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A Discrete-Time Multiresolution Theory 
Olivier Rioul 

Abstract-Multiresolution analysis and synthesis for discrete- 
time signals is described in this paper. Concepts of scale and 
resolution are first reviewed in discrete time. The resulting 
framework allows one to treat the discrete wavelet transform, 
octave-band perfect reconstruction filter banks, and pyramid 
transforms from a unified standpoint. This approach is very 
close to previous work on multiresolution decomposition of 
functions of a continuous variable, and the connection between 
these two approaches is made. We show that they share many 
mathematical properties such as biorthogonality, orthonor- 
mality, and regularity. However, the discrete-time formalism 
is well suited to practical tasks in digital signal processing and 
does not require the use of functional spaces as an intermediate 
step. 

I. INTRODUCTION 
AVELET transforms [21], octave-band filter banks w [23], [24], and pyramid transforms [3] have been 

used for different purposes in various fields of signal pro- 
cessing; they are now recognized as different views of a 
common theory. ’ This paper establishes the links between 
these techniques for discrete-time signals, focusing on ba- 
sis decomposition in time rather than frequency decom- 
position. This topic is close to the one studied in a recent 
work by Shensa [22] that clarifies the relationship of var- 
ious discrete-time and continuous-time wavelet trans- 
forms using a similar formalism. While [22] focuses on 
implementation issues of the “continuous wavelet trans- 
form” (to be defined below) for signal analysis purposes, 
we consider only a discrete-time version of the wavelet 
transform that is more appropriate for coding applica- 
tions. We assume one-dimensional signals; extension to 
more dimensions may not be straightforward [25], but the 
ideas are the same as in one dimension. 

There are various types of wavelet transforms, for 
which the connection to filter banks is more or less ob- 
vious. The continuous wavelet transform (CWT) is the 
first type of wavelet transform defined in the literature 
[ 121. It maps a one-dimensional analog signal n (t) to a set 
of wavelet coefficients which vary continuously over time 
b and scale a: 

CWT (a, b) = U - ‘ / *  ~ ( t )  $*  ( t  a - ’) dt. 
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The “wavelet” functions +((t  - b) /a )  are used to band- 
pass filter the signal. This can be seen as a kind of time- 
varying spectral analysis in which scale a plays the role 
of a local frequency: As a increases, wavelets are 
stretched and analyze low frequencies, while for small a, 
contracted wavelets analyze high frequencies. Therefore, 
the time-frequency extents of the wavelets vary according 
to a “constant-Q ” scheme [21], with various resolutions 
in time or frequency (multiresolution analysis), whereas 
techniques based on short-time Fourier transforms ana- 
lyze the signal at constant resolution [21]. 

In applications such as signal coding or compression, 
time-scale parameters (b, a) are sampled, so that the signal 
is represented by wavelet coefficients in an economical 
manner. A typical choice is a = 2J, J E 2 (octave by oc- 
tave computation [2 11); in addition, wavelets are shifted 
in proportion to their temporal extent, i.e., b = k2’. 
Wavelet ‘‘basic functions” become 

and wavelet coefficients are inner products of the signal 
with the $j,k(t)’S, 

(3) 

Note that this “sampled” wavelet transform still applies 
to continuous-time (analog) signals. It has been exten- 
sively studied by Meyer [17] and Mallat [15], [16] who 
built a complete mathematical theory based on “multires- 
olution spaces” of functions. In fact, some of the ideas 
behind the theory were already found in image coding and 
computer vision [l], [3]. Based on this theory, several 
authors [4], [8], [9], [ 171 constructed special wavelet pro- 
totypes $ (t) for which perfect reconstruction of the signal 
x ( t )  is possible; the synthesis takes the form of a “wavelet 
series, ’ ’ 

(4) 

where the synthesis wavelets $j,k (t) are defined similarly 
as (2) with wavelet prototype $(t). As a special case, or- 
thonormal wavelets are obtained if one has $( t )  = +(t) .  

In order that the coefficients (3) be computed effi- 
ciently, Mallat [15] derived a iterative algorithm that was 
transposed to compute the reconstruction part. Mallat’s 
direct and inverse algorithms turn out to be exactly an 
analysis and synthesis octave-band filter bank [23], [24], 
which is used on discrete-time signals. Filter bank theory 
is therefore closely related to wavelets. The former has 
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been previously developed for applications such as sub- 
band coding of speech [7] or images [25], and has greatly 
influenced the latter. In fact, known FIR filter design 
techniques [23] were independently used by Daubechies 
[8], [9] to construct finite-length orthonormal wavelets; 
her construction is based on the classical MAXFLAT dig- 
ital filters [13] which have been recently related to La- 
grangian interpolators [22] .  Recently, FIR filter design 
methods were developed [4], [26] to construct linear 
phase, “biorthogonal” wavelets for which $ ( t )  # $ ( t ) .  

