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ABSTRACT 

A new image coding technique using statistical properties 
of quantization errors and Ls-norm criterion is investigated. 
The original image is preprocessed, quantized, encoded and 
reconstructed within a given confidence interval. We focus on 
iterated filter banks as a preprocessing technique, and provide 
a comparison with linear prediction in the case of very good 
quality (almost lossless) image coding. 

1. INTRODUCTION 

The transmission and storage of digital signals require the 
original data to be compressed. In many applications, the 
image is transformed into a set of binary integers such that 
the original data can be recovered from the binary set within 
some level of degradation. These ”lossy” image compression 
schemes are usually based on transform coding techniques. 
The original image is split into a set of coefficients using some 
invertible transformation which improves the signal statistics 
prior to encoding. Such transformations are: DCT, filter 
banks, wavelets [2], wavelet packets [7], etc. Linear predic- 
tion [6] can also be considered as a particular transformation. 
These transformations do not produce any bit-rate reduction, 
but prepare the following steps. The transform coefficients 
are then quantized (which produces some data compression, 
but usually generates distortion in the reconstructed signal) 
and possibly entropy-coded (further compressing the data, 
without additional distortion). 

The compression scheme is optimized by choosing an ap- 
propriate set of parameters (transform, quantizer steps) so 
that the overall compression ratio is minimized for a given re- 
construction error. Classical lossy compression applications 
minimize an m.s.e.-like criterion on the reconstruction error 
[7]. Thus, the overall distortion is evaluated and controlled 
using L2-norm. However, this criterion is global (on the whole 
image) and does not exploit “local” knowledge on the signal, 
which is always available. At least, one knows the number 
of pixels on which the original image is encoded. Moreover, 
in many applications, one has indications on the precision 
with which the pixel values are obtained. The L2-norm can- 
not take such information into account, since it ”averages” 
the errors in the whole image. This paper proposes methods 
allowing such knowledge to be used as a criterion involving 
a “confidence interval”. As a result, this paper sticks to the 
case of very good quality (almost lossless) image coding. 

As a preprocessing, we considered two classical kinds of 
transformations: iterated “wavelet” filter banks and linear 
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prediction. In each case, the original signal x is transformed, 
quantized, encoded and reconstructed to give 2, with a dis- 
tortion Ax = 5 - 5. In our schemes, either prediction or 
filter banks achieve perfect reconstruction if no quantization 
is involved. If quantization occurs, the reconstruction error 
is only due to the quantization errors. Therefore, the prob- 
lem is to determine the best quantizers in the compression 
scheme so as to achieve at least p% of errors inside the con- 
fidence interval. In other words, we minimize the overall bit 
rate under the constraint 

prob(lAz1 5 t }  2 p% (1) 

As an example, the compression scheme can be tuned in such 
a way that only 2% the reconstruction error exceed half the 
initial quantization step: in other words, 98% the output 
pixels will be equal to the original ones. 

2. FILTER BANKS CODING 

The corresponding compression scheme (figure 2) uses a per- 
fect reconstruction octaveband filter bank, scalar uniform 
quantization and global Huffmann coders. For a given set of 
perfect reconstruction filters, the problem is to determine the 
quantizers that minimize the global bit rate while ensuring 
that the constraint (1) is met. Solving this problem requires 
some statistical modelling of the reconstruction error. 

2.1. Statistical properties of the reconstruction error 

The transformation applied to the original signal increases 
the density of the original discrete data and allows a contin- 
uous modeling and a statistical study. It is shown in [l] that 
the signals in the various high-pass subbands are accurately 
modeled by Laplacian distributions. 

After transformation, the resulting signals y are quan- 
tized to be encoded. Here, we consider only scalar uniform 
quantization with step q. The quantization error is thus an 
additive noise lying between 3 and [8]. It is shown in [8] 
that, if the ratio is high (more than 0.7), the quantization 
noise can be modeled as a uniform distribution: 

f e ( Y )  = { i f T < z < :  
0 otherwise 

with a zero-mean and a variance 2,  In our case (almost loss- 
less coding), the above condition is satisfied and the quanti- 
zation error is uniform. 

‘? 
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Now, since we use perfect reconstruction filters and loss- 
less coders, the error is generated by the quantizers only. 
The system being linear, the reconstruction error is the re- 
sult of the contribution of the various quantization errors to 
the actual output. In each subband, the quantization error is 
interpolated and filtered through the synthesis filters as de- 
picted in figure 1 for a single iteration on a 1D-signal. For 
simplicity, we show in this 1-D context that the reconstruc- 
tion error has a Gaussian distribution. The demonstration 
would be equivalent in the 2-D case. 

