9k-
keZ

All sequences considered in [17] and this paper are real-valued and of finite length. The
choice of the (finitely many) “subdivision mask” coefficients g, governs the behavior
of a function ¢(x), obtained as the limit of the discrete “curves” gJ plotted against
n277, as j — oc (see [17] for a rigorous definition). In [17], one of us characterized
the existence and regularity properties of ¢(2) by equivalent conditions on the gl’s
and derived optimal Holder regularity estimates for ¢(2) given any subdivision mask
gn. These results can be easily extended to “p-adic” subdivision schemes (the “integer
case”), where the number 2 in (1.2) is replaced by any integer p > 2.
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(a) Dyadic interpolation operator (b) p/g-adic interpolation operator

Fia. 1.1. Flow-graph representations of the interpolation operator G. The squares represent
convolution with gn, while up-sampling and down-sampling operators by a factor n are denoted Tn
and | n, respectively. Up-sampling by p inserts p — 1 zeroes between samples of the input, i.e., maps

up to u if p divides n, and to O otherwise. Down-sampling by q maps un 1o ugn.

n/p

This paper investigates a “rational” extension to (1.1), (1.2): “p/g-adic” subdivi-
sion schemes. The only change is that the interpolation operator is now

g
(13) Up — Up = Z Uk Jqn—pk
keZ

where p and ¢ are positive integers such that p > ¢. The dyadic case 1s, of course,
recovered by setting p =2 and ¢ = 1.

1.1. Motivation. Our motivation comes from the importance of p/g-adic sub-
division schemes in filter bank decomposition for signal processing applications [3, 12,
13]. To get an idea of why p/¢-adic subdivision schemes constitute an improvement,
over dyadic ones, consider the flow-graph representation of Fig. 1.1, which will be
useful throughout the paper. In the dyadic case, G (Fig. 1.1 (a)) is the building block
used for the construction of wavelet bases, onto which a given signal is decomposed
into a set of multiresolution components [7]. This turns out to be an “octave-by-
octave” decomposition because the length of ¢/ is roughly multiplied by a factor two
at each iteration.

The rational case allows more flexibility since this factor becomes p/q as illustrated
in Fig. 1.1 (b). This leads to a decomposition on “fractions” log, p/q of an octave [1,
11,12, 13]. For 1 < p/q < 2, the decomposition is thus finer and is a promising
technique for applications such as signal compression and analysis of music [11]. Tt has
long been observed that the auditory system performs a third of an octave analysis;
this led one of us [2, 3] to implement a perceptual algorithm based on a rational
multiresolution analysis with scale factor p/q = 6/5 ~ /2.

Being also a natural extension to dyadic subdivision schemes which have long
been used in computer-aided geometric design [10], rational subdivision schemes may
also find application in this area.

Kovacevi¢ and Vetterli [11, 12, 13] were the first to investigate the existence of
limit functions of p/¢-adic subdivison schemes. They noticed, using an argument of
Cohen and Daubechies [6], that for ¢ > 1, p/g¢-adic subdivision schemes could not lead
to a wavelet basis for subdivision masks of finite length, as opposed to the dyadic case.
This negative result led them to think in [11] that limit functions cannot be obtained.
However, one of us |1] showed that limit functions could in fact be obtained, yet they
do not satisfy the “shift invariance” property, which we now explain.

In the dyadic case, shifts by s € Z are preserved by repeated application of G in
the sense that

¢ =G{g0} implies ¢/, =G {g"_,}.
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Fra. 1.2, “Eiffel Tower” ezample of a converging 3/2-adic subdivision scheme: The subdivision
mask of length 5 is given by {gn} = ;—(],2,3,2,1), The discrete sequences g are plotted, joined
by segments, against n(3/2)77 (here j = 5) for 32 distinct values of s. Fach value of s yields a
different limit function ¢.(x). In this picture, the ¢s(xz) have been re-shifted so as to emphasize the
differences between the various ¢s(x+ s).

This amounts to shifting the resulting limit function ¢(2) by s [17]. Therefore, as far
as regularity properties of compactly supported limit functions are concerned,; we can
always restrict ourselves to the inital sequence g% = 6, defined by 6, = 1ifn =0, 0
otherwise.

The situation is different in the rational case, whenever ¢ > 1. We may indeed
define, similarly as in the dyadic case, functions ¢, () that are limits, as j — oo, of
the sequences

(1.4) gt =G {8}

plotted against n(p/q)~7 (see Fig. 1.2—a precise definition is given in § 3). This leads
us to consider [1] an infinite set of distinct compactly supported limit functions ¢, ()
labelled by a shift parameter s € Z. The ¢5(x)’s reduce to po(x — s) when ¢ = 1,
but are never shifted versions of each other whenever ¢ > 1 (at least for subdivision
masks of finite length). This is exactly the remark made by Daubechies and Cohen
in [6] which shows that rational subdivision schemes cannot lead to a shift invariant
wavelet basis.

Even though shift invariance cannot be obtained, the existence and regularity
of limit functions carries over, more or less easily, from the dyadic case [17] to the
rational one. Achieving regularity should be important in practice because it imposes
smooth evolutions of iterated sequences ¢/°, a property that should be useful for
signal processing applications for the same reasons as in the dyadic case [12, 15].

The primary aim of this paper is to find the conditions on the subdivision mask
gn under which the associated limit functions ¢ (x) exist and are regular. As in
the preceding paper [17], regularity is quantified using Holder spaces. We refer to
the dyadic case throughout this paper, pointing out similarities and differences, and
stressing the reasons for which some techniques derived in [17] cannot be applied
directly. Moreover, this paper is organized similarly as [17] so that the reader can
easily compare the two.
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1.2. Regularity and shift invariance. There is also an important behavior of
p/g-adic subdivision schemes which finds no equivalent in the dyadic case: By select-
ing very regular limit functions, it was observed numerically [1] that shift invariance
was almost satisfied within a small error. In other words, it seems that regular-
ity is beneficial to shift invariance. This might have interesting consequences for
implementing an almost shift-invariant “rational” wavelet transform efficiently using
p/g-adic subdivision algorithms [1].

This behavior was implicitly discovered by Kovacevié and Vetterli in [12], who
plotted coefficients of an “iterated filter” gZL defined below in § 2, wnstead of the dec-
imated sequences gl* = gZﬂn—pfs defined by (1.4). The global behavior of gJ led
them to conjecture (wrongly) that ¢/, tends to a regular limit function. However, as
Kovagevié noticed later [11], the obtained curve g} presents rapid oscillations of small
amplitude which preclude convergence for ng

All these observations can be explained as follows. Asshown in § 11, they chose an
example which in fact corresponds to almost three times differentiable limit functions
¢s(2), and shift invariance was almost satisfied. The small oscillations in g are
precisely due to the fact that the decimated curves gi* = g;jn,—pjs converge to different
limit functions ¢;(x) which are almost, but not quite, shifted versions of each other.

1.3. Organization of the paper. This paper is organized as follows: First,
§ 2 describes p/g-ary subdivision schemes using the convenient polynomial notation.
Then, uniform convergence of discrete sequences towards functions is defined (§ 3) and
basic properties of these limit functions are described (§ 4). Continuity is connected
to uniform convergence for which a necessary and sufficient condition is derived (§ 5).

To tackle the Holder regularity problem, we use an original approach which is
based on the evaluation, made in § 6 of the convergence rate of modified subdivision
schemes, when an interpolation function x(z) is appropriately chosen. This is an
improvement over what was presented in [17] because it leads to a simpler and more
powerful presentation of Holder regularity estimation (§ 7), which shows that the limit
function regularity order is equal to the maximum convergence rate.

Based on these theoretical estimates, we derive a practical, sharp Holder regularity
order estimation algorithm (§ 8). We also interpret this result in a Daubechies and
Lagarias fashion, by proposing a matrix-based approach (§ 9), which provide alternate
upper and lower bounds (§ 10). We conclude the paper with examples.

