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SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES*
OLIVIER RIOULf'

Abstract. ‘Convergent subdivision schemes arise in several fields of applied mathematics (com-
puter-aided geometric design, fractals, compactly supported wavelets) and signal processing (mul-
tiresolution decomposition, filter banks). In this paper, a polynomisl description is used to study
the existence and Hélder regularity of limit functions of binary subdivision schemes. Sharp regu-
larity estimates are derived; they are optimal in most cases. They can easily be implemented on a
computer, and simulations show that the exact regularity order is accurately determined after a few
iterations. Connection is made to regularity estimates of solutions to two-scale difference equations
as derived by Daubechies and Lagarias, and other known Fourier-based estimates. The former are
often optimal, while the latter are optimal only for a subclass of symmetric limit functions.

Key words. subdivision algorithms, Holder regularity, Sobolev regularity, two-scale difference
equations, wavelets

AMS(MOS) subject classifications. 26A15, 26A16, 39B05, 42C15, 46E35, 94A12

1. Introduction. This paper focuses on the behavior of real-valued discrete se-
quences u, (n € Z) of finite length under repeated action of an operator G defined
as

(1'1) Unp —g" Un = Zuk 9n—2k-
kEZ

The fixed sequence g, that parameterizes G is called the subdivision mask (14], [15].
It plays a central role in the following. Starting from the initial “impulse” sequence

s.=41 ifn=0,
"7 1 0 otherwise,

a binary subdivision scheme [14], [15], [17] (in one dimension) is an infinite collection
of sequences g7 (j € N), defined by iteration as shown.

9% = G{6,} = gn,
92 =G{g},

(1.2) 3t =G{gi}.

The g¢J’s are fully determined given the mask g,. Of course other initial sequences
can be considered. In addition, this scheme is said to be interpolatory [10]-[15] if
it satisfies the extra condition g, = 6,, which means that all points g at some
level j are carried unchanged to the next level: gé,f 1= g2. In this paper we regard
interpolatory subvision schemes as a special case to which general results will apply.
However, we restrict ourselves to binary subdivision schemes, even though the results
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FiG. 1. A binary subdivision scheme converging to a limit function (after [6]). The discrete
sequences g;, are plotted as “pulses” against n2-9 for j =1, 2, 3, and 6. ‘At each iteration step the
up-scaling operator (1.1) is -applied, which approzimatively doubles the number of coefficients while
preserving a global shape. When j — 00, these discrete curves converge to a “nice-looking,” regular
limit_function, compactly supported on [0,13].

@) i=6.

of this paper easily extend to more general subdivision schemes, for which the number
2 in (1.1) is replaced by any integer p > 2 [8], [9].

Subdivision schemes arise in several fields of applied mathematics and signal pro-
cessing. They have been used for curve fitting and to generate fractal or smooth
curves and surfaces numerically [10]-[15], [17]. They also play an important role in
wavelet theory [1], [3]-[7], [20]-[23], a newly born theory in functional analysis closely
related to filter bank theory in signal processing [20], [18], {21}, [22]. In all of these
applications, the convergence of (1.2) to a function of a continuous variable ¢(z) as j
indefinitely increases is important. It is also important to control several properties
of the limit function @(z) from the choice of the mask gp. For example, whether
limit functions ¢(z) are regular (smooth) or not may be relevant for image coding
applications using wavelets [1], [20], and this has motivated the work presented here.

The aim of this paper is to find necessary and sufficient conditions on the mask
g, for the existence and Holder regularity of the limit function ¢(z). Figure 1 shows
that o(z) can be thought of as a limit of discrete curves gJ, plotted against n277. (We
then say that the sequences gi “converge” to p(z) as j — 00.) In addition, we shall
often be in the case of uniform convergence. Intuitively, this means that the discrete
curves gJ, converge “as a whole” to the limit curve ¢(z). Section 3 discusses several
possible definitions for both types of convergence.

This paper is organized as follows. First, §2 describes binary subdivision schemes
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(1.2) using the convenient polynomial notation. Then, various definitions of conver-
gence are discussed (§3), and a basic necessary condition for the existence of a limit
function is derived (§4). We show how the values of a limit function can be computed
exactly on a computer (§5). The relation between the values of g, and those of ¢(z)
leads us to define “stable” subdivision schemes, to which the results of this paper fully
apply (§6). Fortunately, almost all limit functions are stable.

To tackle the regularity problem, we characterize regularity of limit functions in
terms of discrete sequences. Continuity is connected to uniform convergence and a
necessary and sufficient condition for uniform convergence is derived in §7. Holder
regularity C® (0 < a < 1) is expressed by a similar property of the g2’s (§8). Finite
differences of the gi’s play the role of derivatives and N-times continuously differ-
entiable limit functions are, therefore, characterized by uniform convergence of finite
differences (§9).

From these equivalences a full characterization of Hélder regularity C” (for all
r > 0) naturally emerges in terms of discrete sequences (§10). The main result of
this paper is an easily implemented, optimal regularity estimate derived in §11. This
estimate is then compared to other related work [3]-[12], [23]. A sharp upper bound
for ‘Holder regularity is also derived in §13.

As a general rule, the first parts of the theorems derived in this paper show
that a given property of the gi’s implies the corresponding regularity property of the
limit function ¢(x). The second parts prove the converse implication, which is useful
for proving optimality of regularity estimates and generally assumes the stability
condition.

The purpose of this paper is close to the one of Daubechies and Lagarias in {8], [9].
They studied the existence, uniqueness, and regularity of solutions to “two-scale dif-
ference equations.” We shall see in §5 that the limit function (z) associated to mask
gn. indeed satisfies the following two-scale difference equation.

o(@) =Y grp(2z — k).
k

Although it can be shown [9] that a solution to this equation is not necessarily the
limit function of the subdivision scheme with mask g,, both approaches are closely
related. In fact, the study of regularity of solutions to two-scale difference equations
can be reduced, after suitable transformation [2], to that of limit functions ¢(z) of
a binary subdivision scheme. However, the contents, formulation, and proofs of this
paper differ notably from [8], [9]; Daubechies and Lagarias derive conditions for the
existence of L!-solutions to two-scale difference equations and estimate global and
local regularity of solutions that are, in fact, limit functions. This paper concentrates
on the determination of optimal estimates for global regularity of limit functions,
with interpretation in terms of discrete sequences and comparison with Fourier-based
techniques. (Local regularity may also be investigated using the methods of this
paper [19].)

It was pointed out to the author by one of the referees that the framework of this
paper is very close to that of Dyn and Levin [14], {15]. I learned that several results
were derived independently in [14], [15] for the study of CV limit functions (see §§7
and 9).

2. Polynomial notation. Subdivision schemes have been mostly described us-
ing matrices or Fourier transforms [6], [8]-{11]. Throughout this paper we often use
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the polynomial description

L-1
UX)=) unX"

n=0
of any causal sequence u,, of length L (u, = 0 for n < 0 andn > L). Since sequences of
finite length can always be made causal by shifting, we assume all sequences causal in
the following. This notation was adopted in [14], [15], which uses Laurent polynomials
for noncausal sequences.

In polynomial notation, the up-scaling operator (1.1) reads

(2.1) U(X) % v(X) = G(X)U(X?),

which shows that it can be seen as resulting from two operations.
1. Change X to X2 in U(X), i.e., insert zeros between every two samples of u,,.
2. Multiply by ‘G(X), i-e., convolve the result with the mask g,.
In other words, the operator (1.1), (2.1) “smooths” w,, at twice its rate, and (2.1) can
be seen as a discrete version of a dilation by two: f(z) — f(z/2). '
Iterating (2.1) gives the polynomial G’(X), associated to the sequence g7, (1.2).

(2.2) G/(X) = G(X) (X)) (XY ---G(x¥™).

This equation fully describes binary subdivision schemes in terms of polynomials (see
§4 when the initial sequence is not 8,). It can be rewritten in recursive form in two
ways.

(2‘3) Gj+1(X) = G(X) Gj(Xz)a ie., gf;ﬂ = Zgign—Zk,
k

(24) GIH(X) = GU(X)G(X?), ie, gt = gkgl o
k

Both are useful in the sequel. Equation (2.3) is simply a rewriting of definition (1.2),
while (2.4) links binary subdivision schemes to two-scale difference equations (see §5).
We shall also consider (2.2) for polynomials other than G(X). Given any polynomial
U(X), U?(X) (with a superscript index j) is
(2.5) UY(X) =U(X)UXD)UXY - UXTT).

In this paper we use I! and {°°-norms of discrete sequences in terms of polynomials,

10X oo = mex ],
I0CON = Y sl
k

and the following well-known inequality:
(2.6) IU(X) V(X))o < IV(X)[2[IT(X)]|oo-

For polynomials with real coeflicients, the following useful inequality holds whenever
V(X)) has no roots on the unit circle.

(2.7) 1U(X)leo < ev [UX) V(X)lloos
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where cy is a constant depending only on V(X).

Proof. This is trivially true for infinite sequences when the roots of V(X) lie
outside the unit circle; the constant ¢y is then the converging !'-norm of the Laurent
series coefficients of 1/V(X), which is analytic in the complex-domain region |X] < 1.
Here, since v, is a sequence of finite length L, the index reversal n «» L — 1 — n in
Un transforms roots of V(X)) inside the unit circle into roots outside the unit circle.
Hence (2.7) holds when V(X) has no roots on the unit circle. 0O

3. Definition of convergent subdivision schemes. Various definitions of
convergent binary subdivision schemes have been proposed in the literature [6], [10]-
(15], [17]. In this paper we restrict ourselves to pointwise or uniform convergence. It
is easy to define a limit function in the case of interpolatory subdivision schemes as
defined in the introduction: Since for such schemes one has gi*! = gJ, the function
¢(z) can always be defined on dyadic rationals by

3.1) p(n277) = gj.

For example, determining a continuous limit function amounts to finding a continuous
extension of (3.1) to the real axis [11], [12].

The situation is more complex for general subdivision schemes since the values
of gJ are not necessarily preserved as j increases. In order to “converge” to a limit
function, the sequence g/, must be somehow interpolated. The idea is that the resulting
sequence of functions of the continuous variable x, indexed by j, converges (pointwise
or uniformly) to a limit function ¢(z) under some conditions on the mask Gn-

In [6], Daubechies chose to interpolate the sequence gJ, by stepwise constant func-
tions: she defined ¢(x) as the limit of ¢¥(z) = g{zjw +1/2) 8 Jj — oo. Other kinds of
interpolation are possible and yield similar results. Among possiblechoices are g{zj 2]
9{21‘ P and the continuous linear interpolation function goi: (z) obtained by connect-

ing the points g by segments as in Figs. 2 and 3. All such interpolation functions
¢’ (z) agree at the “knots” n277, i.e., ¢ (n277) = gf . In this paper we use a stronger
definition that gives some flexibility on the way the subdivision scheme is interpolated.