Due to the oversampling, the odd and even samples of 
Ax depend on a different set of filter coefficients. 

where Ng (resp. Nh) is the filter g (resp. h) length. The 
quantization errors E' have, a uniform distribution in [ y ,  t ]  
with zero-mean and variance $. 

The reconstruction error is thus a linear combination of 
uniform distributions, with different widths (due to the dif- 
ferent values of the quantization steps in the subbands). It 
can be shown that the reconstruction error converges to a 
Gaussian distribution, provided that some conditions on its 
first three moments are satisfied (in order to use central limit 
ramifications developped in [ S I ) .  Due to lack of space, the 
demonstration is only outlined here. 

Consider one subband of the synthesis phase, e.g. the 
low-pass one of figure 1, and denote by e its contribution to 
the total reconstruction error. We have ep = Ck c:-kgZk+p 
where p = 0 for the even samples and p = 1 for the odd sam- 
ples. It is easily shown that ep has zero-mean and variance 

Under appropriate conditions, which hold under the same 
hypothesis as the one recalled earlier for the quantization 
noise to be uniform, the reconstruction error can be shown 
to be a sum of such errors (which also holds for 2D-signals 
and many iterations of the filter bank). Thus, the general- 
ized central limit theorem, as detailed in [ 5 ] ,  can be used to 
show that an infinite sum of these errors has a Gaussian dis- 
tribution. In practice, the filter banks are iterated several 
times. For J = 5 ,  this corresponds to 16 subbands and the 
convergence to a Gaussian distribution is ensured. 

Therefore, we end up with a Gaussian reconstruction er- 
ror, with zero-mean and variance U' depending on the quan- 
tization steps and the filter coefficients in all subbands. For 
example, when J = 1, in the 2-D case, we have 

= E [ ( x k  c : - k g 2 k + p ) 2 ] .  

where p and q are associated to odd and even samples of 
the error. In general, for J iterations, the whole error is a 
contribution of the different samples ( A X ~ , , ) ~ , , = ~ , . . . , ~ J  -1 due to 
the J interpolations. Furthermore, these samples have the 
same contribution in the whole signal, and are all Gaussian 
with variance U:,,. 

2.2. Quantizer optimization 

Since a statistical model of the reconstruction error is avail- 
able, we can find the quantizers allowing a certain percentage 
of distortion as in (1). This requirement reads: 

1 
225 up., Jz 

(3) 

1 1 t 
prob{lAxl 5 t }  = - prob{Ax,,,} = 225 erf(- 

PIP P 4  

where erf(a) = 5 Joa d d x  is the usual error function and 
U;,, depends on the squared quantization steps as seen above. 

Decimation in the analysis filters halves the size of the 
subimage in each subband and since we use separable dyadic 
filters, the contribution to the total bit-rate of a subimage 
after j iterations is weighted by n, = 2-2J.  Let b denote the 
total bit rate, T,  and q, the dynamic range and quantization 
step in subband #i, respectively. The contribution of sub- 
band i to the total bitrate is b,,  which satisfies q, = T,  2-4. 

Quantizers have to be chosen such that the total bit rate, 
b = E, n , b , ,  is minimum while (3) is satisfied. Thus, we end 
up with a constrained minimization problem 

(4) 

In its present form, it is a nonlinear minimization problem 
with a nonlinear constraint. To avoid divergence of general 
optimization algorithms, we solve the problem in two steps: 
first, we determine the best quantizers which minimize the 
bit rate such that the maximum error is less than a given 
threshold. Then, using the relationship between the variance 
of the error and the quantization steps, we solve (1). 

2.3. First step: Deterministic point of view 

In a first step, a deterministic approach is used to find the 
quantizers such that the bit rate is minimum and the recon- 
struction error Ax does not exceed a given threshold t ,  i.e., 
lAx,I 5 t for all n. This condition involves the L" norm of 
the error, and leads to a constrained minimization problem: 

( 5 )  

2.3.1. Estimatzon of the distortion Lm n o m  

Since the exact value of the maximum depends on the original 
image, we can only give an upper bound as an estimate of the 
L" norm of the reconstruction error. We first keep with the 
simplified context of a monodimensional signal, with a simple 
2-band filterbank. The result is then extended to 2D-signals 
and J iterations. 