Contrary to the dyadic case [17], we were not able to prove that our estimates are
optimal. This is because a simple condition, similar to “stability” as defined in [17],
can no longer be derived in the p/g-adic case. However it is proven in [2, Thm. V.§]
that our estimates are indeed optimal under conditions that are usually met in signal
processing applications. This leads us to conjecture that these estimates are fairly
sharp in general.

2. Polynomial notation and fundamental properties. In this paper, we
adopt the notations and terminology given in [17]. In particular, to any finite causal

sequence u, (n =0, ..., L = 1) we associate the polynomial
L-1
UX)=> up X"
n=0

and use ' and [®-norms of sequences in terms of polynomials:

U = > un] and [|U(X)]|eo = max fuy .
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Fia. 2.1. Composition properties for iterated p/q-adic subdivision schemes. (a) Four steps
in flow-graph notation (using polynomials) that are necessary to rewrite the composition of two
interpolation operators G and G', with two different rational factors, in a simpler form. All these
steps are easy to prove using (1.3). The first one assumes that p' and q are mutually prime. (b)
is the resulting flow-graph for G7, where GV (X)) is given by (2.2). The basic recursion (2.5), (2.6),
tlustrated in (c), immediately comes from the composition property of (a).

A useful norm inequality is [|[U(X)V(X)]|leo < |JUX)|1]|[V(X)]|oc. In this section,
we describe p/g-adic schemes using polynomials, and review fundamental recursion
formulae which were derived in [1].

First, whenever p and ¢ are not coprime, we observe that only coefficients g4,
are present in (1.3), where d is the greatest common divisor of p and ¢q. We may,
therefore, replace p, ¢, and g, by p/d, q/d, and g4, respectively. In this manner, we
may always assume that the fraction p/q is written in irreducible form i.e.; p and ¢
are coprime.

Second, we have a simple composition property for G [1], described graphically
in Fig. 2.1 (a). The iterated sequences g5* (1.4) can thus be written in the form

(2.1) 9 = Ghin s
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This is illustrated in Fig. 2.1 (b).
To the sequence g/ corresponds the polynomial

GI(X) = G(X? ) G(XP? ). G(XP
(2.2) = '7 G(XP'

jqﬂ)

i

This is a product of “up-sampled” polynomials; the first term is up-sampled by ¢/~
and the up-sampling factor is multiplied by p/q from one term to the next. In the
dyadic case, we have ¢ = 1, and the resulting product has a very simple structure,
namely G(X) G(X?) G(X%) ...

Two useful recursive forms of Gj(X) can be easily written in polynomial notation.
They are derived, similarly as in the dyadic case [17], from the operator recursions
Gt =G .G/ and Gitl = @GJ -G, respectively. We obtain

(2.3) GIT(X) = G(XY) G7(XP)
(2.4) = GI(XY) G(X)

Note that one equation is obtained from the other by exchanging p and q.
The most general recursion; which comes from Gitt=gi. g" 1

(2.5) GH(X) = GHXPHGH (X,

This is illustrated in Fig. 2.1 (c). Noting that G/ {u,} = 3, urgl*, (2.5) can be easily
written, in terms of sequences, as

(2.6) gt = Zgﬁsgz‘

In particular, we obtain

(27) 7+1 f= Z (]k Qqn —pk
(2.8) = Zgg{ 9qk—ps
k

as rewritings of (2.3) and (2.4), respectively.

All of these recursions are very useful in the sequel, and are easily recovered using
the powerful flow-graph notation of Fig. 2.1. Of course, they can be applied to any
iterated polynomial of the form

2 -1

(2.9) UHX) = U(XCT Y o (xre Ty o (x P Ty o (xr

associated to U(X).

3. Definition of convergence. In [17] we discussed various definitions of con-
vergence found in the literature, and showed that all such definitions of uniform con-
vergence of the g7 ’s to ¢(x) are equivalent. Moreover, under very weak conditions [17],
uniform convergence in the dyadic case holds whenever ¢(2) is continuous. By anal-
ogy with [17], we restrict ourselves to uniform convergence of p/g-adic subdivision
schemes, and adopt the following flexible definition.
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DerINITION 3.1. For a given shift parameter s € 7Z, the p/q-adic subdivision
scheme g}* converges uniformly to a limit function ¢s(x) if, for any sequence of

integers n; salisfying
n; — (E>] x
i ¢

(where ¢ is a constant independent of j), we have

(3.1) <e

(3.2) sup |ps(2) — gf]:| —0 as j — oo.

In (3.2), g«Z;JS may be regarded as a function of #, and the flexibility comes from
the choice of n;. A typical exemple is n; = |(p/q)? =], for which the g%*j ’s are stepwise
constant functions. By (3.1), n; is chosen such that n;(p/q)~7 stays very close to z as
J — 00, hence @, (z) can be thought of as uniform limits of discrete curves gf;* plotted
against n(p/q)™7, as mentionned in § 1 and illustrated in Fig. 1.2. Definition 3.1 also
implies other ones, such as uniform convergence of linear interpolations of gZ;s (see
§ 5) and of smoother interpolations (see § 6).

It is also possible to define pointwise convergence of gJ:* by ¢, (z) = limj NS qf;j
In [1], an example of non-uniform convergence is described taking G(X) =1+ X +
X2 4+ ... 4 XP 1. Pointwise convergence holds to rectangular functions of different
supports, except possibly at the edges. Notice, however, that these functions are not
even continuous, whereas this paper is mainly concerned with regular limit functions.
Whether regular, non-uniform limit functions exist is an open question.

4. Basic properties of limit functions. This section states several basic prop-
erties and simplifications, some of which follow easily from §§ 2 and 3. Most of the
material presented here can also be found in [1] and [2].

4.1. Compact support. To prove that limit functions of p/g¢-adic subdivision
schemes are compactly supported, consider the degree of the polynomial G7(X) (2.2),
which reads

P —q
p—q

(L= (¢ " 4pd 24 +p ) =(L=1)

where L is the length of the subdivision mask g,. We remark, in passing, that since
we assume p/q > 1, the length of iterated polynomials G/(X) is always bounded by
ep’, a bound we shall often use in this paper.
Now, non-vanishing points of ¢>* (2.1) are such that
) . p— ¢
(4.1) 0§q3n7p35<(L71)P e

and if gi* converges (pointwise is enough) to a limit function ¢,(x), combining
(3.1) and (4.1) gives, as j — oc, the following estimation of the support of ¢, (z):

(4.2) support (¢, (z)) C [s,s + ?} .

This will be enough for our purposes. In fact, the lengths of ¢, () always vary for
different values of s, and we refer the interested reader to [1] for refinements.
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4.2. Initial sequence. So far, we considered only the “impulse responses” of G/
to dn—s (1.4). To justify this restriction, consider a different initial sequence hy, of finite
length in the p/g-adic subdivision scheme. By linearity of G7, the iterated sequence
becomes ", hygh®, and, if we assume convergence of ¢gh* for all s, the resulting limit
function is

(4.3) Y(z) = ZhSSDS(m)'

Clearly, regularity properties obtained for ¢, (x), globally for all s, carries over to
P(x). We need to go the other way round to justify our restriction to the study of
¢s(x). Unfortunately, due to the lack of shift invariance, the argument developped
in [17, § 4] fails. However, we have the following

ProprosITION 4.1. The functions ,(x) = Y, hp_spr(x) are all reqular of some
order r if and only if the ¢, (x)’s are all reqular of order r.

Proof. We have just seen the converse implication. To prove the direct part,
consider (hfl)nj the convolutional inverse of h,,, which satisfies Zk(hfl)k hp_p = 0.
It is easy to check that ¢,(x) = >, (A ')its4s(z), the sum being finite because
both s (x) and ¢ () are compactly supported. Therefore, ¢, (x), written as a finite
linear combination of the ¢ (z)’s, has regularity order ». The regularity order may
be defined using any of the usual spaces, e.g., the spaces of N-times continuously
differentiable functions C'N or the Hélder spaces (§ 7). O

An exemple of infinite initial sequence is given in § 4.3.