DEFINITION 3.1. A binary subdivision scheme g7 (1.2) converges (pointwise) to
a limit function ¢(z) if, for any sequence of integers n; satisfying

(3.2) ;279 — x| <e277
(where c is a constant independent of j), we have
(33) p(z) = lim gJ .
jooo ™Y

The convergence is, moreover, uniform if
(3.4) sup, |o(z) —gi.| =0 asj— oo.

Note that the sequence n; depends on z, hence g,{j can be regarded as a function of
z. The flexibility comes from the arbitrary choice of n; satisfying (3.2)!. In particular,

1 It seems natural to impose the more general condition 15279 = z as j — oo in place of (3.2).
But then n; — 29z is-allowed to increase indefinitely as j — 00, and the resulting definition becomes
too strong for deriving some of the results of this paper.
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Fi1c. 2. Two ezamples of diverging dyadic up-scaling schemes. Figures (a), (c) show siz plots
of the discrete sequences g5, (j =1,---,86), represented with values joined by segments and plotted
against n279 . Figures'(b), (d) show the obtained curve after 9-iterations. (a), (b) go =g1 =g2 = %,
gn = 0 elsewhere. Here G(—1) = % # 0. Note that up-scaling follows a fractal law. (c), (d)
go = g4 = 0.5, g1 = g3 = 0.99, g2 = 1, gn = 0 elsewhere, renormalized such that G(1) =2. Here
G(—1) ~0.01 is so small that divergence is not obvious at the level of the figure. Divergence is here
due to oscillations that occur in the graph of g,. Although very small, these oscillations are so rapid
that they preclude convergence.

15 T T T T T T

(a)

F1G. 3. Two ezamples of converging dyadic up-scaling schemes (after [6]). The g, ’s .are plotted
against n2~3 for j = 1,---,8, with coefficients joined by segments, so that the behavior of the
“slopes” can be observed. (a) The limit function is (0-5500- gnd not ‘C1; therefore, slopes are
allowed to increase indefinitely near the peaks of the limit function. (b) The limit function is
C1-0878. therefore, C1. Slopes are constrained to be bounded, especially near the apparent “peaks”
of the limit function.
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the above “stepwise interpolation” examples are recovered by letting n; = |29z + 5 J
|27z|, [2/z], respectively. .

Convergence of the linear interpolations ¢ (z) of the g is also implied by Def-
inition 3.1. This comes from the inequality |¢%(z) — g, < [gfzJ +1 — g4, which
holds for n; = |27z because 7. is monotonous on each interval [n2~7, (n + 1)2-7].
From (3.3) this clearly implies |7 (x) — g;”, | — 0; hence |p(z) — sz(z)l —0. Con-
vergence of smoother interpolation functions such as splines are similarly implied by
Definition 3.1.

Still another definition of convergence was proposed in [14], [15] by Dyn and
Levin. For example, uniform convergence is expressed as the existence of a continuous
function ¢(z) such that sup,, |gJ — ¢(n279)| — 0 as j — oco. Note that this is implied
by the uniform convergence of the linear interpolations <pJ£(w) since the <p’£(ar:) s ‘are
continuous, their uniform limit is continuous and we have sup, |gi — ¢(n277)| =
sup,, |¢? (n277) — ¢(n277)|, which — 0 as j — oo.

Therefore, Definition 3.1 implies all the others. In fact, §7 shows that all defini-
tions of uniform convergence presented in this section are equivalent. Since the results
of this paper are mostly based on uniform convergence, they remain valid for various
frameworks used in other works (in particular {6], [14]).

It is possible, however, to find examples for which pointwise convergence holds
for one definition and not for another. Consider, for example, G(X) = X for which
g =1if n =29 — 1 and zero otherwise. Here pointwise convergence of stepwise—or
linear—interpolations holds and we easily find that the limit exists and is (z) = 0.
(This is a typical example of a pointwise, nonuniform convergence to a continuous
function.) But convergence does not hold for all z in the sense of Definition 3.1
because the scheme diverges for z = 1 (take n; = 29 — 1). Therefore, Definition 3.1
forbids “sharp discontinuities” about which |ngJ +1 — 4,| does not tend to zero as
J —00.

The choice G(X) = 1+ X behaves similarly. For z # 0 and z # 1, the scheme
converges to-a limit function equal to 1 for 0 < = < 1, and zero for z < 0 or z > 1;
however, depending on the:choice of the definition of pointwise convergence, it either
converges or diverges for z =0 and = = 1.

4. Basic properties. Several basic properties and simplifications for the study
of convergent binary subdivision schemes follow easily from the description (1.2), (2.2).
First note that all functions considered in this paper are compactly supported because
the mask g, is of finite length L. In fact, we easily find that the length of g7 is
(27 —1)(L — 1) + 1 by estimating the polynomial degree of (2.2). Therefore, ¢(z), if
it exists, has compact support [0, L — 1]. This property makes many technical proofs
easier.

Second, we can restrict the initial sequence in (1.2) to 6,. For an arbitrary initial
sequence of finite length hy,, (2.2) is simply multiplied by H(X?'):

(4.1) HI(X) = GI(X)H(X?).

The iterated sequence is, therefore, hf, = 3", hx gfb__zj - From Definition 3.1, the limit
function becomes 9(z) = 3, hxp(x — k) instead of p(z). Moreover, since both func-
tions are compactly supported, @(z) itself can be written as p(z) = 3, (A1) xp(z — k),
where (h™1), is the convolutional inverse of hy, i.e., 34 (h™")khn—k = 6. The con-
vergence and regularity properties of ¢(z) and 1 (z) are, therefore, the same, and we
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can restrict ourselves to the study of the gZ’s and ¢(z).2

In order that ¢(z) is well defined or does not vanish for all z, the iterated sequences
g2 should neither diverge nor tend to zero as j — co. The following proposition shows
that this requires some basic conditions to be fulfilled by mask g,.

PROPOSITION 4.1. If p(z) # 0 exists for some = € R, then

(4.2) > o= gas1=1, ie,G(l)=2and G(~1)=0.
k k

_ Proof. The key point is to consider the even and odd-indexed sequences g3, and
Gon41 separately. Let y = z/2 and n; = n;(y) be a sequence of integers satisfying
(3.2) for y. On one hand, from Definition 3.1, the common limit of g3, and g3, .,
as j — 00 'is ¢(2y) = ¢(z). But from (2.3) we also have

T = Z 9ok G 3
k

, 1
9§n+1 = Zg2k+1 gi—k-
k

Letting n» = n; and applying Definition 3.1 to the right-hand sides of these equations,
we obtain that their respective limits as j — oo are (3, g2¢)¢(2y) and (3, g2k-+1)9(2y)-
By identification we therefore have

o(2y) = <Zg2k> o(2y) = (Z g2k+1) ¢ (2y).
k k

Dividing the members of this-equality by ¢ (2y) # 0 gives (4.2). O

Condition (4.2) may be interpreted as follows. On one hand, G(1) = 2 is just a
normalization condition that ensures that the order of magnitude of g is preserved
when j — co. On the other hand, the fact that G(X) must have at least one zero
at X = —1 is a “local” requirement. For example, it ensures that the gJ’s, for
large j, do not rapidly oscillate in n between two different limits, (3", gox)¢(2y) and
(3"k 92k+1)9(2y). Figure 2 illustrates this phenomenon on a particular example (see
also [20]).

Note that (4.2) is not sufficient to ensure convergence. As an example, consider
G(X) =1+ X3. Here G/(X) is a polynomial in X?; therefore, gJ, vanishes for n # 3k
(k € Z), whereas g}, = 1. It, therefore, cannot converge to a limit function. (Section 7
gives a necessary and sufficient condition for uniform convergence.)

5. Exact computation of limit functions. Assume that the limit function
¢(z) of a binary subdivision scheme g/ exists for all z € R. This section derives a
simple, easily implementable method for computing the .exact values of p{z) at dyadic
rationals z = n27J, n € Z, with a finite number of operations. The starting point is
the two-scale difference equation [8], [9] satisfied by ¢(z):

(5.1) o(@) = gep(2z — k).
k

2 Note that this restriction works only for initial sequences of finite length. If, e.g., hp, = 1 for all
n € %, then using the definition k%" = G{h%,} and Proposition 4.1, it easily follows by induction on

j that A% = 1. Hence v(z) = Zk p(x — k) =1 is C*°, whatever the regularity order of ¢(z).
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This equation, which was mentioned in the introduction, is easily derived by using
(2.4) for n =n; (3.2) and applying Definition 3.1.
Now, let

(5.2) oI(X) =) pn2-9)X"

be the polynomial associated to the sequence ((n277). Taking z = n2~7~" in the two-
scale difference equation yields p(n277-1) = 3, g (277 (n — 27k)), ie., BIHL(X) =
®I(X)G(X?). By iteration we have

(5.3) /(X)) = B(X)G¥ (X),
where
(5.4) B(X) =8%(X) =) _ p(n) X"

Equation (5.3) is very useful, since it links the values of the iterated sequences g
to the ones of the limit function ¢(n277). The latter are simply obtained from the
7’s by convolving them with the sequence o(n), provided that the ©¢(n)’s can be
predetermined.
There are several methods for precomputing ((n), which is, by definition, the
limit of g7,; as j — oco. First note that we have, from (2.4),

na = D0k g{Zn—k)m' R A
k
where G* is the following transposed operator [6], [18] of G (1.1):

(5.5) Up, g, Uy = Z Tk U2n—k-
kEZ

Therefore, ¢(n) can be determined as the limit of (G*)7{6,} as j — oo.
Another method stems from the resulting equality

(5.6) p(n) =G {p(n)}.

The sequence ¢(n), n = 0,---,L — 1 (where L is the length of the mask g,), is here
determined, up to normalization, as the eigenvector of the operator G* associated to
the eigenvalue 1. To obtain a normalization for ¢(n), rewrite (5.5) under polynomial
form

(5.7) V(X?) = (U(X)G(X) + U(-X)G(-X))/2.

Since we have, by Proposition 4.1, G(1) = 2, and G(-1) = 0, it follows that G*
preserves the sum of sequences; hence ) p(n) =) g, =3, 920 =1, i.e,,

(5.8) B(1) = 1.
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6. Stability. There'is an exceptional class of limit functions ¢(z) for which the
regularity -estimates derived in this paper will not always be optimal. Optimality, as
well as some other results of this paper, will be proven only in the case of “stability,”
in the sense of the following definition.

DEFINITION 6.1. A binary subdivision scheme converging to a nonzero limit
function (or its limit function ¢(z) # 0) is stable if no root of ®(X) (5.4) lies on the
unit circle, i.e.,

Zga(n) ™ £0 forallw e R.
n

The terminology “stable” comes from (2.6), (2.7) written for V(X) = ®(X),
1 JUX) oo < IU(X)2(X)[loo < €2 [U(X)loo,

which means that the filter of impulse response ¢(n) and its inverse are numerically
stable for finite length sequences. The stability condition slightly restricts the choice
of the scaling sequence g,,. For example, if the mask length is L = 4, “unstable”
o(z)’s are such that go = g3 and g; = go. All (real-valued) limit functions are stable
for lengths up to 3. Note that an interpolatory subdivision scheme is always stable
since it has the property that ¢(n/2) = g, (see (3.1) for j = 1); hence ®(X) = 1.

