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ABSTRACT 
“Regularity” is a new criterion brought by wavelet the- 
ory over filter banks. It is therefore important to know 
whether this criterion is relevant for applications such as im- 
age compression, in comparison with other filter properties. 
The following problem is addressed: How do regularity, fre- 
quency selectivity and phase act upon the performance of 
a still image compression scheme using wavelet decomposi- 
tion? Preliminary results are given for a simple compression 
scheme using orthonormal separable wavelet transforms, 
scalar quantization, rateldistortion optimization, various 
coding criteria, and a large number of “wavelet” filters with 
balanced regularity, frequency selectivity and phase. 

1. INTRODUCTION 

This paper investigates the usefulness of several filter prop- 
erties in a simple image compression scheme using a “dis- 
crete wavelet transform (DWT),” implemented as an octave- 
band tree filter bank allowing perfect reconstruction. Such 
a filter bank, depicted in Fig. 1, was successfully applied for 
some time in subband coding of speech and images. It is 
therefore clear that  the DWT finds immediate application 
in compression problems: it is essentially a subband cod- 
ing system. The main difference with traditional subband 
coding, and, therefore, the main novelty of wavelets in this 
context, is that  filters are chosen to be “regular” [3.8]. 

X ( Z )  

Figure 1: Paraunitary two-band filter bank ( i n  non-causal 
form) allowing perfect reconstruction. Filters H ( z )  and 
G ( z )  are half-band low-pass and high-pass, respectively. 

Although intuitive arguments have been raised which 
hint that  regularity should be useful for image coding, and 
several image compression schemes using regular wavelets 
have been proposed[l], the actual relevance of this new 
property is not clear yet [8]. It is therefore important to 
understand how this criterion acts upon the performance of 

coding systems in competition with other constraints such 
as number of taps, frequency selectivity, and group delay 
deviation (filters whose phase is close to linear or not), and 
to measure i ts  effects on compression performance. 

2. REGULAR FILTER DESIGN 

Today, there is a relatively small number of families of reg- 
ular wavelet filters available in the literature-the most fa- 
mous ones being Daubechies’ orthonormal filters [3]-and 
a number of compression schemes were designed using od- 
hoc filters [l]. This is a serious limitation since different 
properties like frequency selectivity and regularity are in- 
terrelated inside one family of filters; hence, i t  is impossible 
to explain some coding performance as a consequence to one 
property and not to the other. We first overcome this lim- 
itation using a simple filter design procedure which allows 
one to vary stop-band attenuation, regularity, and phase 
quite independently. 

We restrict ourselves t o  1D FIR filters, hence use a s e p  
arable wavelet transform, because regularity can be opti- 
mally measured in the 1D case [6], while estimating regular- 
ity is much more complex in the nonseparable case [a]. We 
also restrict ourselves to orthonormal filters, because only 
one filter has to be designed (analysis and synthesis filters 
are equal within time reversal). This brings better control 
over stop-band attenuation than in more general situations 
(“hi-orthogonal” filters [l], which are not half-band filters 
i n  general), but forbids (non-trivial) linear phase choices [3]. 
Kote that it is also generally believed tha t  the filter bank 
should not deviate far from orthonormality if efficient cod- 
ing is needed [4]. This is anyway another open question. 

Our design procedure maximizes stop-band attenuation 
for a givrn transition bandwidth, while imposing a zero of 
multiplicit,y K at half the sampling frequency in the low- 
pass frequency response. The  latter condition ensures some 
regularity, which is quantified using an optimal algorithm 
proposed in [ 6 ] .  Therefore, the obtained filters are maxi- 
mally selective for a given regularity order. 

The design constraints are linear in the coefficients of 
the product filter P ( z )  = H ( z ) H ( z - ’ )  (regularity condi- 
t,ions become equality constraints, while frequency domain 
constraints become inequality constraints). Hence, the de- 
sign problem can easily be solved using linear programming. 
More efficient design procedures are currently under study. 

v-550 

0-7803-0946-4193 $3.00 ‘ 1993 IEEE 



An extensive use of this procedure provides a large num- 
ber of filters for which attenuation and regularity can be 
chosen quite independently with a good coverage. The  de- 
sign results can be summarized in figures such as Fig. 2 (a): 
For a given transition bandwidth, the curves provide the 
obtained attenuation vs. the regularity order. Notice that 
in Fig. 2 (a), regularity is quantified using Sobolev regu- 
larity, which is naturally related to magnitude specifica- 
tions [7]. However, once the phase of the filters G ( z )  and 
H ( z )  are determined, regularity is best quantified using op- 
timal Holder regularity estimates [6,7]. The plots were, 
however, so close that we only provide the one making use 
of the Sobolev estimate. 
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Figure 2: (a). Attenuation (in dB) vs. “Sobolev” regu- 
larity [7] for the families of filters obtained. (b).  Obtained 
low-pass filters frequency responses IH(e3W)IZ with (normal- 
ized) transition bandwidth Aw = 0.14 and length L = 16. 
Daubechies and Smith-Barnwell filters (solid) correspond 
to h- = 8 and 0, respectively . Intermediate filters are 
shown for K = 2 (dashed), K = 4 (dotted) and h = 6 
(dash-dotted). 