As a consequence to this proposition, we can restrict ourselves to the study of
the ¢ as far as the lowest regularity order in the family of functions ¢,z (s €7)
is concerned. Whether we can characterize regularity properties for a fixed initial
sequence via the study of ¢, (2) is an open problem, related to the question that the
¢s () may have different regularity orders for different values of s.

4.3. A necessary condition for convergence. Convergence of the g/ re-
quires an important condition [1] to be fulfilled by g,,.

PROPOSITION 4.2. If uniform convergence of the gl*’s to ws(x) Z 0 holds, then
the subdivision mask meets the constraints

(4.4) Zgn_pk =1 for all n.
k

This condition 1s equivalent to

(4.5) G(1)=p
and
_ XP
(4.6) =X divides G(X).

1-X

Notice that a stronger constraint, although not necessary for convergence, has
been used by Kovacevié and Vetterli [12], namely the divisibility of G/(X) by the

1-X?1-x9
factor = 7=

The pT'OO];Of this proposition is an immediate extension of the dyadic case [17,
Prop. 4.1]. We sketch it here for completeness.
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Proof. In fact, pointwise convergence for some = € R is enough. First one easily
obtains

(4.7 qun,pk =1foralln
k

from the basic recursion (2.7), where we set n = n;, a sequence of integers satisfy-
ing (3.1), and let j — oc. Since p and ¢ are mutually prime, when n takes the values
0,...,p—1, gn takes the same values modulo p, possibly in a different order. There-
fore we can replace gn by n in (4.7), which gives (4.4). Equation (4.6) immediately
follows, e.g. by considering G(e?#17/7). 01

Note that (4.5) simply normalizes G(X) such that the order of magnitude of g *
is preserved as j — oc. On the other hand, (4.6), where ¢ has disappeared, is a much
deeper condition. Tt is interpreted by Kovadevié¢ and Vetterli [12] as the spectral
condition that the “frequency response” G(e“’“) vanishes at the “aliasing frequencies”
w = 2kn/p, k = 1, ..., p— 1. This clearly generalizes the dyadic case where the
aliasing frequency is m [15], but condition (4.6) is perhaps better understood when
considering derivatives of ¢, (z) (see § 4.5).

We remark that condition (4.4) can be used to show that Proposition 4.1 fails for
infinite initial sequences: If e.g. h,, = 1 for all n, we immediately have [1], using (2.7),
¥(x) =3, @, (x) = 1, which is C* whatever the regularity order of the ¢, (z)’s.

4.4. A two-scale functional equation. In the dyadic case, the limit function
¢(x) satisfies a “two-scale difference equation” [8, 9] which was used as a starting point
by Daubechies and Lagarias for deriving regularity estimates. In the rational case,
this approach becomes impossible because of the lack of shift invariance mentionned
n§ 1.

Indeed, we have the following two-scale equation [1],

(4.8) pe(0) = 3 gar—pei(La)

which involves an infinite set of distinct limit functions. This equation is easily ob-
tained using (2.8) for n = n; (3.1) and applying definition 3.1. Now, using (4.8) it is
easily proven that the ¢, (z)’s are not shifted versions of each other. If they were, we
would get

4)0(13 - 5) = Z.qu—ps4p(§x - k)
k

for all s, which, after taking Fourier transforms, and recalling that g¢,, is a finite-length
sequence, leads to a contradiction. This negative statement was first pointed out by
Cohen and Daubechies [6].

4.5. Derivatives. In this section, we show that the rational fraction

gl =X? g4 X 4 X

4.9 R(X)=12 =2
(49) () pl—Xe pl4+ X+ -+ X!

plays the role of a “regularity factor” in G(X). The precise sense of this is given below.

Note that in the dyadic case, R(X) reduces to the polynomial H;X, which plays the

same role in [17].
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ProprosiTIiON 4.3. Assume that G(X) is of the form G(X) = R(X)F(X), where
R(X) is defined by (4.9), and that the p/q-adic schemes associated to F(X) con-
verge (pointwise is enough) towards functions fs(x). Then, the g3:* converge towards
differentiable functions ¢s(x), and

(4.10) Ops(z) = fs(2) = fogr ().

More generally, if G(X) = R(X)YN F(X), under the same assumption for F(X), the
gh® converge towards N times differentiable functions ¢, (x), and

N

(4.11) Nepy(x) = (Z)(—l)’“fm(w)

k=0

Here 3 is the differentiation operator. The proof of the first part (N = 1) is given
in [1]. The second part follows easily by induction. Note that this result generalizes
the result known in the dyadic case [8, 17], where e.g. dp(x) = f(x) — f(x — 1) for
N=1.

In words, this proposition states that the rational schemes generated by F'(X)
converge towards the Nth-derivatives of the limit functions ¢, (x) generated by G(X),
provided we choose hy = (—1)1“(27) as the initial sequence in § 4.1. This provides a
very simple way to obtain the derivatives of the limit functions.

In the dyadic case [17], it was always possible to generate arbitrary regular limit
functions from an initial kernel F'(z) by repeated multiplication of the regularity factor
R(X). Now, whenever ¢ > 1, R(X) is not a polynomial anymore and the situation
becomes more complicated: Since p and ¢ are coprime, so are 14+ X 4+ X2 4. .4 XP~1
and 1+ X + X2 + ...+ X971 Therefore, multiplying by R(X) requires that F(X)
be divisible by 1 + X + X244 X9

Remark. Just as in the dyadic case [17], the presence of N regularity factors in
the polynomial G(X), that is:

R(X)N divides G(X),

is equivalent to the fact that the polynomial

=X\ Y
( T % ) divides G(X).

This relates the possibility to differentiate the limit functions and the necessary con-
dition for uniform convergence (Proposition 4.2), which is recovered by setting N = 1.

4.6. Sum rules. A simple sum rule property follows from the presence of regu-
larity factors in G(X). This property will be very useful in § 6.
THEOREM 4.4. Assume that the p/q-adic subdivision scheme converges uniformly,

N
and that 11:)§:> divides G(X). Then, there exist N real numbers ag,ay, ...an—1
such that

(4.12) D (x = 8)Mpa(x) = am

s

foradlezeR and m=0,1,...,N — 1.
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Even in the dyadic case, where this sum rule reads

Z(m —8)"p(r — 8) = am,

S

this result is not widely known in the wavelet literature  possibly except for N = 1[19,
p- 298]. However, sum rules of this kind are better known in approximation theory
and several authors, working in both fields, have already noticed the connection to
dyadic wavelets [18, p. 230].

Proof. Since (11__);;,)]\, divides G(X), so does R(X)™ by the remark in § 4.5.

Using (2.2), it is easily checked that (R (X)) = (1:;2;)N divides G(X). By the

same remark in § 4.5, we have

N
1-XxP .
I-Xxv . ;
( T ) divides G’ (X).

We now express this relation on the discrete sequences gZ*. Clearly it implies that

1—xr am
for m = 0,1,...,N — 1. Now, to (&—mmGj(X) corresponds a sequence of the form

Pm(n)gﬁ;, where P, is a polynomial of degree m. Therefore, the latter relation can be
written ) Pm(n—pjs)g';_pjS = ¢m, where ¢, is independent of n. Since this equality

is valid for m = 0,1,..., N — 1, it follows that 5 P(n — pjs)qj is independent of

In—pls
. . ) ]
n for every polynomial P of degree < N — 1. In particular ) (n — p7s)mgn7pjs does
not depend on n form =0,1,... N — 1.
We now let j — oo by taking n = ¢/n;, where n; is chosen according to (3.1) for

a given x € R. We observe that

Z(an—; - s)mgﬁ;‘f does not depend on z

5

and that this sum is finite independently of j because the support of gf>* is bounded.
Therefore, letting 7 — co, we obtain the announced formula. O
The a, may be computed using a recursion formula given in [2, Prop. 1V.7].