In fact, in the rest of this paper, stability can be replaced by the even weaker
condition that there exists £ € R such that

(6.1) D p(n+z)e™ £0 forallweR

(a similar, but stronger stability condition appears in [15]). Condition (6.1) comes
from (5.3) where n is replaced by n + z, for any fixed number z. That is,

P (X) = ®,(X)G(X)
where

8(X) = Y ¢((n +2)2)X"

and ®,(X) = ®%(X).

Although almost all convergent subdivision schemes are stable, it is easy to con-
struct unstable ones (even with definition (6.1)). As in the preceding section we have
the following generalization of {5.6), (5.7).

q’m(Xz) = (¢2m(X)G(X) + ‘I’Zz(_X)G(_X))/2'

Therefore, any polynomial mask G(X) divisible by (X%—e™), w # 0, yields unstability
since we have ®,(e’) = 0.

I conjecture that the converse holds, i.e., stability (in the weak form (6.1)) is
equivalent to the condition that G(X) has no pair of opposite zeros (e™/2, ¢iw/2+m))
on the unit circle. If this conjecture is true, then the regularity estimates presented
below will be optimal under the simple condition above on the mask coefficients gy,
which is easy to check. When this condition is not satisfied, it is possible to apply a
trick as shown at the end of §9 which allows one to consider another, stable binary
subdivision scheme which has the same regularity properties.
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7. Continuous limit functions. The framework of uniform convergence (3.4)
is shown to be very convenient in the sequel, and the following theorem shows that
all stable continuous limit functions are obtained by uniform convergence. We shall
then derive a necessary and sufficient condition for uniform convergence in all cases.

THEOREM 7.1. Assume that a binary subdivision scheme converges pointwise
to a limit function ¢(z) for all x € R. If the convergence is uniform, then () s
continuous. The converse is true if () is stable.

Proof. (=) In §3 we have seen that uniform convergence (3:4) implies uniform
convergence of linear interpolations ¢’ (x) of the g7’s to ¢(z). Since thisis a uniformly
convergent sequence of compactly supported continuous functions, ¢(x) is continuous.

(«=) We have

sup () — g7, < sup|o(z) — ¢(n;277)] + sup |p(n;279) - gi |
T x njg

where n; is a sequence of integers satisfying (3.2). Since ¢(x) is compactly supported
and continuous, it is uniformly continuous. Therefore sup,, |p(z) — p(n;279) — 0.
The other term can be written sup,, [p(n277) — gi| = ||®/(X) — G7(X)||oo. From
(5.3) we have ®(X)(®7(X) — GI(X)) = (®(X) — 1)®/(X). Since (5.8) holds, X —
1 divides ®(X) — 1 and we can write, using (2.6), 12(X)((X) ~ G¥(X))|loo <
cl|(X — 1) @9(X)||co. The latter norm is sup,, [p(n2~7) —p((n — 1)2-9)|, which tends
to zero as j — oo because ¢(z) is uniformly continuous. Now we can use (2.7) with
V(X) = ®(X) since ®(X) is stable. This yields 197(X) — G¥(X)|| — 0 as j — oo,
which ends the proof. ]

It is an open problem to find a limit function ¢(x) for which the convergence is
not uniform (in the sense of Definition 3.1). That would imply that ¢(z) is unstable
or discontinuous.

We now derive a necessary and sufficient condition for uniform convergence of a
binary subdivision scheme g7, to a (continuous) limit function ¢(z). (By Theorem 7.1,
this also gives a necessary and sufficient condition for the continuity of a stable limit
function.) We need the following lemma, which will also be useful for deriving an
optimal regularity estimate in §11.

LEMMA 7.2. Assume G(~1) = 0 and let F(X) = G(X)/1+ X). The sequence
of the first-order differences of gi,

dvj; = 9‘77; - 93;—1’

follows a binary subdivision scheme with polynomial mask F(X) and initial sequence’s
polynomial 1 — X,
In addition, for any fized positive integer i, we have

ifi
. , )
(7.1) max |gny, — g5 < e (0 Snmgg_l; lfn—Zikl) ;

where f,, is the mask associated to the polynomial F(X) and c is a constant indepen-
dent of 7. ’
Proof. Let D¥(X) = (1 — X)G(X) be the polynomial associated to di. We have
DiX)=(1-X)1+X)(1+X2)---(1+X¥ ") Fi(X)
= (1 - X¥)Fi(X),
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which shows, by (4.1), that ¢/, follows the announced subdivision scheme.
Using (2.2) in the above equation, we can write D**(X) = F¥(X) DYX 2"), which
«also reads ditt = Y, fi ., df. Majorating yields

1D (X))o < (mgXZIfZ_szl) 1D X)oos
k
which, by iteration for j = £+ ni, 0 < £ < i — 1, gives (7.1) where ¢ depends only on
the fixed integers ¢ and £. |
THEOREM 7.3. A binary subdivision scheme gi, converges uniformly to a (continu-
ous) limit function if and only if G(1) =2, G(-1) =0 and

(7.2) max|gl, , —gil =0 asj— oo
n
Moreover, there ezists o >0 such that

i gl —ja
(7.3) max lgns1 — g0l S e277%

Proof. (=) immediately results from Proposition 4.1 and the inequality
max |, ~ gh| < suplp(2) - g7, 4] + sup (@) — g, |

(«=) We first prove that (7.3) is implied by conditions G(1) =2, G(-1) =0and
(7.2). First note that from the first part of Lemma 7.2 we have (1-X)G¥(X) =

(1 - X¥)Fi(X), ie, g —g,_1 = f — f1_,;. Write

n—27"

=05~ fi-z:’) + (fj—za‘ - fi—2-2") o

= (g%, —gf;_l) + (gj_zj _gi..zj_1) 4

The number of terms in the sums is bounded by L because the length of {2 is bounded
by 2/L. From (7.2) each term tends to zero uniformly with respect to n; hence so
does fi. Therefore, there exists a (sufficiently large) index ¢ such that max, IfE] <
e; < 1/L. Now since the number of terms in the sum in (7.1) is bounded by L, the
second part of Lemma 7.2 gives (7.3) with a = —logy(Le;)/i > 0.

; j+1
To prove the converse part of the theorem, consider sup,, |g$zj -

n; satisfies (3.2). This equals sup,, |g§;';j1+mj — g3,|, where m; = njp —2n; is a

— g4, where

bounded integer. Now, from (2.3) we can write g4+, = 31 G2k+m ¢’ _,. Therefore,
the sequence g%;';im — g is a convolved version of gl its associated polynomial can
be written in the form Uy, (X)G?(X). But from (4.2), we have Y, gag+m = 1 (for all
m), and, therefore, Upn,(1) = 0. Using (2.6), it follows that

sup G s — G| = Uiy ()G (Xl < €11 = X)G (X)) |oos
where ¢ is a constant (independent of j since m; is bounded) . From (7.3) the latter

norm is bounded by c¢’ 29, We, therefore, end up with sup,,, |51}, —g3.| < cc’ 279,
Tterating this inequality, we obtain, for any £ > 0,

(7.4) suplgitt, —gi | <cd (2~UttDe ... 4 9=U+De 4 g=jey < ¢ 97ie,
nj

Tjte
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which shows that the sequence of functions gf;j @) is a uniform Cauchy sequence, which

converges uniformly to a continuous limit function (). 5|

This theorem has several interesting consequences. First, we shall see in §8
that (7.3), in fact, implies that w(z) is Lipschitz of order «, which is stronger than
continuity.® Therefore, by Theorem 7 -1, a continuous stable limit function is auto-
matically Lipschitz of order a for some a > 0.

Second, note that the necessary and sufficient condition is quite weak and intu-
itive: it is sufficient that the differences g 41— =0 uniformly as § — 0o to obtain
a continuous limit function.* In fact, we easily find that (7.2) holds for any definition
of uniform convergence presented in §3.1. (For example, any uniformly convergent
sequence of interpolating functions ¢7(z) of the gj’s such that gi = (i (n279) clearly
gives (7.2).) Since we have seen that Definition 3.1 for uniform convergence implies
the others, it follows that all these definitions of uniform convergence are-equivalent.

In particular, some results derived in this paper have been derived in the frame-
work of Dyn and Levin [14], [15] as well. The necessary and sufficient condition (7.2)
appears in [14] for interpolatory subdivision schemes and was first derived in [15,
Thm. 3.2] for general binary subdivision schemes—using the (apparently) weaker
definition mentioned in §3.1—in a slightly different but equivalent form, namely,
max, |fj| — 0 as j — co. Theorem 7.3 was included here in order that this pa-
per be self-contained, since some material presented in this section is also useful in
the sequel.

8. Lipschitz limit functions. In this section we want to characterize Lipschitz
limit functions. Recall that ¢(z) is said to be Lipschitz of order o (0 < a < 1),
¢(z) € C°, if we have for all z and h € R,

(8.1) lo(z + k) — o(z)| < c|h|*,

where c¢ is a constant. Here, ¢(z) is compactly supported, and (8.1) needs to be
satisfied only for small h’s. Since the spaces C“’, for 0 < a < 1, interpolate between
C° and C', a C°-function will be said to be regular of order o. There is a slight
irritation in that C' and C* do not coincide; for example, a linear spline function is
C* but not differentiable at its knots.

THEOREM 8.1. IfG(1) =2, G(~1) =0, and

(8.2) max g7, — gi| < c277°

for some 0 < a < 1, then the binary subdivision scheme converges uniformly to a C*
limit function. The converse is true if o(z) is stable.
In addition, the more regular the limit, the faster the convergence to this limit:

(8.3) sup |o(z) — gj | < c279™

for any sequence n; of integers satisfying (3.2).
Proof. (=) Let us first prove (8.3). Since (8.2) holds, we are in the framework of
Theorem 7.3, and (7.4) holds. Letting £ — oo in (7.4) gives (8.3).

3 Using the same proof as the one of Theorem 7.3, we can show that when (3.2) is replaced by
nj2‘j — Z-as j — oo, uniform convergence requires (7.3) for a = 1, which corresponds to almost
continuously differentiable functions.

4 In contrast, the slopes (g, +1—97)/(277) may indefinitely increase (see next section).
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We now prove that (z) is C*. Let n; = nj(z) satisfy (3.2) (for all z € R) and
consider the inequality

sup (@ +h) — ()] < sup le(z + h) = G, (z+h)]
+SUD |97, (o) — Foy)| 5P, 0) — 2(2)]-

By (8.3), the first and third terms in the right-hand side of this inequality are bounded
by c27J%. Assume, for example, that || < 1. If h > 0, choose n;(z) = | 227 ],
otherwise choose nj(z) = [227]. A simple calculation yields Inj(z+ h) —nj(z)| <
|n;(h)| +e&, where € = 0 or +1. Now, let j be such that 277 < |h| < 2771, This gives
In;(R)| = 1; hence we find, from (8.2), that sup, |95, (z4n) — 9| < c277¢, Putting
all inequalities together yields sup, lo(@ + h) — p(z)] < 279 < c|h|*, ie., o(z) is
ce.