Therefore, the connection between wavelet series and 
filter banks has been extensively studied. However, the 
“discrete-time side” of wavelet series was mainly con- 
sidered as a technical step either for the derivation of fast 
algorithms which rely on the filter bank structure (for fur- 
ther developments see, e.g., [20]) or for the construction 
of continuous-time wavelet bases via filter design [4], [8], 
[9], [26]. On the other hand, filter banks were studied 
from the viewpoint of subband decomposition, which 
masks the time decomposition properties. In this paper, 
we focus on octave-band perfect reconstruction filter 
banks seen as multiresolution decomposition of discrete- 
time signals, performed by a discrete wavelet transform 
(DWT),2 to be defined in Section VII. 

With the notable exception of Shensa [ 2 2 ] ,  very little 
can be found on this subject in the literature, in which it 
is generally admitted that analog wavelets are the inter- 
esting objects that underly discrete-time filter banks. Here, 
we adopt a dual point of view, and consider discrete 
wavelet transforms as the interesting objects. A discrete- 
time presentation of multiresolution theory may allow new 
developments; it is certainly more appropriate for practi- 
cal tasks in digital signal processing than the continuous- 
time one. As an example, various image compression 
schemes were derived based on the wavelet model for an- 
alog signals [2], [27], but they are essentially discrete in  
nature. 

This paper focuses on discrete-time signals and devel- 
ops a discrete-time multiresolution theory where ‘‘basis 
functions” on which the signal is decomposed are dis- 
crete-time wavelets. It is self-contained: the reader should 
not need to have previous knowledge on wavelets, al- 
though some rudimentary knowledge on vector spaces is 
assumed. Note that since the overlap between discrete- 
time and continuous-time approaches is important, the de- 
velopments and ideas of this paper are known to wavelet 
experts, yet they do not appear in the literature as they 
are presented here. 

11. NOTATIONS 
Throughout this paper we use the following notations. 

Most of them are classical; in particular, the operator (or 

’The acronym DWT is sometimes used to denote wavelet series decom- 
position of continuous-time signals (3) ,  (4). Here DWT refers to a type of 
wavelet transform which decomposes discrete-time signals, as in [22]. Al- 
though we shall see that the DWT reduces to an octave-band filter bank, 
we use the wavelet terminology to emphasize its multiresolution (time) de- 
composition properties, as opposed to the well-known subband (frequency) 
decomposition properties. 

matrix) notations appear in other works (see, e.g., [8]) 
and have been reused by Shensa in [ 2 2 ] .  

x or {x,> denotes the original signal, which is a dis- 
crete-time, complex-valued sequence. Its n th sample will 
be noted x,. 6 denotes the “pulse” signal, whose samples 
are 6,, = 1 and 6, = 0 if n # 0. 

G and H denote the low-pass and high-pass filtering 
operator, respectively. The corresponding impulse re- 
sponses are g, and h,. Therefore, Gx is a low-pass filtered 
signal, i.e., the result of the discrete convolution (Gx), = 
Ck X k g ,  - k .  When needed, the sample index of the input is 
shown, as in (Gxk). Z is the identity operator, Zx = x, of 
impulse response 6. 

t x and 1 x denote the upsampled and downsampled 
signals, respectively. They are defined by (t x ) ~ ,  = x,, 
(t  x ) ~ ,  + , = 0, and (1 x), = x2,. Upscaled and downscaled 
signals, to be defined in Section 111, are denoted by G t x 
and 1 G’x, respectively. 

The inner product of x with y is (x, y )  = (x,, y,) = 
E, x I I y ; .  In particular, = (x, x )  is the squared norm 
of x. 

111. SCALING IN DISCRETE TIME 
This section defines scale for discrete-time signals. This 

definition is inspired from the commonly used scale of 
road maps: given a “real” object, the scale of a repre- 
sentation of this object is the ratio of the length unit of 
the representation to the corresponding real length. Here 
the “real object” is an original discrete-time signal {x,}, 
which is at scale 1 by definition, and scale refers to dis- 
crete time: a scaled version of {x,} is either 1) “up- 
scaled”: a discrete-time signal similar to { x n ) ,  but sam- 
pled at a higher rate; or 2) “downscaled”: a discrete-time 
signal similar to {x,), but sampled at a lower rate. 