5. Continuous limit functions. This section derives a simple, but fundamen-
tal equivalent condition for uniform convergence of p/g¢-adic subdivision schemes. This
is the first step needed to estimate Holder regularity orders (§§ 7-8). First we note
that, as an immediate generalization of [17, Thm. 7.1], uniform convergence leads to
continuous limit functions.

ProrosiTION 5.1. If, for a given s, gb* converges uniformly, then the limit
function ¢, (x) is continuous.

Proof. let 3028(1‘) be a sequence of piecewise linear functions obtained by joining
the ¢g2° by “segments” as in Fig. 1.2. These functions take g};* as values for z =
n(p/q)~7, are continuous and compactly supported. Note that the construction of
such a function is equivalent to writing

o) = Yo (e — k)
k



12 O. RIOUL and Th. BLU

(1= X)X5—{ 1 p/ X5 G (X) .a‘Z;’S - gl

Fia. 5.1. Finite differences expressed in flow-graph notation.

where x is the second order B-spline function (piecewise linear, continuous, and taking
the values 0,1,0 for . = —1,0,1).

Therefore, if we prove that uniform convergence, in the sense of definition 3.1,
implies uniform convergence of the ¢7*(x)’s to ¢4 (x), then ¢, (z) is continuous and
the proposition is proven.

Choose n; = |(p/q)’x] as a sequence of integers satisfying (3.1). Since ¢”*(x) is

monotonous on each interval [n(p/q) 7, (n + 1)(p/q) 7], we have

s () — &2’ (2)] < lps(x) — g7 |+ 197740 — 93] |

"7

which, taking suprema over x, and applying (3.2), proves uniform convergence of
¢ (x) to gy (x). O

As mentionned above (§ 3), we do not know whether continuous limit functions
could be obtained as non-uniform limits. Following the dyadic case [17], we conjecture,
however, that such functions would correspond to very special conditions on ¢,,, which
are not often encountered in practice.

We now derive a necessary and sufficient condition for uniform convergence of the
@s(x) for all s. We need the following fundamental lemma, the rational equivalent
to [17, Lemma 7.2], which will also be useful for deriving regularity estimates in § 8.

LEMMA 5.2. Assume that 1;}; divides G(X), and let F(X) be the polynomial

1 X9
T 1-Xr

(5.1) F(X) G(X).

The sequence of first-order differences g-Zl*s fgfl’fl follows a p/q-adic subdivision sche-
me, with initial sequence (1 — X)X°* and subdivision mask F(X), and we have

Jli
js _ 08 i
(5:2) max|gn’ — gl < (ugﬁ7zk: |fnplk)

where f is defined by (2.9) and ¢ is a constant independent of j.

The proof is the same as in [17, Lemma 7.2], except that the recursions are
somewhat more complicated; we include here to describe the role played by the shift
parameters s.

Proof. First, we have

g—1 7=1

1— X9 1—XxP 1—Xxr'7
1— Xpe ' 1 — XPPd? 1— Xp?
1-X¢

1— X’

Fj(X) — Gj(X)

= G7(X)

from which the first part of the lemma is obvious considering the flow-graph depicted

in Fig. 5.1.
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. Now, noting d};* = gl* — gfljf], and using the general recursion (2.6) applied to
fi with initial sequence (1 — X)X?*, we obtain

i+l,s E 05 pi
du - dk fq’n—p’k'
k

Hence,

/s
)mkax|dk’g|,

which, by induction for j = £+ ni, 0 < £ < i, gives (5.2), where ¢'n can be replaced
by n for the same reason as in the proof of Proposition 4.2. O

THEOREM 5.3. A p/q-adic subdivision scheme gZ;S converges uniformly, for all
s € 7, to (continuous) limit functions ¢s(x) if and only if G(X) satisfies the basic
conditions (4.5), (4.6), and

max |d, 7| = (mm‘z -
n n Z

(5.3) max|gﬁ;y’j_] — g2 =0 as j — oc.

Moreover, there exists « > 0 such that
) , P —ja
(5.4) Hl;lX |gflr’j_] —ghi|<e (E) .

Proof. The proof is, again, a variation of [17, Thm. 7.1]. The direct part follows
immediately from definition 3.1 and proposition 4.2. Note that this implication works
for a given s.

Before proving the converse implication, we prove that (5.4) is implied by (4.4)
and (5.3). With the notations of lemma 5.2, we have (1 — XpJ)Fj(X) = (1-
X7)GI(X), hence, gl — g'Zl’il = di* = gm—pis — gm—sz—pJ' We inverse this
relation as

' “j?nfpis = dZ{S + dngs-i—l + d‘zl,5+2 + o

The number of terms in the right-hand side is bounded as j increases because the
length of d:* is bounded by ¢p’. Now, since we assume (5.3) for all s, it follows that
an—pjs tends uniformly to 0, for all s. Applying (5.2) from lemma 5.2, where the
sum contains a bounded number of terms, we immediately find (5.4), where we have

chosen (p/q)™® = max, >_, |f;,_pl$ and 7 large enough so that o > 0.
We now prove the converse part of the theorem from (5.4). This will work for
a given s if (5.4) is satisfied for this s. Consider n; satisfying (3.1) and let m; =

gnjt+1 — pnj. This number is bounded by a constant ¢ for all j because of (3.1), and
we have
i+1,s

J j.s
max max o
m;|<c n; ‘g(pn7'+m7)/q g”v

J+ls _ 0,
max gl — oh!] <
7

Now, from (2.7), we have (dropping subscripts j for convenience)

J+1,s _ J.s
Ipntm)fa = >0 k-
k
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Therefore, .f]{;:fm)/q*ﬁ'l;‘s is a convolved version of ¢/*, corresponding to a polynomial
multiplication by U™ (X)), where U™ (1) = >, gpk+m—1 = 0 by (4.4). Hence, U™ (X)
can be written U™ (X) = (1 — X)V™(X) where ||[V™(X)]||s is bounded. Using the
classical norm inequality we obtain

J+1,s

o maX|g(zm7+m7')/q

I / s 08
git| < ¢ max|gl*t — gy 74|,
[m|<e nj n

hence, from (5.4), max, lgiths — q,’L]S| < ¢(p/q)~7*. Tterating gives, for any £ > 0,

1

(5.5) max gt =gl < " (p/a) 70"
This shows that quf is a uniform Cauchy sequence and thus, converges uniformly. O

Condition (5.3) intuitively means that no jumps between two consecutive values of
the discrete curves ¢7° are allowed as j — oo, and hence, the resulting limit functions
are continuous. Note that this theorem was proved globally (for all s), not for a given
value of s.

Lemma 5.2 is powerful as far global continuity (for all s) is concerned: It is suffi-
cient that max, >, \f:l_q,k| < 1, for some 7, to ensure that all ¢5(x)’s are continuous.
In fact, as seen in § 7, (5.4) implies more than just continuity, namely, that all ()
are Lipschitz of order a.

6. Convergence rate. From the preceding section we know under which con-
ditions g}* converge to limit functions @ (x). This section is concerned with the
convergence rate toward the ¢ (2). Our motivation is that a higher convergence rate
may be useful in filter bank decomposition for signal processing applications.

At this point, we can mimic the dyadic case [17] to show that the convergence rate
of the gJ* is of the form (%)*jo‘, where a cannot be greater than 1. The maximum
rate (a = 1) is obtained for differentiable limit functions.

However, we can find other discrete sequences which achieve faster convergence
(> 1), and it is the purpose of this section to build them. To this aim, it is a good
idea to consider interpolating functions. Another nice feature of this construction is
that it can be used to simplify proofs concerning regularity in § 7.