(«<) G(1) = 2, G(~1) = 0 result from Proposition 4.1. Since o(x) is C*, we have
lo((n +1)277) — p(n279)| < c277%, e,

(1 = X)®F (X)[|oo = (X)L = X)G/(X) oo < €277

(the first equality comes from (5.3)). Because @(x) is stable, we can apply (2.7) to
obtain the inequality [|[(1 — X)G¥(X)|loo < ¢ 279%, which is (8.2). O

This theorem provides an intuitive interpretation of regularity of order 0 << 1
for binary subdivision schemes: regularity C? holds if and only if the absolute values
of the “slopes” (g2, — g4)/277 of the discrete curves gi’s (see next section) grow
less than 27(1—®) when j indefinitely increases. For example, if the slopes of g are
always bounded for all j’s, then ¢(z) is C!. On the contrary, less regularity allows
slopes to increase indefinitely and the resulting limit function, although continuous,
may present a “fractal” structure as shown in Fig. 3. Note that in this case, (8.3)
means that uniform-convergence of the curves g’ is slower as slopes increase faster.

As an example, consider the convergence of binary subdivision schemes in the
case of positive masks g, > 0,n=0,---,L—1, as studied by Micchelli and Prautzsch
in [17]. They found that

sup |gd, — g3 < ¢(1— mingn)’;
0<n-m<L—2

hence any binary subdivision scheme with positive mask uniformly converges to a
continuous function [17]. Theorem 8.1 immediately applies to show that the limit
function is, in fact, Ce, where a = —log,(1 — ming,).

Since we have a characterization of regularity for stable ¢(z)’s, it is easy to find
a condition on g, that states an exact regularity order 0 < a < 1.

COROLLARY 8.2. Let g, be a stable binary subdivision scheme such that G(1) =2
and G(-1) =0. If, for0 <a <1,

(8.4) max gl 11 — 5| decreases as 279%  when j — o0,

then the limit function ¢(z) is C* but is not C*t¢, for anye > 0.

Proof. This is an immediate consequence of Theorem 8.1. If p(z) were Cote
(with £ > 0 small enough so that a+¢ < 1), we would have g1 — gi| < c2milete),
which contradicts (8.4). O
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Note that Corollary 8.2 does not hold if @ = 1, since |g/ +1 — g5 cannot decrease
faster than 277 as j — oo when ¢(z) is more regular than C? (see §10). Otherwise,
intuitively the derivative of (z) would vanish identically, which would imply ¢(z) = 0
since p(z) is compactly supported.

9. Continuously differentiable limit functions. In this section, we study
the derivatives of the limit function ¢(z). We start by defining finite differences of
the g7’s, which will be shown to converge to the derivatives of ¢(z). The first finite
difference is

(9.1) Ag = (gh—gh-1)/27%, e, AG(X) =21~ X)GI(X).

In other words, the Agi’s are the slopes of the “discrete curve” gi plotted against
n277 (see Figs. 2 and 3). Finite differences A¥gJ of order k are simply obtained by
applying k times the difference operator A:

9.2) A*GI(X) = 27%(1 — X)FGY(X).

In order to study finite differences A*gJ similarly, as for the gi’s, it is convenient
to express them as binary subdivision schemes as well, associated to masks other than
gn. The following lemma shows that this is possible when G(X) has enough zeros at
X =-1.

LEMMA 9.1. Assume G(X) has at least k zeros at X = —1 and define Gx(X) by

k
9.3) G(X) = (#) Ci(X).

Then the finite differences A¥*g’s follow a binary subdivision scheme with the initial
sequence’s polynomial (1 — X)* and polynomial mask Gx(X).

Proof. This is an immediate generalization of the first part of Lemma 7.2. From
(9:2), (9.3), we have

j-1 2i\k
A’“Gj(X)zzj’“(l—X)kH(1+2X ) GL(X),
=0

where GJ(X) = (Gy)?(X) is defined by (2.5). Using the identity (1 - Y)(14+Y) =
1-Y%forY = X, X2, X4, ---, we obtain

(94) AFGI(X) = GL(X)(1 - X%,

which from (4.1) proves the lemma. O

Using the preceding sections we can extend the results of §7 to higher-order reg-
ularity CV (N-times continuously differentiable functions).

THEOREM 9.2. If the sequence of the Nth-order finite differences AN gﬁ;j (where

n; satisfies (3.2)) uniformly converges as j — oo, then o(z) is CN. The converse is
true if o(z) is stable. .

In addition, AngLj (where n; satisfies (3.2)) converges uniformly to *)(z), the
kth-order derivative of ¢(x), for k=0,---,N, and G(X) has at least N + 1 zeros at
X =-1.

Proof. (=) Let us first prove uniform convergence of the kth-order finite differ-
ences (k=0,---, N) by backward induction on k. We show that if AF+1 g2 converges
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uniformly to some (continuous) function h(z), then A*gi converges uniformly to the
primitive of h(z) defined by

t
H(z) = / h(u) du.
O
For simplicity we assume k = 0, the proof being identical for k > 0.
First we prove that H(z) is compactly supported. The functions AgJ 724 BT€ all
Riemann-integrable and converge uniformly to the function h(z) of compact support
[0; L — 1] (where L is the length of g,,); therefore,

L-1 L—1
/ AQJLMJJ dx = 22 iAgJ tends to / h(u)du as j— oo.
0

But since AG(1) = 0 (see (9.4)), these integrals vanish, which shows that H(z) is
compactly supported.

Now, since H(z) is C' and has compact support, it is uniformly continuously
differentiable and, ‘therefore, sup, |Agn (H(nj2=7) — H((n; — 1)279))/279| tends
to zero as j — oo, where n; are mtegers satisfying (3.2). This can be written

127(1 = X)(G7(X) — ¥ (X))]leo — O,

where ¥J(X) is the polynomial associated to the sequence H(n2~7). But for any
polynomial U(X), we have

IU(X) oo <D lut = wp—1] < @1 = X)U(X) oo,
k

where d is the degree of the polynomial U(X). Applying this to U(X) = G'(X) —
TI(X) of degree (L — 1)(27 — 1), we obtain sup,, Ign — H(n;279)| = |GV (X) —
\I’J (X)loo < (L - D)2 — X)N(GI(X) — W (X))Hoo, which tends to zero; therefore,
gl converges uniformly to ¢(z) = H(z), and h(z) is the derivative of ¢(z). By
induction it follows that the kth-order finite differences converge uniformly to the
kth-order derivatives of ¢(z) for 0 <k < N.

In particular, the contimious uniform limit of ANg is oM (z) € C°. Therefore,
@(x) is CV. The property that G(X) has at least N +1 zeros at X = —1 follows easily
by forward induction on the derivative order k as a consequence of Proposition 4.1
and Lemma 9.1.

(<) We prove uniform convergence of the kth-order finite differences to the kth-
order derivative of p(z) (k =0,---,N), from the assumption that ¢(z) is stable and
CV, by forward induction on k. For k = 0, this is true by Theorem 7.1. It remains to
prove that this implies sup, |® (z) — A* gJ | = 0fork=1,---, N, where n; satisfies
(3.2). For simplicity, assume k = 1. The proof is 1dent1cal for larger k’s when one
replaces A by AF. Define A®7(X) = 2/(1 — X)®(X), where (X)) is defined by
(5.2), i.e., Ap(n;277) = 2 (p(n;277) — p((n; — 1)277)). We have

sup |¢'(z) — Agl, | < sup|¢'(z) — ¢'(n;277)]
(9.5) +sup |¢'(n;277) — Ap(n;277)|

+sup [Ap(n;277) — Agf, |-
T
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The first term in the right-hand side of (9.5) tends to zero as j — oo because ¢’ (z)is
continuous and compactly supported, hence uniformly continuous. The second term
also tends to zero because ¢(z) is uniformly continuously differentiable on a compact
support. Note that this implies

(9.6) sup [Ap(n;277) — Ap((n; — 1)279)] = [|(1 ~ X)A%I (X))o — 0.

The third term in the right-hand side of (9.5) can be written as [|A®7(X)—AGY (X)||oo-
But from (5.3) we have ®(X)(A®/(X) — AGI(X)) = (®(X) — 1)A®?(X). Since
®(1) =1 (5.8), X — 1 divides ®(X) — 1 and we can write, using the norm inequality
(2.6), |2(X)(A®?(X) — AGY(X))lloo < ¢]|(X —1)ABI(X)||o0, Which tends to zero by
(9-6). Now we can use (2.7) with V(X) = ®(X) because ¢(z) is stable. This yields
|A®7(X) ~ AGI(X)|loo — O 8s j — oo, which ends the proof. [

The direct part of this theorem already appeared in [14], [15]. The converse part
also appeared in [14], [15] for interpolatory subdivision schemes (we have seen in §6
that interpolatory subdivision schemes are stable.)

This theorem is useful because it allows us to estimate the regularity-of the deriva-
tives of a stable limit function ¢(z) the same way as for ¢(z) itself: if G(X) has enough
zeros at X = —1, the finite differences of the g7’s, which converge to the derivatives
of ¢(x), all follow binary subdivision schemes.

Theorem 9.2 also provides an upper bound for regularity. Since it is necessary
that G(X) has N + 1 zeros at X = —1 to obtain C¥ stable limit functions ¢(z),
the regularity order of ¢(z) is always bounded by the number of zeros at X = —1 in
G(X). We shall see that this upper bound may be attained.

However, it is important to note that imposing zeros at X = —1 in G(X) does
not ensure any regularity in general. It does not even ensure convergence, -as in the
example G(X) = (1+ X*)¥*1, which has N + 1 zeros at X = —1, although g/ does
not converge for the same reason as for the choice G(X) = 1 + X3 treated in §4.
(Section 13 derives a sharp upper bound for regularity.)

Finally, note that the number of zeros of G(X ) at X = —1 is an upper bound
for regularity only for stable limit functions. This upper bound may be exceeded for
unstable limit functions, as shown in the following example [2], for which the converse
part of Theorem 9.2 fails—as well as many other “optimality” results given inthe rest
of this paper.

Consider the polynomial mask G(X) = 2=V (1 + X)(1 + X2)N. Setting U;(X) =
1+ X +X?4 ...+ X%~ and applying (2.6) several times give

11 = X6 (DOllow <2791~ X))o | (U5(X2) ™ lon
< 2O O H05(X) oo
< 279,

therefore, by Theorem 8.1 the limit function () exists and is C*, hence continuous.
Theorem 9.2 cannot improve this regularity order since G(X) has only one zero at
X = —1. However, ¢(z) is unstable since 1+ X? divides G(X) (see §6), so we might
expect higher regularity for ¢(x). :

Now consider another mask G(X) = 27V (1 4 X)¥+!, It is easy to see that the
subdivision scheme g converges to a CV limit function @(z), ie., the
(N =1)th derivative of 3(z), for which the mask polynomial is G _; (X) = (1+X)?/2,
is C'. This comes from Theorems 8.1 and 9.2 since we have (1 - X)Gq%_.ll <
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2791 = XZ)|1|U;(X)]loc < 279+1. Now, since the two masks are related by
1+ X)VG(X) = (1 + X%)NG(X), we have by iteration (1 4+ X)NG(X) = (1 +
XPIWGEI(X), ie.,

N N
N i N\ .
S (% )= (V)
k=0 k=0
Letting n = n; and j — oo gives, by Definition 3.1,

o&) =23 ( v ) (- k),

k=0

which proves that ¢(z) is CV, hence C¥~1, even though G(X) has only one zero at
X=-1.