Since scale is a relative notion, we focus on the descrip- 
tion of scale-changing operators that map a signal into a 
scaled version of it. Throughout the paper we restrict to 
changes of scale by an integer power of two. We therefore 
study two basic scaling operators: 1) “upscaling” oper- 
ator (by a factor 2): a discrete-time equivalent to the di- 
lation x ( t )  -+ x ( t / 2 ) ;  and 2) “downscaling” operator (by 
a factor 2): a discrete-time equivalent to the contraction 
x ( t )  + x(2t).  

Obviously, the scale notion is related to multirate sys- 
tems [6]. For example, a downscaled version of x, could 
be its downsampled version, (1 x),  = x2,. However, up- 
sampling (t x), = x,i2 if n is even, 0 otherwise, is not a 
good candidate for upscaling, since it inserts a zero be- 
tween every other sample of x,, hence x and t x do not 
have similar evolutions in time. This can be corrected by 
further interpolating the samples, as in the following ex- 
ample, illustrated in Fig. 1: 

Upscaled version of x, 
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Fig. 1. Two successive upscalings (by a factor 2) of an original discrete- 
time signal (top of figure). Upscaling is performed by first-order interpo- 
lation (5). Upscaled signals are stretched in time, but no resolution is added 
(see Section V). 

In order to determine general expressions for up- and 
downscaling operators, we need some basic assumptions: 

1) Scaling operators are linear. 
2) When scaling a signal, time shifts are scaled ac- 

cordingly. This is 

If y, is the upscaled version of x,, then y ,  - 2k is the 

If y ,  is the downscaled version of x,, then y, - k is the 

3) Scaled versions have similar time evolutions (shape 
preservation). The third point is difficult to be properly 
expressed. It is not considered until Section X, where it 
is connected to the “regularity” property. 

The first two assumptions result in the following char- 
acterizations, proven in Appendix A: 

The upscaled version of x is of the form G t x ,  where 
G t denotes upsampling followed by filtering with 
some impulse response { g,} : 

upscaled version of x, - k .  

downscaled version of x, - 2k.  

(G t x), = xkgn - 2 k .  (6) 

The downscaled version of x is of the form 1 G ’ x, 
where 1 G’ denotes filtering with some impulse re- 
sponse { g ; } ,  followed by downsampling: 

(1 G ‘ X ) ,  = x x k g 4 n - k .  (7) 
k 

Note that the impulse responses { gn}  and { g ; }  are not 
necessarily equal. In the sequel, we assume that they are 
impulse responses of low-pass filters; intuitively this is 
required by assumption 3)-Section X gives a theoretical 
justification of it. As an example, ( 5 )  corresponds to a 
3-tap upscaling filter g,, = 0.5, go = 1. 

Of course, these up and down “scaling” operators are 
merely the usual interpolation and decimation operators 
present in a two-band filter bank [6], [23], [24]. (The cor- 
responding flow graphs are shown in Fig. 2.) However, 
we keep using the “scale” terminology in the following 
because it is more appropriate for multiresolution decom- 
position of discrete-time signals. Note that the operator 
notation used here is very easily connected to flow-graph 
implementation; for example, G t 1 G ’ x means that the 
input x successively encounters a filter of impulse re- 
sponse g’ . ,  a downsampler, an upsampler, and finally a 
filter of impulse response g.  

Now, using only these two operators (6), (7), one can 
compute scaled versions of the original signal {x,} at all 
dyadic scales s = 2-i, where i E 2. The rule is that the 
upscaling operator (6) doubles the scale, while the down- 
scaling operator (7) halves it. Since the “scaling filters” 
{ g,} and { g ; }  remain fixed at all scales, all scale tran- 
sitions are performed the same way, and no particular 
scale is privileged. However, a scaled version of a given 
signal {x,} at some scale s is not unique. As an example, 
signals of the form (G t )N (1 G ’ ) M  (G t)M (1 G ’ ) N ~  are 
all “scaled” versions of x at scale 1, for all nonnegative 
values of N and M. Therefore, to characterize scaled ver- 
sions of n, we need another parameter, namely, resolu- 
tion. which is defined in Section V. 