6.1. Interpolation. A natural way to relate functions to discrete sequences is
to use of an interpolating function x(x), as exemplified by the definition of ¢%°(x) in
section 5 and by the approach taken e.g. in [7, 8, 10].

For every scale j we thus define
(6.1) wis(x) = Zgi’sx (z—;x — k)
2

and consider the convergence of the functions ¢; (z) toward ¢, (z) as j — oc.

Here we assume that x (z) is continuous and compactly supported. In particular, if
we choose () as a piecewise linear centered B-spline function then ¢; () = %" (2)
takes the values of the discrete sequence gi"s at points © = k%, and the convergence
of the discrete schemes can be recovered from the convergence of the ¢; (). We
shall, however, use more general interpolating functions.
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6.2. Regularity factors and approximation error. Assume that G(X) con-
tains N + 1 regularity factors and define F,, (X) as

(62) o= (2) (1 ;Z)"Hm)

forn =—1...N. F,,(X) follows the recursion F, 4+ (X) = R(X)F,,(X), where R(X)
is defined by (4.9). In terms of discrete sequences, we have

(6.3) A(fo)h = gl* — gi*
S - i — (Pyi jis : \jos
(6.4) Al = CF (U = i)

where for convenience we have used the notation
G5 _ g s
Aul® =)’ — ul

for any subdivision scheme u;*.

As seen below, it is possible to benefit from factorization (6.2) so that the con-

vergence can be made faster than o (5)*-7'. This will require a particular choice for

x(z) that will be specified later on.
Now consider the approximation error

(6.5) £j,s(1) = 1,5 (1) — @55 ()

between two consecutive scales. This quantity is essential to our derivation because
its exponential decay toward 0 will readily give the convergence rate of the functions
@5 (z) toward ¢, (z) as j — oc. Note that for j = 0, we have

€0,5(7) = ¢1,5() = pos(x) = ¢1,5(7) = x(z — )

and for general j, using the recursion equation (2.7) for g4, &; ;(%) can be written
€5, 9 Z qk = k

In order to rewrite €; () in such a way as to exploit the regularity factors in
G(X), assume tentatively that it is possible to build a sequence of functions u"(x)
such that the following “backward” recursion scheme holds.

(6.6) w0(a) = co.0(2)
6.7 wl'(x) = u,;""H (2) — u;"_l_ﬁ (%)

for m = 0...N. Then, neglecting possible problems due to infinite summation for
the moment, we would have

g5 ( Zg — tp (55x))
= Z - Qk 1) 11(2_733)
= ZA fo)y, 1.8 “k )
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= Z(%)M%ﬁ Vi k()

k

(6.8) = Z(f)*m AN ul ()

k

Here we have successively used (6.7), a change of variables k + 1 — k&, (6.3), and
repeated application of (6.4).

Equation (6.8) provides an essential information: it directly provides an exponen-
tial decay factor (%)*jN into the expression for ¢; ,(z).

N+1
s

around s. In the next subsection, we show that this requirement can be satisfied under
some specific condition on x(z), namely (6.14).

Let us assume, for the sake of the discussion, that « (x) is compactly supported

Now, if uN+1(z) is compactly supported around s, so are all the u”(x) for m =
0,..., N+ 1 by (6.7). Then, all summations in equations leading to (6.8) are finite,
so that (6.8) is valid in full rigor. Moreover, it is easily seen by induction from (6.7),
starting from u?(z), that «N+1(x) is uniformly bounded over s and we obtain

P .
(6.9) sup [¢js(2)] < e() INEK oo

5.7

where ¢ is a constant.
To tackle the term HF‘/\,HOO in the r.h.s. of (6.9), we need the following
- LEMMA 6.1. Assume that the p/q-adic schemes gh® converge uniformly and let
Fi.(X) be defined as above. Then, there exist two real numbers C' > 0 and o > —N
such that

. p —ja
(6.10) IFlesc (L)

Proof. Tn the proof of Theorem 5.3 we have proved, under the same hypothesis,
that there exist two positive real numbers Cyy and ag such that || Fj]||eo < Co(%) 7.
. » o _ iN(1=X"\N j

Owing to (6.2) and to its iterated form F(X) = (%)7 (m) ‘HGJ(X)l, we
can mimic the proof of Theorem 5.3 N times to show that ||F{|l < ¢ (’(73)'7N||Fg||oo7
where ¢ is a constant. We end up with ||F{]|le < C(S)‘ja, where C is a constant
and & = =N + ag > — N, which proves the lemma. O

Applying lemma 6.1 to the r.h.s. of (6.9) we obtain

(6.11) sup [z, ()] < ¢ (B)~7 N+,
s, q

so that €; , may decrease faster than (Iq—))*j, if we're lucky. From this bound, the
convergence rate of the functions ¢; () toward ¢, () will follow immediately.

In order to obtain (6.11), it remains to show that it is possible to build the
interpolating function x () such that ulN+1 (x) is compactly supported around s. Such
a construction is given next.
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6.3. Conditions on y(z). To prove the required compact support property for
the uﬁv"'l(av), it is sufficient to require that the u?(z) satisfy certain sum rules, as
described by the following

LeMMA 6.2. Let u%(z) be a compactly supported function, whose support is con-
tained within [s + a, s + b], where a < b are two real numbers, and such that u?(z)
obey the following sum rules

(6.12) >z =) ul(z) =0

5

for allm = 0...N. Then there erists a sequence of functions u?'(x) satisfying (6.7),
such that uN11(x) is compactly supported and its support is contained within [s +
a,s+b—N—1].

Proof. The proof is by finite induction on 0 < n < N. We show that the double
property for u?(z), i.e., support within [s + a,s 4+ b — n] and sum rules

S - 5™l ) = 0

S

form = 0...N —n, propagates to a similar double property for u?*!(z), i.e. support
within [s—l—a, s+b—n— 1} and sum rulesfor m=0... N —n — 1. Let us see how the
induction propagates fromn =0 ton = 1.

Thanks to the compact support property of u%(z), (6.7) can be inverted to yield
a solution

wg(@) = Y uly (@) = = ) uli(x)

E>0 k<0

The second equality follows from the first one and the sum rule property for m = 0.

From the first equality, the support of u!(z) is contained within Ug>o[s + & +
a,s + k + b] = [s + a,+oc[, while from the second it is contained within Uk<ols +
k+4+a,s+k+b] =] —oc,s+b—1]. This clearly shows that the support of u!(z) is
contained within [s +a,s+ b — 1].

To show how the sum rules propagate, consider, for m = 0... N, the polynomials
Pp(X) = (X=m+1)(X —=m+2)---(X), which obey the recursion P, (X)— Pn(X +
1) = =mP,,_1(X). Then from (6.7), sum rules become

0= Pule—s)ul(x) = Y Pl —s)(u(#) = uiy (2))
= —mz Po_i(z— S)Ui(ﬁ)

for m = 0...N, by the induction hypothesis. Since the P, (X) form a basis of the
polynomials of degree < N, we end up with 3. (z — s)"ul(z) = 0 for all m =
0...N—1.

Thus the induction from n = 0 to n = 1 is complete. The very same argument
easily carries over for each n = 1,2, ..., N, which proves the lemma. O

It remains to find conditions on x(z) under which (6.12) holds. To this end, we
translate the sum rules property for u?(x) into similar sum rules for y(x). We need
the following “propagation” lemma.



18 O. RIOUL and Th. BLU

LEMMA 6.3. Let vy(x) and w,(x) be two functions, compactly supported around
s, satisfying the two-scale equation

(6.13) ws(x) = ngq,spvk(gm).
k

If vy (z) obeys the sum rules Y (z — 5)"v,(2) =0 for m=0...N, then w,(z) obeys
the same sum rules Y (x — 5)"wy(2) =0 form=0...N.