Maximally selective regular filters of length L = 16 are 
shown in Fig. 2 (b). We observed that if L/2 - h’ is odd, 
then the optimum filter provided by the design algorithm 
has one more zero a t  z = -1 .  For example, if one specifies 
L = 16 and h’ = 1, the optimum solution will have h- = 2 
zeroes a t  the Nyquist frequency. Therefore, only even values 
of K are considered in Fig. 2 (b).  As h increases, stop- 
band attenuation is weaker, but flatness a t  w = 0.5 and 
regularity become higher. At one extreme, I< = L/2 ,  one 
recovers Daubechies filters [3]; at the other, h- = 0, Smith 

and Barnwell filters [9]. Therefore, this design procedure 
allows a soft transition between the two families of filters. 
Note that while Daubechies filters are not selective at all, 
selectivity can be greatly improved by relaxing a few zeroes 
a t  half the sampling frequency, resulting in a small loss of 
regularity. The  converse statement is true for Smith and 
Barnwell filters. 

Phase behavior: For a given frequency response, there 
are 21L/41-1 different filter solutions corresponding to dif- 
ferent phases [3]. Unless otherwise mentionced, we use in 
this paper the solutions tha t  are closest t o  linear phase (see 
e.g. [9]), i.e., whose group delay deviation in the pass-band 
is smallest (about 1 to 2.5 samples for L 5 16). There- 
fore, there exists some flexibility concerning the choice of 
the phase. As shown in Fig. 3,  solutions closest to linear 
phase are obtained for Daubechies filters. 

FILTER LENGTH 

Figure 3: Minimum group delay ,deviation (in the 
pass-band) of “closest to linear phase” filters H ( z )  versus 
lengths L for several values of p = L / 4  - K/2.  Solutions 
closest to linear phase are obtained for p = 0 (Daubechies 
filters [3]). 

3. RAT E /D IS T 0 RT IO N 0 P TI M I Z AT IO N 

The compression scheme (Fig. 4) consists of a separable 
DWT on J decomposition levels (or “octaves”), and a set 
of possible quantizers Q; for each transformed subimage, 
corresponding to different bit rates (from 0 to 8 bits per 
pixel (bpp) with step size 0.5 bpp). The  coder performance 
was evaluated by three different parameters, which can be 
taken as the bit rate reference R: overall quantizer bit rate, 
bit rate after Huffmann coding and entropy. For simplicity, 
the results shown in this summary were obtained with scalar 
quantization and Huffmann coding. However, we observed 
that results obtained with other coding criteria and/or lat- 
tice vector quantization in multidimensions [l] are similar 
except for the bit rate range. 

In order to provide a fair comparison of compression 
results for different filters, we have used an optimization 
procedure similar to the one described in [5] for wavelet 
packets, which selects the best set of quantizers for each 
subimage and the best number of decomposition levels J 
which minimizes the overall distortion D a t  the reconstruc- 
tion (measured by an m.s.e. criterion) for a given rate bud- 
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Figure 4: Image compression scheme with rate / distortion 
optimization. 

get Rb. Thus the initial problem is 

min D .  
R<Rb 

The rate budget was chosen in the range 0.5 5 R b  < 4 bpp 
using the three bit rate definitions given above. This prob- 
lem is solved by an unconstrained optimization procedure, 
using a Lagrangian cost function; it takes the form of a 
nested algorithm [5] 

where X is the Lagrangian multiplier associated to the con- 
straint R < R b .  As explained in [5], this algorithm is greatly 
simplified by the use of orthonormal filters, which make 
both rate and distortion additive over one step of decompo- 
sition: R = E, R, and D = E, D,. We refer the interested 
reader to [5] for further details. 

4. RESULTS 

Fig. 5 shows a typical rate/distortion curve for the family 
of 12-tap filters designed as shown in section 2, and the 
576 x 720 BARBARA image coded on 8 bpp. Clearly, trad- 
ing regularity for selectivity in the filters affects the overall 
Peak SNR of the reconstructed image, for a wide range of 
bit rates: More regular (hence, less frequency selective) fil- 
ters are best for a given number of taps. This was observed 
on various images, using various coding criteria, and re- 
lying either on the PSNR or on the visual quality of the 
reconstructed image. This is in agreement with the remark 
made by Kronander [4] that ,  surprisingly, “good” selectiv- 
ity in frequency is not essential for coding performance, at 
least in the present framework of still image compression. 