According to (2), an upper bound is obtained if the quan- 
tization errors (E' and cl) are extremum and have the same 
sign as the filter coefficients. Since ei satisfies lc'l 5 2, where 
qz is the quantization step, we obtain: 

!$ lg2kl + f ck lh2kl 

{ !$ ck IgZk+lI f 2 x k  lh2k+l l  

llA41z I m a  

Since separable filter banks are involved, the filtering and 
interpolation are separately done on lines then columns of the 
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6: 

2D-signals, which results in four types of samples, depending 
on the parity of their indexes, giving 

c 9  

After J iterations of the filter bank we similarly obtain: 

I 

E f - - - c  Ax 

where p and q vary between 0 and 2J - 1 (i.e. 2’ x 2’ = 22J 
possibilities) and come from the J successive interpolations in 
the synthesis; m and n describe the different signal samples. 

Without any a priori knowledge on the signal, this esti- 
mator is optimal, but somewhat pessimistic for actual images. 
Note that it is a linear function of the quantization steps. 

Since Ax is the contribution of the interpolated samples 
 AX^,^, the relation llAzllm 5 t has to be satisfied for every 
(p ,q )  combination, which yields to a linear system of con- 
straints. Thus, the optimization problem (5) has a convex 
criterion: E, n, log2(:), using the notations of section 2.2, 
and linear constraints E, a,,q, 5 t where a,, function of the 
set of filter coefficients involved in subband i and the combi- 
nation j of p and q seen above. 

4 

2.3.2. Deterministic computation of the quantization steps 

Finding quantization steps that minimize the bit-rate such 
that the reconstruction error is 5 t is thus equivalent to solv- 
ing the constrained optimization problem 

* h .  

with convex criterion and linear constraints (figure 3.a). 
As illustrated in figure 3, the solution is unique, and 

lies on the boundary of the feasible region. Since, in actual 
problems, the number of constraints is huge (over 1,000 con- 
straints when the low-pass filter is iterated five times in 2-D), 
general optimization procedures cannot be used. Moreover, 
these general optimization algorithms need a starting .point 
close to the optimum so as to avoid divergence problems. 
Therefore, we have chosen to solve the problem in two steps: 
first, find an approximate solution, then use a general op- 
timization algorithm using this approximation as a starting 
point to find the optimum solution. 

Using equation qi = r, 2-**, problem ( 6 )  can also be writ- 
ten 

(7) 

with linear criterion and convex constraints (figure 3.b). 

the function 2-’. Since this function is convex and invertible, 
each vertex (Q,) of (K,) is associated to a “virtual” vertex 
(B,)  of (K2) which saturates the same constraints. The feasi- 
ble domain ( D )  determined by the constraints (B,) is a con- 
vex polyhedron. Furthermore, the minimization of the linear 
criterion on ( D )  gives the best vertex of (6); the optimal s e  
lution is on the boundary. Since the criterion is linear and 
( D )  a convex polyhedron, the best vertex is obtained using a 
variation of the simplex algorithm [Q]. But, since ( D )  is not 
easily determined and (K,)  and (K2) are equivalent, the best 
vertex in ( D )  is associated to the vertex in (K, )  where the 
criterion is minimum. The problem can thus be solved using 
version (6). However, we have to adapt the simplex algorithm 
to this particular case of a convex criterion, by evaluating the 
cost function at each vertex. 

The obtained best vertex is an approximation of the op- 
timum which is on the boundary of the feasible region. The 
obtained approximate solution is used in the second step as 
a starting point of some general optimization algorithm, to 
find the optimum solution. Its convergence is thus ensured 
and relatively fast. 

So far, we have determined optimal quantization steps 
according to the deterministic approach in (6). As it is, the 
proposed solution already allows to perform lossless coding, 
by choosing t = 0.5, and requantizing f after reconstruction. 
However, some applications allow a “small” number of errors 
to exceed the given threshold. Hence we now return to the 
statistical problem (4). 

Problems (P l )  and (P2) are equivalent and related through 

2.4. Statistical computation of the quantization steps 

Recall that the quantization steps depend linearly on the 
threshold t. Hence, if the threshold t is multiplied by some 
constant Q, the steps pi are also multiplied by (Y and the 
variance u2 of the quantization error by CY’. Therefore, it 
is natural to state the problem relatively to the one solved 
in section 2.3.2 : the new quantization steps are chosen as 
q: = Q q,. This scale factor Q is thus easily determined using 
the relation 
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Taking into account the different samples Axp,¶, we find 
cy by solving the equation: 

(9) 

where up,¶ is the standard deviation associated to and 
is a function of the optimal quantization steps solution of the 
deterministic problem (6). Since (9) is nonlinear, it is solved 
using a general algorithm. However, since it depends on a 
single variable a, solutions are reliable and fast. 