IV. HERMITIAN TRANSPOSITION AND INNER PRODUCTS 
Before introducing the concept of resolution, it is con- 

venient to say a few words about Hermitian transposition 
of operators and inner products. In matrix notation, the 
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8’. 4 e down - scaled version of x, 

upscaling operator is [5] that transposing a linear operator amounts to trans- 
posing its flow graph: the Hermitian transposed flow graph 
is thus obtained by reversing the directions of all arrows- 
summing nodes become branching nodes and vice versu- 
and conjugating the multipliers. From the discussion 
above, it follows that the two flow graphs of Fig. 2 are 

G t x = (  ...;; ;; ;; :; :;; ...)  each other’s Hermitian transpose if and only if the scaling 
filters { g,,} and { g;} are each other’s paraconjugate (10). 
In any case, the flow-graph computational structures of 
up- and downscaling operators are always tranpose of each 
other. This has useful implications for deriving algo- 
rithms [20]; once an algorithm has been derived to com- 
pute downscaling, the transposed algorithm computes 
upscaling (and vice versa), at the same computational cost 
if both scaling filters have the same length. This easily 
carries over to direct and inverse wavelet transforms (see 
Section VI11 and [20]). 

Another characterization of Hermitian transposition 
uses inner products and is useful in the sequel. The inner 
product of two discrete-time signals {x,}  and { y , }  can be 

g4 g2 go g-2 g-4 

* (j). 
Its Hermitian transpose is, by definition, the operator ob- 
tained from (8) by transposition and complex conjuga- 
tion, i.e., written 

. ‘ .  
\ 

This is exactly the matrix form of a downscaling operator 
(7), with scaling filter { g ?,} in place of { g,} . Following 
the filter bank terminology [24], { g E,} is called the 
“paraconjugate” sequence of { g,} (the connection with 
filter banks will be explained in Section VIII). Paracon- 
jugation will be denoted in this paper with a tilde symbol: 

g n  = s*,. (10) 
We have thus seen that the Hermitian transpose of the 
upscaling op_erator G t is the paraconjugate downscaling 
operator 1 G. Similarly, the Hermitian transpose of the 
downscali_ng operator 1 G ’ is the paraconjugate upscaling 
operator G ’ t . 

Hermitian transposition is useful for several reasons. 
First, it has a flow-graph interpretation: it is well known 

This definition requires that signals have finite energy, 
i.e., llxll < 00, which is assumed throughout this paper. 
The inner product ( x ,  y )  measures the “similarity” be- 
tween x and y and permits to interpret signals as geometric 
vectors: for example, the signals x and y are “orthogo- 
nal” if ( x ,  y )  = 0. They are “orthonormal” if they 
moreover have a unit norm, i.e., 1IxII = 1) yII = 1 .  Using 
( l l ) ,  it is easy to show that the Hermitian transpose Ot 
of some operator 0 can be alternatively defined as satis- 
fying 

( x ,  oy) = (O’X, y )  

(x, 0% = (Ox, y )  

(12) 

or, equivalently, 

(13) 
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for any signals x and y of finite energy. These equations 
do not introduce any new concept: only notations are new. 
They are useful because of their conciseness: any operator 
on the left-hand side of an inner product can be brought 
to the right-hand side after Hermitian transposition, and 
vice versa. For scaling operators we can thus write 

(14) 

(15) 
which, respectively, stand for the apparently more com- 
plicated formulas 

( x ,  G t y )  = (1 G x ,  y )  

( x ,  1 G ’ y )  = ( G ’  t x ,  y )  

and 

To simplify notations, proofs in the Appendix will often 
use (14) and (15). 

V .  DISCRETE-TIME RESOLUTION A N D  

BIORTHOGON ALITY 

In this section we deflne the resolution notion for char- 
acterizing different versions of an original signal {x, ,}  at 
the same scale. Intuitively, the more information is pres- 
ent in a scaled version of { x , } ,  the higher the resolution. 
More precisely, we define the resolution parameter r as 
follows: A scaled version of { x , } ,  obtained by action of 
up- and/or downscaling operators on { x , ]  , is at resolution 
r = 2-/  ( j  1 0) if it is characterized by one sample every 
other 2’ sampling period of { x , }  . 

For example, x itself is at resolution 1. Its downscaled 
version 1 G ’ x  (7), which lives at scale 1/2,  is also at 
resolution 1 /2, because the downscaling operator rejects 
half of the samples. Note that in general, the resolution 
of a signal cannot exceed its scale, otherwise it would be 
characterized by more samples than are actually present 
in the signal. Therefore, we always have 

r ( y )  5 s ( y )  (16) 
for any signal y .  Since we start from an original signal 
{ x , }  at resolution 1 ,  all resolutions considered in this pa- 
per are negative powers of two: r = 2 - / ,  j ? 0. 