A detailed look at Fig. 5 reveals two categories of filters: 

1. Those whose low-pass frequency response does not 
vanish a t  half the sampling frequency w = 1 / 2  ( K  = 

0.5 1.5 2.5 

H u f f ”  cod- rate @pp) 

15 

Figure 5 :  PSNR vs. Huffmann bit rate for 4 filters of length 
L = 12 and transition bandwidth Aw = 0.0625, correspond- 
ing to h‘ = 0, 2, 4, and 6 (PSNR increases as K increases). 
Optimization was made using bit rate after Huffmann cod- 
ing as coding criteria. 

0) ,  resulting in very selective, but non-regular filters. 
T h e  obtained PSNR curve lies below the ones corre- 
sponding t o  regular filters by more than 5dB. Finally, 
a strong artifact is clearly visible on the image, even 
for strongly attenuated filters (e.g., 40dB attenua- 
tion [SI) and was also observed by Kronander [4]. 

2 .  Regular filters (h’ 2 1): Their performance all stand 
within only 1 to 2 d B  difference for the same num- 
ber of taps. I t  was nevertheless observed that the 
visual quality of the reconstructed image increases 
slightly as K increases (i.e., as frequency selectivity 
decreases). Here, the filters giving the best perfor- 
mance are Daubechies filters ( K  = L / 2 ) .  

The following additional observations were also made for a 
number of different parameters in our compression scheme. 

0.5 1.5 2.5 
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Figure 6: PSNR vs. Huffmann bit rate for Daubechies fil- 
ters of different lengths ( L  ranging from 2 t o  18). PSNR first 
increases as length increases, until an asymptote is reached 
(for L z 12). Performance is not improving for longer filters 
(PSNR curves are even lowered a bit). 

Fig. 6 illustrates the dependency of coding performance 
on filter lengths. For short filters, performance increases as 
length increases (which also increases regularity). However, 
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results are not improving greatly above L = 10 or 1 2 ,  which 
shows tha t  using very regular filters is probably useless. 
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I 
0.5 1 1.5 2 2.5 3 Figure 8: PSNR vs. Huffmann bit rate for the eight filter so- 

H u f f “  d i n g  rate @pp) lutions of length L = 14 and h‘ = 5, having the same mag- 
nitude response but different phase responses. The  eight 

Figure 7: PSNR vs. Huffmann bit rate for a “non-Dau- 
bechies” filter ( L  = 12, K = 2) ,  designed with transition 
bandwidths Aw = 0.0625, 0.1, and 0.14. PSNR is globally 
higher for increasing values of A w .  

Fig. 7 compares coding performance for different tran- 
sition bandwidths. We observed that performance is im- 
proved when increasing transition bandwidth A w ,  provided 
that there are enough degrees of freedom in the filter de- 
sign: Daubechies filters, for example, do  not depend on the 
specified Aw. The  dependency of performance on Aw is, in 
fact, higher as the number of degrees of freedom, L/2 - h‘, 
is higher. Now, increasing A w  improves stop-band attenu- 
ation, but also makes the frequency response of H ( z )  closer 
to zero about the Nyquist frequency. This latter feature 
will generally increase regularity. Therefore, it  seems that 
the relevant property in our framework is the ability of the 
low-pass filter frequency response to be very small about 
the Nyquist frequency, and a good measure for such be- 
havior is regularity. Frequency selectivity is different, since 
it requires that  the frequency response is attenuated over 
the entire stop-band, and it is generally believed that fil- 
ters with “good” frequency selectivity should have a sharp 
transition bandwidth. The  above discussion shows that fre- 
quency selectivity is not particularly useful here. 

Finally, Fig. 8 compares coding performance for differ- 
ent phases, (where we have used the 256 x 256 LENA image 
for a change). The effect of phase on coding performance is 
almost unnoticable for a fixed frequency response, either for 
the rate/distorion curves (less than 1 d B  difference in Fig. 8) 
or for the visual quality of the reconstructed image. Al- 
though orthogonal filters cannot be linear phase for L > 2 ,  
one of the filters used to produce Fig. 8 has group delay 
variation les than 0.5 sample, which is fairly close to linear 
phase. Whether truely linear phase, biorthogonal filters can 
improve the situation remains an open question. 

5. CONCLUSION 

Results obtained for a simple compression scheme using var- 
ious coding criteria, optimized rate/m.s.e. distortion, and a 
number of FIR filters with balanced regularity, frequency 
selectivity and phase, show that regularity may be rele- 
vant for still image compression, at least for short filters 

curves are almost undistinguishable a t  the level of the fig- 
ure. 

( L  5 12),  for which the regularity order is relatively small. 
Using more regular filters is probably useless, as the com- 
pression performance is not improving greatly for longer 
filters. Moreover, the effect of phase seems negligible for 
orthonormal filters. 

We should emphasize that our results, presented above, 
are valid only under the design assumptions and for the sim- 
ple compression scheme described in the paper. The  role of 
regularity for separable non-orthonormal linear phase sys- 
tems and nonseparable systems is not investigated here and 
requires further investigation. 
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