This example :shows that an ‘unstable binary :subdivision scheme may converge to
an arbitrary regular limit function while all finite differences diverge. Note that since
@(x) can also be expressed as a sum of integer translates of ¢(z) (see the beginning
of §4.1), both functions have the same regularity order. It is:-easy to check that the
regularity estimate C¥ is optimal for @(z) (which is, in fact, the B-spline of degree
N [15]); hence it is -also optimal for ¢(z).

Therefore, the argument used in this example has led to an optimal regularity
estimate for an unstable limit function, while the rest of this paper derives regularity
estimates that are optimal for all stable limit functions. This example can be easily
generalized to the case where unstability is due to the fact that G(X) is divisible
by X2 — e (see §6). Note that if the conjecture mentioned in §6 is true, then this
methods works for arbitrary unstable limit functions (in the sense of (6.1)).

10. Determining the exact Holder regularity order. Recall the definition
of Hélder regularity. The limit function ¢(z) is regular of order r = N + a (0 <
a < 1), p(z) € C7, if it is CV and its Nth derivative o) (z) is Lipschitz of order a,
¢ M) (z) € C?, as defined earlier by (8.1). Holder spaces C" generalize the spaces CN
of N-times continuously differentiable functions. As already mentioned in the case
N =1, CV contains functions that are not C, such as spline functions of degree N.
In fact “p(z) is CNV” can be thought of as “p(x) is almost C¥,” since if @(x) is CN*e,
for some £ > 0, then () is truly CV. Other spaces, based on the Fourier transform
of ¢(z), are sometimes used to define a regularity order r € R as well. They will be
considered later in §17.

Using the results of the preceding sections, we can extend the characterization
of Lipschitz limit functions C® (0 < a < 1), derived in §8, to any Hélder regularity
order r > 0.

THEOREM 10.1. If G(1) = 2, G(X) has at least N + 1 zeros at X = —1 and

(10.1) max |ANg] ; — AVgl| < c279®

for some a > 0, then @(x) is CN*T®. The converse is true whenever o(x) is stable.
Moreover, (10.1) implies o < 1 (if p(z) #0), and

(10.2) max|ANgl ; — ANgi| = |[(1 - X)AY G (X) oo

can be replaced in (10.1) by any of the following:

(10.3) max |(gh)n+1 = (gh)nl = (1 = X)GH(X) oo,



1562 OLIVIER RIOUL

(10.4) max |(ff)al = 1FR(X)loos
(10.5) o< BX | 2’; |(F3)ns2skl,

where we have set G(X) = 27N (1 + X)NGn(X) = 27V (1 + X)N+H1Fy(X). The
iterated polynomials G(X), F3(X), corresponding to the sequences (g )n, (fiy)n,
are defined by (2.5). ‘

Proof. (=) Assume for the moment that @ < 1. Since (10.1) implies, by Theo-
rem 8.1, that AN g7 converges uniformly to a C* function, it follows from Theorem 9.2
that all finite differences A¥gJ converge uniformly to ©®)(z), for k =0,---,N. Hence
o(z) is CN+e,

(<) If o(z) is stable and CV, then by Theorem 9.2, ANgJ converges uniformly to
©WM)(z) € C*. Using (5.3) and the stability of ¢(x) we have ||(1 - X)AN G (X))o <
c]l(1 = X)AN®I (X)||oo, where AN DI (X) = 27N (1 — X)N®I(X) corresponds to the
coefficients AN p(n277). Now, we have

|AN p(z) - AN p(z — 277)| = 27

/ T (AN () - ANy - 27)) dy

—2-i
< max|AN 1/ (z) — ANl (z — 277)).

By backward induction on N, it follows that

11 = X)AN I (X) oo < max o™ (@) — o™ (z —279) < c277%,

which proves (10.1).

We now prove that (10.2)—(10.5) are “equivalent” in the following sense. Two
sequences u; and v; are equivalent if there exist two constants c; and ¢z, independent
of j, such that ¢;v; < u; < cv;. From Lemma 9.1, we then have ANGI(X) =
(1- X% )NG9,(X). Hence, using the norm inequality (2.6), [|(1 — X)ANG¥(X)]le <
2V||(1 = X)G%(X)|loo- Now, since the degree of (1 — X)G%(X) is less than 2/L,
where L is the length of the sequence (gn)n, we also have

12 = X) G4 (X)lloo = (1 = X¥ BV (1 = X)GH(X) oo

1— X2jL N ]
=1 ('1_7) (1= X)ANG (X))o

< e [[(1 = X)ANGI(X)oo-

This proves that (10.2) and (10.3) are equivalent. The proof of (10.3)<>(10.4) is very
similar, based on the relation (1 — X)G%(X) = (1 - X ?)FJ,(X), which comes from
Lemma 9.1. The equivalence (10.4)<>(10.5) is obvious.

~ We finally show that (10.1) implies & < 1. Since G(1) = 2, we have Fy(1) =
Fi,(1) = 1; therefore, [|[F3(X)|lco = 27| F3(X)|l1 > 279|F§ (1)| = 277, which shows,
from (10.1) written with (10.4), that o <1. O

The “equivalent” sequences (10.2)—(10.5) allow useful flexibility in the formula-

tion of Theorem 10.1. As in §8, the following corollary immediately results from
Theorem 10.1.
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COROLLARY 10.2. Let g, be a stable binary subdivision scheme such that G(1) =
2 and G(X) has at least N +1 zeros at X = —1. If, for0 < a < 1,

(10.6) max]ANg,];_,_l ~ANgi|  decreases as 279 when j — oo,
n

then the limit function (x) is CN+e, but is not CN+o+€ for any e > 0.

This does not hold for « = 1, since by Theorem 10.1, (10.1) implies .« < 1. Of
course, in (10.6) we can choose either (10.2), (10.3), (10.4), or (10.5).

Note that the characterization (10.1), or the criterion (10.6), depends on the
choice of N. Theorem 10.1 (or Corollary 10.2) therefore allows us to check whether
the exact regularity order r (that is, the number such that ¢(z) is C™ but not C™e,
for any € > 0) falls in the range N <r < N + 1.

Assume, for example, that (10.6) is tested for some N = N, larger than the
unknown exact regularity order . This test necessarily fails, which only ensures that
¢(z) is not CNo. On the other hand, if the value of NV is too small, i.e., N = N; < r—1,
then necessarily (10.6) is satisfied with o = 1. This shows that ¢(z) is CNt+1 but
does not tell whether ¢(z) is actually more regular or not. In both cases (under or
overestimated N’s), the criterion (10.6) has to be checked all over again for other
values of IV to determine r. It is only when it turns out that N < r < N 4 1 that
the criterion is really optimal and provides N + a = r; therefore, the exact regularity
order cannot be determined in general unless all possible values of N are tried.

However, if (10.1) can be extended to negative values of o, then the exact regu-
larity order r is determined even if N is “too large,” i.e., N + 1 > r. That is, even if
the criterion (10.1) for regularity order r > N fails, it could be used to characterize
lower regularity orders 0 < r < N. In particular, if we use all of the zeros at X = —1
in G(X) (i.e., if G(X) has no more than N + 1 such zeros), then the characterization
(10.1), extended to any a < 1, necessarily provides the exact regularity order 7. This
extension is provided by the following theorem.

THEOREM 10.3. Theorem 10.1 -and Corollary 10.2 hold for —N < o < 1, with
the following slight restriction. If (10.1) holds fora = -n,n=20, 1,---,N — 1, then
o(z) is only “almost” CN—", i.e., its (N —n — 1)th derivative satisfies

(10.7) W=Dz + k) — NV (z)| < c.|h||log |h|| for all z, h € R.

This theorem will be proven if we :can simultaneously increase o and ‘decrease N
by 1 in (10.1). We, therefore, need the following lemma.

LEMMA 10.4. Assume that G(1) = 2, G(—1) = 0, and that G(X) has at least
N +1 zeros at X = —1. The condition

10.8 max |[AN" gl — AN-1gi| < g2ilat)
poy n+1 n

implies (10.1). The converse implication holds for o < 0 only. When a = 0, (10.1)
implies

(10.9) max|AN"1gl | — AN-1gi| < cjoI.

Proof. (=) We have

27 max |ANg] — AVg] | =max|AN"lg] —2AN gl 4 AN1gT |
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< max(|AN"gf — AN"Ig |
n
+AN-tgl |, — AN_lgfz—zD;

therefore, (10.8) clearly implies (10.1).

(<) Condition (10.8) implies 1+« < 1 by Theorem 10.1. We, therefore, assume
@ < 0 to prove the converse implication. Rewrite (10.1) and (10.8) using (10.4),
knowing that FJ,_ (X) = 277F}(X)(1 — X?)/1 — X) by Lemma 9.1. We, there-
fore, have to prove that (10.1), that is, | F4(X)|le < €279 implies (10.8), that is

Fi(X)1-XZ)1 - X)lleo < ¢27792. There is a problem at X = 1; we, therefore,
N

subtract Fi(1) = Fy(1) =1to F}(X) as shown:

1-x?
1-X

1-x?
1-X

1-Xx?

Fr(X) 4

(Fh(X)-1)

<

o0 o0

The second term in the right-hand side equals 1. Denote the first one by ||H?(X)||co-
From (2.3) written for Fiv(X), we have FIJV(X) —1= (Fl{,"l(Xz) —1) 4+ (Fn(X) =
1)Fi71(X?). But since Fy(1) = 1, X — 1 divides Fiy(X) — 1; therefore, H/(X) =
Hi-Y(X?) 1+ X) + (X¥ — )FH(X2)(Fw(X) — 1)AX — 1) and

oo

1E (X) oo < 1HI™H(X) oo +c270 7D
By induction on j, for a < 0, ||H(X)|lec < ¢/ 279* follows, which implies (10.8).
When o = 0, we have ||H(X)||co < ¢ j, which implies (10.9). O

Proof of Theorem 10.3. If a is not a negative integer, the generalization of The-
orem 10.1 to —N < a < 0 follows from several applications of Lemma 10.4. When
a= -n,n=0,---,N —1, by n successive applications of Lemma 10.4, (10.1) im-
plies max, |AN "¢ 41— AN-"gi| < c. Applying Lemma 10.4 again, we only obtain
|AN-n-1g] . — AN-"~1gi| < ¢j279. By Theorem 10.1, this implies that ¢(z) is
CN-n—e (for any £ > 0), but we have a little more: mimicking the proof of the
direct part of Theorem 8.1, we have [N ~""U(z + h) — N7 (g)| < ¢j277 for
27 < |h| < 27941, which gives (10.7). O

11. A practical, optimal Hélder regularity estimate. Theorem 10.3 al-
ready provides an optimal regularity criterion (10.1) (with —N < a < 1). However,
it is not implementable on a computer as written since it needs to be verified for all
4’s and the order of magnitude of the constant ¢ in (10.1) is unknown. The aim of
this section is to transform this criterion into an easily implementable estimate [19]
for Holder regularity, computable with a finite number of operations.