Proof. Consider any polynomial P(X) of degree m less than or equal to N. We
have, by the Taylor expansion formula,

Z Pz — s)ws(z) = ngq_spp(x —kl+ qu%w)vk(%x)
s s,k

= 3N PO (B T, kg (252
n=0 k
The sum over s does not depend on k due to the factorization (6.2) of G(X). Using
the sum rule property for v(z), the sum on the right-hand side vanishes; which proves
the lemma. O

Now assume that the interpolating function satisfies

(6.14) Z(T —8)"x(x—s) =an

s
for n = 0..N, where the a,, are the same as in (4.12). We refer to [2, Thm. V.2] for
a proof that it is always possible to find such functions (one possibility is to use a
combination of B-spline functions of order greater than or equal to N + 1).

We set v, (2) = ¢s(2) — x(z — s), which satisfies the assumptions of lemma 6.3
by (4.12) and (6.14). By lemma 6.3, w;(x) = ¢s(x) — @1 () satisfies the same sum
rules as for vg(x). It follows that u?(x) = 01,5(2) — o5 () = ve(x) — w,e(x) also
satisfies the same sum rules, as it was to be shown.

6.4. Main theorem. From the preceding discussion it follows, by lemma 6.2,
that «N+1(x) has bounded support around s, and therefore, that (6.11) is satisfied.
We can now state the main theorem of this section.

THROREM 6.4. Assume that the p/q-adic schemes gl* converge uniformly and
define Fn(X) by (6.2). Choose a compactly supported, continuous function x satisfy-
ing (6.14) and define the approzimating functions ¢; ,(x) by (6.1).

Then, the convergence rate of the functions ; ((x) towards ¢g(2) when j tends
to infinity is given by

P —j(N+a)
(6.15) suplien(s) = .2 < € (2)
where C’ is a constant.
Proof. From the preceding discussion we know that (6.11) holds. For convenience,
write (6.11) in the form

SUp [pig1,0(2) = s ()] < e(2) 7OV
s, q
Summing over i > j yields (6.15), where ' = W. o

Notice that the result of Theorem 6.4 is optimized when N is the maximum
number in (6.2) and (6.14). This is because if we choose N’ < N instead of N, we have
by the same argument as in the proof of Theorem 6.4, || F4||co < c(%)j(NfN’)HFJ loo-



REGULAR RATIONAL SUBDIVISION SCHEMES 19

6.5. Fast computation of limit functions. The following corollary shows
how to build, in practice, iterated schemes from the g/* whose convergence rate is
increased up to a maximum of (2)~7/(N+2),

COROLLARY 6.5. With the same assumptions as Theorem 6.4, define the discrete

sequences 'ﬂ;*s by the convolution

(6.16) W= x(n—k)gl’
k

Then we have

(6.17) sup

n,s

7 s
ps(n) — 1

7(1 O‘)
< C/ (—)
q

The proof follows easily by replacing z by ”;1,_]7 in (6.15).

This corollary is very useful, in practice, for the computation of limit functions
¢s(x). The sequence »y%:s is simply obtained by convolving the iterated sequences gﬁ;'s
Z—; can be
much faster than that of the gJ:* themselves (whose convergence rate cannot exceed
(p/q)~7). This is particularly useful when p/q is close to 1. An illustration is given
in Fig. 6.1 for p/q = 3/2 and G(X) = (1 + X + X?)*.

We notice that when we apply the above section to the dyadic case, we obtain,
when x(z) = p(z), an exact computation of limit functions as described in [17, § 5].

by x(n), and the convergence toward limit functions ¢, (x) at values z = n

0.6 ; ; ; 0.6
05f 0.5
0.4r 0.4F
0.3r 0.3r
0.2r 0.2f
0.1r 0.1r
% S T
Fia. 6.1. The discrete sequences gh® and ~4° are plotted against n%JJv for j = 4,...,15

and 20, at the left and right of the figure, respectively. The convolving sequence x(n) is given by

{x(n)} = 11—5(723,88, —122,72) (Indications on how to build this sequence is given in [2, Thm. V.5]).

According to Cgroll(zry 6.5, we have N = 3 and the convergence rate of’yﬁjn is 1.5 7I%X3.709.. o 4 577
whereas for gk it cannot exceed 1.577,

In the next section, we show that the convergence rate N 4+ a is, in fact, a
sharp Holder regularity estimate for the limit functions ¢4 (2). There is an interesting
connection between regularity and convergence rate of rational subdivision schemes.
This observation was made, in the dyadic case, in [17, Thm. 8.1] for N = 0 (only one
sum rule was considered). In fact, this connection holds in general as shown next.

7. Hoélder regularity of limit functions. In order to quantify regularity ac-
curately, consider the Lipschitz spaces C*, 0 < a < 1, of functions f(z), defined by
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the condition |f(z + h) — f(z)] < c|h|* for all x and h, where ¢ is a constant. We
say that @, (x) is regular of order o if ¢ (x) € C*. even though it is well known
that C'! corresponds to “almost” differentiable functions only. This definition can be
extended to regularity orders greater than 1: a function f(z) isin C*, a > 0, iff f(z)
is n = ([a] — 1) times continuously differentiable, and f*)(z) is in C*".

Based on the framework of § 6, the following theorem provides an accurate value
of the Holder regularity of the limit functions ¢, ().

THEOREM 7.1. Assume that the discrete schemes gl® converge uniformly toward
¢s(x), and that (%)N"'1 divides G(X). Define Fy(X) by (6.2). From lemma 6.1,
there exist C > 0 and o > —N such that (6.10) holds.

Then the limit functions @, (x) are CNte,

Proof. Choose an N 4 1 times continuously differentiable; compactly supported

interpolating function y(«) and define Ny = ([a]+ N —1) which is > 0 since o > —N.
Since F{(1) = Fy (1) = ¢/ and deg(F{) = =L deg(Fy), one has || F{ (X)][oo >

|4 (1)|/(deg(F%) + 1) > Const x (%)j and therefore, o < 1 which implies Ny < N.
Because x(z) is N+1 times continuously differentiable, so are ¢; (z) and TR (z)

5

in the fundamental relation (6.8). We now differentiate (6.8) Ny times to obtain

aNUEjys(,r) = Z(g)_J(N—NU) AN+1 (fN)_l]T,s' 3N0U£7V+1 (Z—]x)
k

where 0 is the differentiation operator and ¢; ,(2) = @;j41,5(2) — ¢;.s(2). Using (6.10)
we bound this relation as follows.

(7.1) 0% 411(2) — oy 4 (2)] < K (*—’

—J(N=Nota)
)

where K is a constant.

Because of the choice of Ng;, N — Ny + a is > 0, and the sequence of continuous
functions g ©;.5(2) is a uniform Cauchy sequence in j, which converges uniformly
to a continuous limit function when j — oo.

Since p; () converges uniformly to ¢, (x) and dNop, (=) converges uniformly,
it follows that the limit functions ¢, () are Ny times continuously differentiable, and
that their Ngth derivatives (3N“gos(m) are uniform limits of the §Ne @;.5(x). Moreover,
by iterating (7.1), we have

—j(N=No+a)
)

(7.2) 9V g () — 00 ;.4 (2)] < K (?

where K’ is a constant. .

It remains to show that 9o, (2) is in CVN~Nete Let 0 < h < p/q, and choose
j such that (p/q)~7 < |h| < (p/q)"V~Y). From (7.2) and the triangle inequality, we
obtain

—j(N=No+a)
0% .o 1)~ 0% (0] < 257 (1) 0 5o+ 1) 05, (o)
< 2K'|h|N7N°+a + |3N”g0jys(x +h) — 3N”goj:s(x)|

To prove that f)Nﬂgas(m) is in ON_NU+“, it remains to show that the second term in
the r.h.s. of this equation is < ¢|h|N~Not® Because x(x) is N + 1 times continuously
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differentiable, this term is < [h|sup, ,[0V°Fp; ((2)]. We would like to bound this
(No + 1)th derivative.