2.5. Results 

A direct application of the above scale factor a to the quan- 
tization steps qi computed as described in section 2.3.2, gives 
the results shown in table 1. These results are obtained in 
the context of “almost lossless coding”. The first column pro- 
vides true lossless coding (t < 0.5) using the optimal quan- 
tizers according to the LE-criterion. Since the estimate of 
the L” norm is not achieved in the real images, the obtained 
maximum error is less than the imposed threshold t = 0.5. 
So, using an iterative algorithm and the linear dependency 
between the quantization steps and the threshold, we find the 
scale factor which brings the reconstruction error at t = 0.5. 
The other columns of table 1, show as expected that the bit 
rate reduction is more and more important when p decreases. 

All this procedure may seem fairly complicated. However, 
note that all quantities are signal-independent: the whole 
optimization can be done off-line. It amounts to computing 
the quantization steps taking an L ,  norm into account rather 
than an Lz norm. Otherwise, the whole coding/decoding 
scheme is identical to  the classical one: only the quantization 
steps differ. It should also be noted that both solutions using 
the different norms are very different: the repartition of the 
errors as well as their statistics is drastically changed. 

3. COMPARISON BETWEEN LPC AND FBC 

The linear prediction case has been investigated following the 
same lines as described above for filter banks. For the results 
presented in this paper, we used a third-order predictor (there 
is only a marginal gain beyond a third-order predictor): 

Xn-m = hl&-l.,n-l f hZZn,n-I + h3Zn-1,tn 

where h, are the predictor coefficients. This predictor is opti- 
mized according to the statistics of the image (see e.g. [6, 41). 
Given this predictor, we choose the quantizer allowing a bit 
rate reduction and a reconstruction error within a given con- 
fidence interval. 

An example of what can be done using this approach is 
shown in table 1 for two images. Again all results are pro- 
vided in the context of ”almost lossless coding”, hence with 
reference to a threshold t = 0.5, with original images initially 
quantized on 8 bits per pixel (bpp). The first column pro- 
vides the results obtained forp = 100% of errors in [-0.5,0.5], 
which corresponds to true lossless coding, since the image is 
perfectly obtained by requantizing the reconstructed signal 
on 8 bpp. The other columns show the variation of the bi- 
trate by allowing more and more errors to exceed the chosen 
threshold, in a controlled manner, using the above methods. 

Note that in both cases of linear prediction and filterbank 
coding, the observed percentages on the reconstructed image 
are almost equal to the required ones. Although the bit rate 
decrease is noticeable, it is not well improved when more 
errors are allowed, i.e. when the percentage p% decreases. A 
larger coding gain would be obtained only by working with a 
larger threshold t. However, this corresponds to an increase of 
the distortion, and it is well known that replacing the linear 
prediction by a filterbank may lead to better compression 
ratios in this case. This is clearly checked in table 1: LPC 
achieves better compression rate than FBC when lossless or 
near to lossless coding is required. When more loss is allowed 
( p  < go%), the filter banks become more efficient. 

4. CONCLUSION 

The proposed approach has a very large flexibility: 
- It allows to perform efficient lossless coding by simple 

means (see table 1). 
- It allows a local control of the error. Varying cy (the scale 

factor applied to the “optimal” quantization steps) according 
to the value of the signal allows spatial masking to be used. 

- Whatever the application, any signal is measured with 
a given accuracy, hence defining a confidence interval. Our 
method is able to  maintain the reconstruction errors in this 
confidence interval, thus resulting in practical lossless coding. 
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Figure 2: Filter bank compression scheme. The encoding part uses an octave-band separable filter bank iterated J times on the 
lowpass filter which splits the input image into (35 + 1) subimages. These subimages are then quantized and losslessly encoded 
(using Huffmann coding). The synthesis part reconstructs the approximate signal 5. 

Q;' - 
Q;' - 

bi 
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Figure 3: Equivalent constrained optimization problems. (a) Problem (PI) has a convex cost function and linear constraints 
delimiting the feasible region (K1). (b) Problem (P2) has a linear cost function and convex constraints, the fesible region is 
(Kz). We easily see from (Pl) that there is an optimum solution which is on the boundary of ( K , )  or (Kz). 

FB-I - f 

Table 1: Almost lossless coding using filter banks (FB) or linear prediction (LP). We show the overall bitrates obtained after a 
Global HufFmann Code (GHC), for varying percentages but a constant threshold t = 0.5. The FB method here uses 5 iterations 
and the 12-tap Daubechies filter [3]. For p = loo%, the deterministic criterion of 2.3.2 is used. The LP method uses three 
neighbor pixels predictor (see text). 
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