The following theorem assumes some properties and notation we have already
met:

e G(1)=2;

¢ G(X) has at least N+ 1 zeros at X = —1;

e Fn(X) (corresponding to the sequence (fn)r) is, as defined in Theorem 10.1,
G(X) “without its N + 1 zeros at X = —1," i.e,,

N
G(X) = (#) (14 X) Fy (X).

It generates iterated polynomials F}V (X) and-sequences ( ffv)n by (2.5).

[es
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THEOREM 11.1. With the above notation and assumptions, define the Hélder
regularity estimate N + oy by

—joy J )
(11.1) 279N —Osgg_lgl(fmnﬂakl

and let ay = sup; a’l;,. The sequence a’llv converges to ay < 1 as j — oo. If there
ezists j such that N + ady > 0, then ¢(z) is N+ (almost CN+o% if od; € —N,
see (10.7)); therefore, (x) is CN*teN=¢ for any e > 0.

In addition, if p(x) is stable, then the regularity estimate is optimal: If oy # 1,
or if ay = 1, and G(X) has no more than N + 1 zeros at X = —1, then ¢(z) is
CN+an—¢ pyt is not CN+ton+e for any e > 0. Moreover, the rate of convergence ‘of
the estimates N + oy to the ezact regularity order N + o is given by

(11.2) 0< ay —dly <cfi.

Proof. From (11.1) and Theorem 10.3 rewritten with (10.5), we have _a’l'\, <1
for all j; hence an < 1. Now, using the relation Fy'/(X) = F}(X)Fi(X?) or the
matrix formulation (12.1) given in the next section, we easily find that 2—(¢+7 Yo <

i g .
27 N2 e,

ai+j > Za’j\] +]CYJN
No= 4y
The following proof of convergence of the a’l'v is due to Cohen [3], [4]: Let € > 0
be an arbitrary small number and J such that of; > oV — . For any j, write
J=mnJ+1i,0<i<J-1 Applying the inequality above several times, we find
oy 2 ((7 — 9)ag + icly)/j; hence, when j is large enough, oy > ay — 2, which
proves that oy — ay as j — co.

We now prove the announced regularity order for ¢(z). Let Gn(X) = (1 +
X)Fn(X) be as in Theorem 10.1. By Lemma 7.2 applied to Gn(X), we immediately
obtain (10.1), written with (10.3) and a = al; therefore, Theorem 10.3 applies with
o = dfy, for any i such that of; > —N. The limit function is thus CN+o~ (with the
restriction (10.7)), and, therefore, p(z) is CN*+oN=¢ for any € > 0.

Now assume that ¢(x) is stable. From (11.1), the condition (10.1), rewritten with
(10.5) is satisfied only when a < liminf; .o oy = ay. Now if p(x) were CN+tan+e
where any < 1 and € > 0, by Theorem 10.1 (10.1) would hold with a = ay + ¢,
which contradicts @ < ay; therefore, if (x) is stable, ax < 1 implies that o(z) is
not CN+ev+e for any ¢ > 0. In addition, ¢(z) cannot be N + 1 + ¢ if G(X) has no
more than N + 1 zeros at X = —1 because of Theorem 9.2.

We finally prove (11.2). When ¢(z) is stable and CN+ov—e¢, by Theorem 10.3,
(10.1), written with (10.5), holds for & = ay —e. By definition of of, (11.1), we thus
have 2-9%n < ¢2-7(en—¢) for any € >0, which implies (11.2). |

Of course, we can replace (10.5) in (11.1) by any other equivalent sequence (10.2),
(10.3), (10.4). We would still obtain a sequence N + 3%, which converges to the
optimal regularity order N + ay, however, ¢(z) may not be regular of order N + ﬂf\,
for any fixed j because [J’f\, may be greater than ay.

Let us make precise the practical outcomes of Theorem 11.1. For a given number
of iterations j, and a given N, the computation of N + ay—with a finite number of
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0.5 |

0 L 1 1
0 5 10 15 20

F1G. 4. Program output of regularity estimates N + aly (11.1) (N=10, 1, 2) for j=11t0:20
iterations. The corresponding limit function is the Daubechies “minimum phase” wavelet of length
5 (see §14), whose ezact regularity order is'r = 1.0878 ---. For N = 0, the estimate is bounded by 1
and, therefore, does not converge to.r. For N =2, the estimate converges fairly rapidly to r. After
20 iterations we find 2+ ago =1.0831---.

operations—by (11.1) gives a Holder regularity estimate for ¢(z) in all cases. Since
lim; o7y = sup; oy, the estimate is improved when the number of iterations j in-
creases. .

Figure 4 shows that N must be chosen large enough because the estimate N +a’y
is bounded by N + 1, whereas the exact regularity order of p(x) might be greater
than N + 1. If N is too small, N + oy, in fact, necessarily converges to N + 1. It
is therefore recommended that N should be chosen maximal (i.e., such that G(X)
has exactly N + 1 zeros at X = —1). In this case Theorem 11.1 ensures that the
regularity estimates N + a7} converge to N +an, which, provided that ¢(z) is stable,
gives the exact regularity order of ¢(z). In practice, Fig. 4 shows that the convergence
rate of the estimates o is fairly high. When the scaling sequence length I is not
too large (e.g., L < 10), the exact regularity order is numerically estimated to two
decimal places after a few dozen iterations. However, it can be shown [19] that
the computational load of an implementation of (11.1) is increasing exponentially
with j (increasing j by one roughly doubles the number of operations required to
compute (11.1)). :

Note that from Theorem 9.2, finite differences A*gJ converge uniformly to the
derivatives of a stable limit function ¢(z) whenever these derivatives exist.

Theorem 11.1 is the main result of this paper. It permits us to estimate sharply
Holder regularity in most cases of interest. (See §9 for the derivation of the optimal
regularity estimate on a particular example of an unstable limit function.) The re-
mainder of this paper connects this result to related work on regularity estimates, and
illustrates it with examples.

12. Relation to Daubechies and Lagarias estimates. In a recent paper [9],
Daubechies and Lagarias determined sharp conditions for Holder regularity based on
matrix products. Although the approach in [9] relies on two-scale difference equa-
tions (5.1) rather than on limit functions (3.3), the above results, which were derived
independently, are closely related to what can be found in [9]. In fact, (11.1) reads,
in matrix notation, ’

j~1

Il

=l

(12.1) 9-i°% = max

£;=0-0T 1 !

1
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where the matrices Fy, and Fy of size (L —1) x (L — 1) (where L is the length of the

sequence (fn),) are defined as

(fn)o 0 0 0
(fn)2 (FIv)r (Fn)e O
(12.2) Fo=| Un)s (Fn)s (fwv)e (Fvh ,
(fnde (IN)s (Fn)a (Fn)s
(fn)1 (fn)e O 0
(fn)s (In)z (Fv)r (Fvdo
(12.3) Fiy =] Un)s (fn)e (n)s (Fn)2 ,

(fv)7

(fN)e

(FN)e

(fv)s

and ||Al|; denotes the I'-norm of a square matrix A = ((ai 7)), ie.,
Al = m?‘xz: lai ;.
j

Formulation (12.1) can be proved as follows. Consider the operators of polyno-
mial “biphase decomposition [22]” D* (e = 0 or 1), defined by the relation U(X) =
U%(X?) + XU'(X?), where U*(X) = De{U(X)}. Clearly F%, seen as an operator
acting on polynomials of degree < L — 2, transforms U(X ) into D={Fx (X)U(X)}.
Applying j times the identity D*{U(X)V(X?)} = D¢ {U(X)}V(X) gives the polyno-
mial associated to the sequence (f3)n427% (Where n = ege; - - -€;j—1 in base 2) as

i1 i-1
(H DE") {FL ()} = [T®=(1)),

=0 =0

where the polynomial 1 corresponds to the vector (100 --- 0)t. Therefore, ( f]];,),H_zj &
seen as a vector indexed by £, is equal to the first column of the matrix product in -
(12.1). To obtain the other columns, replace the initial polynomial 1 by X™. This
amounts to shifting the value of n in ( FX )n+2ik, hence changing the values of the o
But since (11.1) involves the maximum over the values of n, the ['-norm of the first
column of the matrix product can be replaced by the {!-norm of the whole matrix
product, which gives (12.1).

Using (12.1) in place of (11.1) in Theorem 11.1, we easily recover the results on
global Hélder regularity derived in [9]. Formulation (12.1) and that used in [9] differ
only by some minor details: Daubechies and Lagarias use [2-norms rather than I1-
norms, and the matrices they consider are a bit larger than (12.2), (12.3) because
they correspond to G(X) = 27N(1 + X)N+1Fy(X) rather than Fy(X ). Although
regularity estimates are not proved to be optimal in general in [9], Daubechies and
Lagarias prove optimality for several examples, such as those of §14.

Working with matrices is useful when we want to find optimal regularity estimates
“by hand” [9], without implementing (11.1). Unfortunately, it seems difficult to derive
a general method for determining the optimal regularity by matrix manipulation.
As a result, unlike an implementation of (11.1) on a computer, each example has
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to be investigated separately and requires fastidious treatment. We here recall for
completeness the basic method used in [9].

THEOREM 12.1 (Daubechies and Lagarias [9]). The following method often pro-
vides a sharp Holder regularity estimate for a limit function p(x):

o Compute the eigenvalues of % and FY and let p°, p' be their respective
spectral radii (largest moduli of eigenvalues).

o Assume, for example, that p° > p'. Compute matriz B, whose columns are
proportional to the eigenvectors of FY. The norm of the diagonal matric B—'F} B
is therefore p°.

e Parameterize B by L — 1 numbers, one for each column. If we can find a
parameterization of B such that

(12.4) IB~'Fi Bl < 0
" where || - || is any matriz norm, then ¢(x) is regular of order N — log, p° (and this
Hélder regularity estimate is moreover optimal if p(x) is stable).

Proof. First, specifying &; = 0 for all i in (12.1) gives 2779~ > ||(FX)7]|. Let A be
an eigenvalue of F}; and v an associated nonzero eigenvector. We have, on one hand,
I(EX)7vll < (EX)?]l - llv]l, and on the other hand, [|(F)v]| = [A[lv]l. It follows
that (0°)7 = sup | AP < ||(F%)7]| < 277%~. Now, with the change of basis B, we have

. i-1 i-1
279% = max | B (11, B-lF;;;B) Bl <ec n}_:a.x];_!; |IB~'F%B|.