Differentiating the fundamental relation (6.8) Ny + 1 times yields (similarly as
for (7.1))

—j' (N=No—1+a)
0N i s (2) — 0 F g (2)] < K" <p_)
, ; q

where K’ is a constant. Summing both sides of this latter inequality for 5/ = 0 to

j — 1 we find

(f}ND-I—l

—j(N=No—1+a)
) (@)

0%% gy (o) < K7 (2

+ sup |
q z

Therefore, using the inequality |h| < (p/q)~U~Y), we have

(bl [N+ ;4 ()] < K“EW-W“ + Bl sup |9N0F x ()|
r
< [\z///|h‘N—ND+a

This shows that Vo, (2) is in (ITN_N“"'Q, which ends the proof. O

Comparing our approach to the one taken in [17, Thm. 10.3] for the dyadic case,
we see that it is no longer necessary to introduce the set of “almost C™V” functions as
an exception to the equivalent of our Theorem 7.1 for integer regularity orders. This
simplification results from the fact that we have used interpolating functions as in the
framework of § 6.

We emphasize once more that this theoretical estimate is not proven to be optimal:
a condition such as the stability constraint in [17] cannot be extended to the rational
case due to the lack of shift invariance of the limit functions. However it is proven
in [2, Thm. V.8] that our estimates are indeed optimal under conditions that are
usually met in signal processing applications. This leads us to conjecture that these
estimates are fairly sharp in general.

8. A practical Holder regularity estimate. Theorem 7.1 serves as the basis
for deriving a practical Holder regularity estimate for the limit functions ¢ (), given
any finite sequence g¢,,. The term “practical” here means that this estimate should be
computed within a finite number of operations. To do this, we transform Theorem 7.1
using Lemma 5.2 to obtain the following theorem, whose proof, omitted here, can be
found in [17, Thm. 11.1].

THEOREM 8.1. Let us recall assumptions and definitions we have already met.
Assume that G(X) satisfies (4.4) and (4.6), that is

G()=p

and

1 _ xp\ N+
( % ) divides G(X).

with N > 0. Define Fn(X) by (6.2), i.e.,

= (2)" (125) e
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and let FJJ\,(X) be the iterated polynomial (2.9) corresponding to Fn(X), whose asso-
ciated sequence 1s (ﬁv)n

Now define the Hélder reqularity estimate N + ()/5\, by the formula

(8.1) (]—j)_]%: max Y " |(f)n—pik

0< 7
<n<p A

and let an = sup; a{V.

If there exists j such that N—|—a3\, > 0, then all limit functions ¢, (x) are CN+aiy,
Moreover, a],'v tends to an as j — oo and the ¢5(x)’s are CN+an—< for any e > 0.

The point here is that sharp regularity estimates for limit functions can be ob-
tained for a finite number of iterations j, leading to an algorithm with a finite number
of steps, which can be easily implemented on a computer. The main difference with
the dyadic case [17] is that these estimates are not proven to be optimal for a large
class of g, in this paper, because of technical difficulties (due to the lack of shift
property) as mentionned in the introduction. Another difference is that the length of
the sequence (f]7\,),, is now proportional to p? rather than 27. This soon requires much
more computation in the rational case, for the same number of iterations. Moreover,
the convergence of o’ was numerically found slower than in the dyadic case. This
is related to the fact that the actual length of g}* grows as (p/q)’ (instead of 27)
whereas the numerical complexity grows as p’.

As an illustration, consider the Kovalevi¢ and Vetterli example [12] for which
p/q = 3/2. The first 11 iterations are plotted in figure 8.1. Here the best estimate for
regularity r is slightly more than 2.943. This can be compared with an upper bound
derived later in § 9, which is a little less than 2.950. More about this example can be
found in §11.4.

3
2.99r b
2.98- b
2971 b
2.96 b
2.95r .
2,941 b
2.93F b
2.921 b
291 b

2.9 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

Fia. 8.1. 11 dterations of the algorithm defined in Theorem 8.1 for Kovacdevié and Vetterli
3
ezample G(X) = #(1 + X)S(%)S. The dotted line shows the upper estimate as computed
from (10.2) below.

Notice that in this particular example, convergence of the o/,lv is relatively fast.
This is not always the case, as will be seen for the orthonormal example shown
in § 11.5, for which 11 iterations—which involves the computation of approximately
8 x 31 & 1,400, 000 coefficients—are not enough to obtain a fair estimate.
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Especially when a high number of iterations is needed to obtain a good estimate,
it is important to derive alternate bounds which, although less accurate, will be easier
to compute. This is done in the next two sections. As a useful preliminary, we first
formulate our algorithm using matrices.

9. Matrix formulation of Hélder regularity estimates. Daubechies and
Lagarias [8, 9] proposed a sharp Holder regularity estimate based on matrix products
in the dyadic case. Their work was based on two-scale difference equations, and we
have seen in § 4.4 that this approach cannot be applied directly in the rational case.
However, one of us [17] showed that Daubechies and Lagarias estimates could be
recovered (with slight changes) from the discrete approach that is followed in this
paper. Therefore, it should be possible to extend Daubechies and Lagarias method
to the rational case using the discrete approach. This is the aim of this section.

e R e G e

(a) Flow-graph giving f’
(b) A rewriting of Fig. 9.1 (a).

1 X_THF(X) X_rji1F(‘X f;7n+n0+P7k

(c) A rewriting of Fig. 9.1 (b).

qIn+pik

~—

Fia. 9.1. Derivation of the matriz formulation of Hélder regularity estimates using flow-graph
notation (see text).

We first rewrite formula (8.1) using the flow-graph notation. 'This derivation
is different from the one explained in [17] in the dyadic case and is perhaps eas-
ier to understand. First, we consider max, Y., |(f?)ntpix|, where we have dropped
the Qub@(’ript N for convenience. It will be also convenient to rewrite this sum as
max, y . |(f )anﬂ,]k\ which is justified in the proof of lemma 5.2. Now, for a fixed
value of n, (f7)gin4pix, considered as a sequence in k. is the output of the flow-graph
depicted in Fig. 9.1 (a). This figure looks very similar to Fig. 2.1 (b), which corre-
sponds to the operator G7. In fact, it is a dual form of Fig. 2.1 (b), where p and ¢ have
been interchanged. It is easy to see that Fig. 9.1 (a) can be decomposed as shown in
Fig. 9.1 (b), just like G7 can be decomposed into products of G as in Fig. 1.1 (b).

Now, we move the initial sequence X =" to the right, by decomposing n into a
sequence of integers n; and r;, 0 < r; < p, using the following recursion.

n = (pno +ra)/q
ng = (pn1+r1)/q
1= (pn2+712)/q
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In this decomposition, n;4q and r; 41 are the quotient and remainder, respectively, of
the integer division of ¢n; by p. The resulting flow-graph, fed by input J,, (whose
associated polynomial is 1), is given in Fig. 9.1 (¢). Thus, we end up with a product
of j operators labelled by r;, ¢ = 0, ..., j — 1, each of them corresponding to the
following actions:

1. Up-sampling the input u, by a factor ¢.

2. Shifting the result by r; and convolving it by f,, then

3. Down-sampling by a factor p to produce the output v,.
Such an operator can be easily rewritten as

r
(91) Uy —> Unp = Z U fpn—qk+r
keZ

There are p distinct operators of this form, depending on the value of r, r =0, ...,
p—1.

In matrix form, they are obtained by keeping every pth line and every ¢gth column
of a convolution matrix. Thus, the matrix corresponding to F” is

fr fr—q fr—Zq
fr+p fr+pfq fr+p72q fr+p73q
(92) F = .fr+2p .fr+2p—q .fr+2p—2q fr+2p—3q
.f’l'+3p .f7'+3p—q .f7'+3p—2q f7'+3p—3q

whose entry in the ith line (i > 0) and jth column (j > 0) is fryin—j;q. Of course, this
reduces to two different matrices in the dyadic case [17]. In the p-adic case [9], there
are p different matrices. Notice that the number of these matrices does not depend
on q.

It is to be emphasized that the size of these matrices can be taken finite, owing to
the fact that the sampling ratio ¢/p involved is < 1. More precisely, all matrices (9.2)
will have size K x K, where K is the minimum number such that an input z,, of length
K (2, =0 for n < 0 and n > K) yields an output of the same length. From (9.1), it
is easily seen that

9.3) K= {QJ 41

and I is the length of the sequence f,. In the dyadic case (p =2, ¢ = 1), this size is

L —1[17]. In the case p/q = 3/2, we obtain matrices of size L — 2. More generally, if

p — ¢ = 1, matrices have size L — ¢, and are even smaller when p — ¢ is larger!.
Thus, we have rewritten (8.1) as the ['-norm of a product of square matrices of

size (9.3) and form (9.2). In fact we have

p —jozk, j—1
9.4 b - B
- (5) = O]

This equation can be justified by the following. In what we obtained so far, only the
{-norm of the first column of the matrix product should appear, because the initial

"However, for the same length of subdivision mask g, L is larger as q is taken large, due to
multiplication by powers of (1 — X 9) in (6.2)).
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sequence in Fig. 9.1 (c) is §,, which corresponds to the vector (1,0, ...,0)". However,
the other columns are obtained by shifting the initial sequence, which, as we just
showed, amounts to changing the values of r;. Hence, we can replace the {!-norm
of the first column of the matrix product by the I'-norm over all columns, i.e., the
*-norm of the matrix product itself, which gives (9.4).

10. Simple lower and upper bounds. We can extend (9.4) to any other
matrix norm. Then the ozf\, depend on the choice of the norm, but their upper limit
an as j — oo does not since in finite dimension—here K as defined by (9.3)—all
norms are equivalent.

In particular, we consider matrix norms which satisfy the inequality [|[AB]|| <
[|A]l.]IB]|. A useful example is the £Znorm ||A]]» = \/p(ATA) where p(M) denotes
the spectral radius (maximum of moduli of eigenvalues) of M.

In this case we are able to derive simple lower bounds for a. Indeed, collecting
products of J consecutive matrices Fy in (9.4), using the norm inequality and letting
j — oo one easily finds, for any J > 0, the following lower bound for the regularity

estimate:

We also derive an upper bound for ax by considering a matrix norm which derives
from a vector norm:

J-1

[I¥y

i=0

1
(10.1) N — 7|0gp/q (05?32;(—1

M) = s
In particular, this is how f-norms ||A[|, are defined.

To obtain this upper bound, let M = H;’;GI Fy where r; € (0,1,...p—1). It is
easy to see that ||M]|| > p(M) by taking u as an eigenvector associated to the largest
eigenvalue of M. Using this inequality in (9.4) we find ay < —log,,,(p(M))/J.
Taking all the possibilities for the choice of (rg,r1,...7;_1) into account, an upper
bound of N + ay, which is the best regularity estimate as provided by Theorem 8.1,
is

J—1
1 r
(10.2) N — 710gp/q (Oszrjg?_lp(g FN)) .

Of course, our lower and upper bounds become sharper as J increases. It is also
possible, following the approach taken in [17, Thm 12.1] to generalize Daubechies and
Lagarias method [9] for determining a closed-form expression for the best possible
regularity order N 4+ an of Theorem 8.1.

11. Examples. In this section, we illustrate the matrix formulation (9.4) by ap-
plying formulae (10.1) and (10.2) to simple examples of g,,. The most simple example
we can think of is

(11.1) ;(X):i(

pN

1— xp\ M
1—X>

for which

(11.2) FN(X):LNC_Xq)NH
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In the dyadic case (p/q = 2). we obtain B-spline functions (see e.g. [17]), which
are C. In the rational case, stepwise, non-continuous limit functions are obtained
(see [1]) for N = 0. In the following, we concentrate on the case N >0, p/q = 3/2.

11.1. Case N = 1. This is the “Eiffel tower” example illustrated in Fig. 1.2. We
have Fy(X) = 0.5+ X 4+ 0.5X2, which gives three 1 x 1 matrices F7, »r = 0, 1 and 2,
having entries 1/2, 1 and 1/2, respectively. Here, the lower bound (10.1) and upper
bound (10.2) are equal to 1. Therefore, limit functions are 01, and this is the best
possible regularity order that Theorem 8.1 can provide.

11.2. Case N = 2. The next example gives F5(X) = +(1 + X)3. We obtain
three 2 x 2 matrices,

1740 3/4 0 TR
1/4 3/4 )°\ 0 3/4 )" 0 1/4 )
In this case, the lower and upper bounds are again equal to 2 —log(3/4)/log(3/2) =

2.709. .., and limit functions are ('72'709“', which is optimal for Theorem 8.1.

11.3. Case N = 3. We obtain

/8 0 0 12 0 0 3/4 1/8 0
12 12 0 |, 1/8 3/4 1/8 | and [ 0O 172 1/2
0 1/8 3/4 0 0 1/2 0 0 1/8

as matrices, whose norms and spectral radii are all equal to 3/4. Hence, the Holder
regularity order is 3 —log(3/4)/log(3/2) = 3.709 ... and the functions are in C370° -,

an optimal result for Theorem 8.1.

11.4. Kovadevié¢ and Vetterli example (p/q = 3/2). Kovalevi¢ and Vetterli

considered the example G(X) = (1 + X)B(%)B in [12]. We find 2.9439 < r <
2.9498 as is shown in figure 8.1. (The (2 lower estimate with j = 4 in (10.1) gives
a poorer estimate r > 2.717.) The limit functions are thus almost three times dif-
ferentiable. The second derivative §%pq(z) is plotted in figure 11.1. Although not

differentiable, it appears quite smooth.

0.5

0 i

-0.5[ 1

_1 L L L L L L L L
0 1 2 3 4 5 6 7 8 9
Fia. 11.1. Second derivative of the limit function ¢q(x) generated by G(X) = %(] +

31=X5\:
X)%(ll_x )%‘
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11.5. Orthonormal sequence. As a last example, we consider an orthonormal
subdivision mask, i.e.. such that f ws(x)ps (@) de = d5_5. It was designed using an
algorithm presented in [2; 4]. The coefficients g,, are given in table 11.1.

TarLE 11.1
Subdivision orthonormal mask gn

gn
0.0366962809

0
-0.1576250675
-0.2061216574
0.1792525378
0.8853741953
1.1694253766
0.8207474622
0.2722508722

W= o3

o ~I O Ot

The first 11 iterations of our estimation algorithm (§ 8) are shown in figure 11.2.
After 4 iterations, the estimate is still negative, while the lower bound (10.1) computed
with the £? norm gives a much better estimate r = 0.1015. Although more accurate,
(10.1) requires heavier computation.

0.5 1

0.4 B

1 2 3 4 5 6 7 8 9 10 11

Fia. 11.2. Regularity estimates for the subdivision mask given in table 11.1 as a function of
the iteration number: the dotted line at r = 0.478 indicates the mazimal regularity estimate (10.2),
while the dashed line at r = 0.1015 indicates the lower bound (10.1) both computed for j = 4

Four of the limit functions are plotted in figure 11.3. Notice how different they
look. We have found by experiment that limit functions ¢, (z) tend to look alike as
regularity increases. More on this in [5].
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2 2
1.5 pu(w) 115 p-1(x)

1
105
0

6°% 0 1 2 3 4 5 6 7
2 2
15 ¢O($) 15
1 1
0.5 0.5
0 0

0% 1T 2 8 4 5 6 7 8°%% 9

Fia. 11.3. Limit functions @s(x) for s = —2...1 generated by the orthonormal filter given in
table 11.1
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