But we have |B~FQB| = ¢° and (12.4); therefore, 279%¥ < c(p°)7 follows. We,
therefore, have proved that (p°)7 < 279 < ¢(p°)J, which implies oV = lim; ol =
—log, p°. The theorem therefore follows from Theorem 11.1. O

Note that this:method is only optimal if (12.4) is met for at least one matrix norm,
otherwise the obtained estimate, N —log, |[B~*F} B||, is suboptimal. Whether (12.4)
holds for a large class of masks g, is an open problem [9].

13. A sharp upper bound for regularity. So far we have seen two types of
Holder regularity estimates: One is optimal in (almost) all cases (§11), but many
iterations, performed on a computer, are necessary to determine the regularity order
accurately. The other (§12) requires the calculation of two spectral radii of matrices,
but is sometimes suboptimal. Based on the latter, it is nevertheless possible to obtain
a (possibly sharp) upper bound for regularity of stable limit functions that only requires
the computation of one spectral radius and gives the exact regularity order whenever
condition (12.4) is satisfied: .

Specifying e; = O or&; = 1for all 4 in (12.1) gives 27~ > max(||(F%)7||, || F4)?|).-
We have seen that this is greater than max((p°)?, (p')?); therefore, an upper bound
for the Holder regularity is N —log, max(p?, p*). By Theorem 12.1, this upper bound
is attained for stable limit functions if (12.4) holds.

The computation of this upper bound can be simplified to the search of the
spectral radius of only one matrix Fy, defined as the common submatrix of F?V and

(fN)o | 0O .- 0

F = Eggz Fy and Fy = Fy (Fw)r-s
. (fN)p—2
. 0 --- 0 | (fn)r—1
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We have

(13.1) N —logymax(p°, p') = N — log, max(|(fn)ol, |(fn)z—1], o(FN)),

where p(Fy) is the spectral radius of Fy. Therefore the regularity order of a stable
limit function is at most (13.1).
A similar upper bound can be computed using the inequality

279N > max (Z A2kl Y l(fzj;r)sz—1|) ;
% p

which yields a fast implementation [19]: the computational load is here linear in j
(compare with §11). When j — oo, this gives an upper bound which may be greater
than (13.1) but is still sharp. This result and Theorem 11.1 can be used to compute
sharp lower and upper bounds for the Hélder regularity of p(z). Table 1 provides
values of these bounds for the examples presented in the next section.

14. Examples: Daubechies orthonormal wavelets. A family of orthonor-
mal wavelets with compact support has been constructed by Daubechies in [6]. The
construction is based on binary subdivision schemes. The “mother wavelet” is defined
as the limit function 1(z) of the scheme (1.2) with initial sequence h,, = (~1)"gr_1_,,
(where L is the mask length). She showed that the regular functions 2-9/2¢(2- Iz —k),
defined for all integers j and k, form an orthonormal basis of L2 (R) if L is even and

(14.1) G(X)G(X) - G(—-X)G(-X) = 4XL1,

where G(X) is the polynomial associated to the sequence gr—1—n. In [6], G(X) is,
moreover, required to have as many zeros at X = —1 as possible. This results in
several possible solutions for G(X) that have exactly N + 1 = L/2 zeros at X =
-1 6], [7].

Examples of G(X) in [6] have all zeros outside the unit circle (“minimum phase”
choice in the signal processing terminology, since X corresponds to a delay). In [9],
the optimal regularities of “minimum phase” Daubechies wavelets ¥(z) for L = 4, 6,
and 8 are obtained using the method described in the preceding section. It turns out
that (12.4) holds for these lengths; therefore, the upper bound (13.1) is attained and
actually equals N — log, |(fn)o]. The estimated regularity of Daubechies “minimum
phase” wavelets derived in [6] is, therefore, —log, |go| in this case. It can easily be
checked that the convergent binary subdivision schemes involved are stable; hence this
estimate is optimal. This can be checked directly [9] from Theorem 10.3 by noting
that the first “slope” of ANgi is |2go|7 = 2/(1), where @ = —log, |go|. Table 1
lists these optimal regularities (for L < 8), the corresponding outputs of a program
implementing (11.1), and upper bounds derived in §13.

There are other solutions g, derived for L > 8 in [7], which, unlike “minimum
phase solutions,” are close to being symmetric. Table 1 shows that the regularity es-
timates for these wavelets, based on Theorem 11.1, are lower than those of “minimum
phase” wavelets. This will be justified in §17.

15. “Strictly linear phase” symmetric limit functions. In this section we
apply the above results to a subclass of scaling sequences that is often encountered.
This section is also a prerequisite for comparing Holder regularity estimates to those
determined using Fourier techniques (§17). The subclass considered here consists of
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TABLE 1

Some regulam'ty estimates for two types of Daubechies orthonormal wavelets: Minimum phase
wavelets [6] ‘and “more symmetric” ones [7] (for mask lengths L > 8). The upper bound for Holder
regularity in the right-most column is obtained by adding 1 g to the optimal Sobolev regularity estimate,
derived in [6, Appendiz] (see §17). These two apply to all Daubechies wavelets that differ only by
their phase. The numbers Tog are the Hoélder reqularity estimates (11.1) obtained by computer
program after j = 20 4terations. Note that more symmetry decreases regularity in general. For
ming phase lets, these estimates converge rapidly to the optimal Hélder regularity estimates
Too derived in’[9] by using the method described in §12. The upper bounds for both types of wavelets
are obtained from §13. They are sharper than the “Sobolev” upper bound and in fact give optimal
Hélder regularity estimates in the “minimum phase” case for lengths L < 8.

Optimal More symme- Minimum phase
Sobolev tric wavelets wavelets Upper
L regularity 720 Upper 790 Too Upper | bound
estimate bound bound
4 || 0.4999 — — 0.5500 | ‘0.5500 | :0.5500 | 0.9999
6 || 0.9150 — — 1.0831 { 1.0878 | 1.0878 | 1.4150
8 || 1.2755 1.3960 | 1:4026 | 1.6066 | 1.6179 | 1.6179 | 1.7755
10 || 1.5967 1.7621 | 1.7759 | 1.9424 —_— 1.9689 | 2.0967
12 |j 1.8883 2.1019 | 2.1223 | 2.1637 — 2.1891 | 2.3883
14 || 2.1586 2.4420 | 2.4681 | 2.4348 — 2.4604 | 2.6586
16 || 2.4147 2.7155 | 2.7500 | 2.7358 — 2.7608 | 2.9147
18 || 2.6616 2.9977 | 3.0393 | 3.0432 — 3.0736 | 3.1616
20 || 2.9027 3.2651 | 3.3110 | 3.3098 — 3.3813 | 3.4027

scaling sequences for which either G(X) or G(X)/(1 + X) is “strictly linear phase,”
in the following sense.

DEFINITION 15.1. A polynomial U(X) (or its associated sequence u, of finite
length L) is strictly linear phase if it s symmetric, up, = ug_1_n, and if the trigono-
metric polynomial U(e*)e~*E~1%/2 does not change sign for any w € R.

Note that symmetry of u,, implies U(e*’)e~#Z~1«/2 ¢ R. This condition is called
“linear phase” in signal processing {22]. The above definition requires more, namely
that no discontinuities of the phase due to a change of sign in U (e™)e~#X~1)%/2 occur.
Therefore, complex zeros of the symmetric polynomial U(X) occur in pairs (z,1/Z)
not only for |z| # 1, but also on the unit circle. That is, roots-on the unit circle have
even order. It follows that U(X) has an even number of roots, hence L is odd.

If G(X) or G(X)/(1 + X) is strictly linear phase, then for N odd (even, re-
spectively), the sequence (fn), in (11.1) is also strictly linear phase. The following
theorem shows that in this case, the determination of the exact regularity order of a
(stable) limit function (z) only requires the computation of the spectral radius-of one
matrix. This is to be compared with §§12 and 13, where it is shown that two matrices
are involved in the general case, and the computation of one matrix’s spectral radius
only provides an upper bound for regularity.

The following regularity estimate has been derived independently, by other means,
and on particular examples of strictly linear phase scaling sequences, in [6] and [10]
(see §§16.-and 17).

THEOREM 15.2. Assume G(1) = 2, G(X) has at least N + 1 zeros at X = —1:
G(X) =2"N(1+ X)NH FEn(X), and Fn(X) is strictly linear phase. Define (fn)n =
(fN)((L-1)/2)xn (where L is the length of (fn)n) and the (L —1)/2x (L —1)/2 matriz
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¥y obtained by “folding” the following (L —1)/2 x (L —2) matriz

Unms (Fv)2 U (o (v ()2 (Fw)s
(In)1 (v (IN)r (Fv)2 (Un)s (Fv)a (fn)s
(In)r (Un)e (Un)s (Fn)e (FN)s (Fnde (FN)r

around its middle column, i.e.,

(U 20w 2fw)
o _ | G (Un)i+ ) (Fwdo+ (fn)e
(15.1) N1 (e (Pn)s+ () (Fv)z + (Fn)s

Let p be its spectral radius. One has p > 3. If p < 2N, then the limit function ¢(z) is
CN-log, p (almost CN-1og20 i, the sense of (10.7) ifp>1 zs an integer power of two).
In addition, if () is stable, and if either p > & or p = 1 and G(X) has no more
than N + 1 zeros at X = —1, then the estz'mate is optzmal @(x) is not CN-logz pte
for.anye > 0.

Proof. Define ( f}v)n = (f}i\r)(2j—l_2—-1)(L_1)+n. This noncausal, symmetric se-
quence is strictly linear phase. We first prove that ||F3(X)|le = max, |(fi)n| =
|(f3)ol. Using Fourier coefficients, we have (f{)n = 2= 02 " F(e)ei™ dw, where
Fi(e@) =Y (f)ne™ = £|FJ (e*)|. Hence

1 27 . . o
max|()al < 5= [ 1B (e dw = (oo

The theorem, therefore, results from Theorem 10.3 if we prove that |( fN)0| is
equlvalent to p’ as j — oo. From (2.4) written for Fn(X), we have, for0 <m < 291,

(F ) ait1npmayns = k(N )r+1(fX )23 (2n—k)+m- This means, in matrix notation,

((fi;r+1)2j+1n+m+2f )n = F}V((ﬁ;l)2jn+m)m

where FJ; is defined by (12.3). Let m = 29 — (L — 1)/2 (for sufficiently large j’s
to ensure m > 0). The above equation is then rewritten, in terms of the ( f]’V)n, as
(B 2s+1 (n-z—3y/2)n = FN((F4)23(n—(1—3)/2))n By symmetry, this equation can
be restricted to n = 0,---,(L — 3)/2, in which case the action of F} is exactly that
of Fy. Tt follows by induction on j that |(f2)o] is equivalent to ||(Fx)7||c0, hence to
p’, when j — oco. O

16. Examples: Deslauriers and Dubuc interpolatery schemes. Deslauri-
ers and Dubuc [10]-[12] studied the regularity of limit functions of a special family
of interpolatory subdivision schemes based on Lagrangian interpolation. Recall that
for interpolatory schemes the iterated points gn are carried unchanged at each 1tera—
tion. Here, we simply insert between g = gjt' and g/, = git1, the value g}, of
the Lagrangian polynomial interpolation of the K consecutive values g’ mt1—K/20 "

a2, gfz FETIREEN n K20 where K is even. This corresponds to a mask g, of length
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TABLE 2
Optimal Holder regularity estimates v of interpolatory subdivision schemes of Deslauriers and
Dubue [10], [11], [12] for several Lagrangian interpolation orders K -corresponding to mask lengths
L = 2K —1 (see §16). These estimates are also -optimal in the “Fourier sense,” and the numbers
(r —1)/2 give the optimal Sobolev regularity estimates listed in Table 1 (see §17).

(1L r JK[L] r ]
2] 3] L. 12 | 23 || 4.7767
4| 7|2 14 | 27 || 5.3173

6 | 11 |} 2.8300 || 16 | 31 || 5.8294
8 | 15 || 3.5511 18 | 35 || 6.3233
10 | 19 j| 4.1935 || 20 | 39 | 6.8054

L = 2K — 1, which reads (when made causal by shifting)

{ g2'n.=6n—K/2’

16.1
( ) 92n+1=Ln(%)a
\
where L, (X) is the Lagrangian polynomial L, (X) = [[.,(X —k)/(n—k) associated
to the interpolation points £k =0,---, K — 1.

Shensa has shown [21] that G(X) of length L = 2K — 1 is exactly G(X) =
Gw(X)Gw(X), where Gy (X) is the polynomial mask of Daubechies wavelets of
compact support [0, K — 1] (see §14—this fact will be useful in §17). From §14
it follows that G(X) has exactly K zeros at X = —1. Moreover, it is strictly linear
phase because G(e™) = Gw (e*)Gw () = |Gw (€*)|2e/E~1«, Thus Theorem 15.2
applies with NV = K — 1. Moreover, since all interpolatory subdivision :schemes -are
stable (§6), Theorem 15.2 will provide the ezact regularity order of ¢(x).

The matrices FK~1 (15.1) needed by Theorem 15.2 can be easily determined using
the formula

(fK_1>n=c(K‘z)_li(—ni(ff;l)z, R0 K~ 2,

n .
i=0

which results from (16.1) after some calculation. Determination of their spectral radii
yields to the optimal regularities listed in Table 2. For L =7 (i.e., K = 4), using 4
zeros at X = —1 in G(X), we find that the limit function is almost C? in the sense
of (10.7), which was first proven by Dubuc in [12]. However, when only 2 zeros at
X = ~1in G(X) are used (N = 1), we find that the spectral radius of Theorem 15.2
is p = 1, hence the limit function is in fact C2.

In [10], Deslauriers and Dubuc extended the study of the previous subdivision
scheme for L = 7 (i.e., K = 4) to the following interpolatory mask (here defined for
n=-3,---,3):

go=1, gr1=1/2—a, gis=a, g,=0 elsewhere,

where a € R. The case a = —1/16 corresponds to the previous example, for which
the limit function is C2. .

The simplicity and usefulness of Theorem 15.2 is well illustrated through this
example. The mask g, is easily seen to be strictly linear phase for —1/16 < a < %;
therefore, Theorem 15.2 applies in this case. (For other values of @ we have to use
more general theorems such as Theorem 11.1.) Now, for a # —1/16, G(X) has exactly
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T

1 1

Tos

3 1

) 2 4 8
(a) a = —1/16.

1 1

4 8

2 2
(c)a= %. (d) a=04.

F1G. 5. Plots of Deslauriers and Dubuc limit functions corresponding to go = 1, g+1 = 0.5—a,
g+3 = @, and gn = 0 elsewhere. The successive values of a are a = —1/16 {regularity order 2),
a =0 (regularity order 1), a = % (regularity order log,(V/5 — 1) =0.305 - -) and a = 0.4 (regularity
order 0.104-- ).

two zeros at X = —1, and we can, therefore, apply Theorem 15.2 with N = 1. We
have (fi1)o = 1 +4a, (f1)+1 = —4a, and (f1)+2 = 2a; hence

= [ 1+4a —8a
Fi= ( 2a —4a ) )
Its spectral radius is p = (1 + +/1 + 16a)/2. From Theorem 15.2, the exact regularity
order of ¢(z) is r = 2 — log,(1 + +/1 + 16a), which decreases from 2 to zero when
1

a increases from —1/16 to 3. Figure 5 illustrates this through several examples
corresponding to various values of a.

17. Comparison with Fourier-based regularity estimates. This paper has
developed a direct approach based on the definition of Holder regularity. But several
other approaches for estimating regularity based on the Fourier transform @¢(w) of
the (compactly supported) limit function ¢(z) have also been considered [3]-[5], [10],
[11], [23]. Note that we have easy access to @(w) from mask g, by [3]-[6]

(17.1) PH(w) = lim GI(e™).
j—o0
The idea is here to estimate the decay of @(w) as |w| — oo. To do this, several

functional spaces (other than C") can be used to interpolate the spaces CN of N-
times continuously differentiable functions. We generally consider one of the following
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spaces: Hf, Hj, H7, defined by the conditions |w|"¢(w) € L1, L2, L, respectively.
(The spaces Hj are the Sobolev spaces of order r.) Estimations of the parameter r
for these spaces ensure some Holder regularity, since we have, for any € >0,

(17.2) HIH+2 c HyH/2 c H c C7.

(These inclusions are easily proven. The second one uses the Cauchy-Schwarz ‘in-
equality and [11] contains a proof of the last one.)

In [6], Daubechies has derived an estimate for ¢(z) € C™¢ based on HZ}. This
estimate is easily recovered from the results derived in this this paper. We have, using
the notation of Theorem 10.1,

) ) 1 f2* . _—
J —_ J J ol ] o Siw
A (Ollee = max| (0] < 5 [ V() o < max (5]

Define the number 3’ such that 2-7%' = max,er |Fi(€*)]. Then, by Theorem 10.3
and 11.1, p(z) is CN+B~¢  where B = limsup;_,, B;- Cohen (3], [4] has shown that
the sequence 37 actually converges to 3 (the proof is the same as in Theorem 11.1) and
that, under some weak conditions on G(X), the optimal regularity order r based on Hj
lies between N+ —¢ and N+1+8+¢. In the case of Daubechies orthonormal wavelets
(§14), Cohen and Daubechies [3]-[5] found that § is equivalent to (3 - 1log,3)L ~
0.10376L as L — oo. It follows (from the following theorem) that the optimal Hélder
regularity order of Daubechies orthonormal wavelets is also asymptotically equivalent
to (0.10376---)L as L — co. However, for small values of L (L < 20), the estimates
derived in this paper, listed in Table 1, are much sharper than the asymptotic result
of ‘Cohen and Daubechies.

Daubechies has also derived [6, Appendix] other regularity estimates for the spe-
cial case of her orthonormal wavelets described in §14. It turns-out that her estimates
are optimal for the Sobolev spaces Hj. This is due to Theorem 15.2 and the property,
already mentioned in §14, that the polynomial mask G(X) of a Daubechies wavelet
is such that G(X )G’(X ) is the polynomial mask of a Deslauriers and Dubuc inter-
polatory scheme [21]. We have G(e*)G(e™) = |G (e™)|?; therefore, from (17.1) the
Fourier transform of the limit function of a Deslauriers and Dubuc scheme is |@(w)|?,
where ($(w) is the Fourier transform of the limit function corresponding to the wavelet.
The following theorem shows that since the Deslauriers and Dubuc limit functions are
strictly linear phase, their optimal Holder regularity estimates r, provided by The-
orem 15.2 and listed in Table 2, are also optimal for the spaces Hj. This implies
o(z) € H;/ 2. therefore, @(x) € C"~1/2-¢ which is optimal for spaces H;/ 2. This
regularity order is exactly the one derived by Daubechies in [6]. Table 1 lists these
optimal Sobolev regularity orders for several lengths.

The above discussion shows that if G(X)G(X) is strictly linear phase, then The-
orem 15.2 applied on G(X)G(X) provides the optimal Sobolev regularity of the limit
function corresponding to the polynomial mask G(X). This result has been derived
independently by Daubechies and Cohen [5] using the Littlewood-Paley theory. Re-
cently, Villemoes [23] has shown that this holds more generally under the weak con-
ditions on G(X) of Cohen [3].

But are these “Fourier-optimal” estimates optimal for Holder regularity? The
following theorem shows that the answer is no. The basic reason for this is that
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the exact Holder regularity order of ¢(z) depends on the phase of #(w), i.e., on the
phase of G(e*) by (17.1), whereas Fourier-based regularity estimates only depend on
the modulus of ¢(w) (or G(e*)). This theorem also shows that in the framework of
§15 (the “strictly linear phase” case), optimal Fourier-based estimates are, in fact,
also optimal for Holder regularity. This is natural since the strictly linear phase case
corresponds to limit functions that can be made zero-phase by shifting, i.e., p(w) > 0.

THEOREM 17.1. For strictly linear phase masks, optimal regularity estimates
based on Hf are also optimal for Holder regularity.

Optimal regularity estimates based on H} are not optimal for Holder regularity in
general. Nonetheless, they are off by % at most compared to optimal Hélder regularity
estimates.

Proof. We first prove optimality in the strictly linear phase case. From (17.1), the
framework of §15 can easily be reduced to the case $(w) > 0. Optimality for spaces

7 and CT coincide if we prove that in this case ¢(z) € C implies p(z) € H{ ¢, for
any € > 0. We may restrict to 0 < a < 1, otherwise just consider a derivative of ¢(z).
The integral I(w) = [sin(wh/2)|h|~*~**¢ dh absolutely converges for 0 < o < 1;
making a change of variable yields I(w) = |w|*~¢I(1); therefore,

/ S]] dw = / / $(w) sin(wh/2) b -1+ dhdu
—c [((h/2) — p(=h/D)IAI =+ an

absolutely converges because ¢(z) is compactly supported and C*. This proves that
o(z) € HY®.

Table 1 shows that regularity orders of Daubechies orthonormal wavelets that are
optimal for Sobolev spaces Hj are not optimal for Holder regularity.

The fact that optimal Fourier-based estimates are greater than or equal to r — %,
where r is the exact Holder regularity estimate, results from the well-known inclusion
Crc H;™°, which holds for compactly supported functions [16]. 0

Trivial extensions of this theorem can be derived for other “Fourier-based” spaces,
using inclusions like (17.2).

Note that Table 1 shows that the Holder regularity estimates of “more symmetric”
wavelets are numerically found to be less than those of minimum phase wavelets (the
ones that are “nonsymmetric” the most). That is, more symmetry (for the same
modulus of G(e*)) decreases regularity. In addition, both regularity estimates are
greater than the optimal Sobolev regularity order that constitutes a lower-bound for
the exact Holder regularity order. In fact, Theorem 17.1 shows that this lower bound
is attained for strictly linear phase masks.
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