How is resolution affected by up and downscaling op- 
erators? We have seen that downscaling, when applied to 
the original signal { x , } ,  halves both scale and resolution. 
In contrast, since an upscaled signal is computed directly 
from the signal coefficients, resolution is not increased by 
up-scaling, which simply “magnifies” a signal without 
adding new details. Also, despite the low-pass filtering 
present in upscaling (6), information will not necessarily 
be lost when upscaling a signal. This is clear in the ex- 
ample (5) .  We therefore assume in this paper that the up- 
scaling operator G t is one to one: 

x # y implies G t x f G t y. (17) 
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In fact, this can be proven under weak conditions as fol- 
lows. Let z = x - y .  If G t z = 0, then from (6), the 
outputs of convolutions g2,  * Z, and g2,  + I * Z, vanish. 
Seen in the frequency domain, this implies z ,  = 0 when 
the frequency response G(eJ“) does not vanish for w = 
wo and wo + T ,  a condition which is always satisfied in 
practical systems, e.g., when the scaling filter is FIR half- 
band low pass. 

To summarize, there are two important rules concern- 
ing changes of scale and resolution: 

1) When replacing the original signal x by its down- 
scaled version 1 G ’ x ,  scale and resolution are halved. In 
particular, 

s(l G ’ x )  = s ( x ) / 2  and r(1 G ’ x )  = r ( x ) / 2 .  (18) 

2) Upscaling any signal y via G t doubles its scale but 

s(G t y )  = 2s(y) and r(G t y )  = r ( y ) .  (19) 

Another operator allows one to halve resolution while 
leaving scale unchanged; it plays a central role in the fol- 
lowing and is defined by 

A x  = G t l  G ’ x  (20) 

that is, downscaling followed by upscaling. From rules 
(1 8) and (19), this signal is at scale 1 and resolution 1 / 2  
when x is the original signal. Operator A is therefore called 
‘‘approximation operator at half the resolution. ” Note that 
A does not reduce to a filter because it is not shift invari- 
ant. Its flow graph is depicted in Fig. 3. 

Using the two scaling operators (6), (7), one can com- 
pute an infinite set of different versions of an original sig- 
nal { x , )  which have different scales and resolutions. Now, 
under some special conditions on these two operators it is 
possible that a scaled version at given scale s and reso- 
lution r is unique. In this case, only two intuitive notions 
(scale and resolution) are necessary to characterize all 
versions of x that might be present in multiresolution sys- 
tems. 

To achieve this, several equivalent conditions must be 
fulfilled. The up and downscaling operators must satisfy 
the property 

1 G ‘ G  t = z (21) 

i.e., upscaling followed by downscaling leaves the signal 
unchanged. Under this condition, a scaled version of {x , }  
at given scale s = 2-’ and resolution r = 2-J is unique; 
it is given by the formula (G t ) j - ’ ( l  G ’ ) J x ,  proven in 
Appendix B. Note that (21) implies that the downscaling 
operator 1 G ’  halves both scale and resolution only if it 
is applied to signals such as x itself (see (1  S)), for which 
s = r .  However, for “overscaled” signals, such as A x ,  
for which s > r ,  the operator 1 G ’ only halves scale and 
leaves resolution unchanged. 

Another condition is that the approximation operator at 
half the resolution (20 )  is a projector, 

leaves resolution unchanged, i.e., 

A 2 = A  (22) 
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Identity operator 
(b) 

Fig. 3 .  A flow-graph illustration of the fact that the approximation A x  of an original signalx at half the resolution is a projection. 
(a) Downscaling, followed by upscaling approximate x at half its resolution. (b) Reapproximating Ax by A leaves A x  unchanged. 
This is equivalent to (21), i . e . ,  to the condition that upscaling, followed by downscaling, is the identity operator. 

i.e., reapproximating the approximation A x  leaves it un- 
changed. In fact, (21) implies that A2 = G t l  G’G t l  
G ’ reduces to G t 1 G ’ = A by simplification of the mid- 
dle term 1 G ’ G t = 1. This illustrated using flow graphs 
in Fig. 3(b). 

Appendix B proves that conditions (21) and (22) are in 
fact equivalent, and that another equivalent condition is 
the “biorthogonality ” property that deserves attention. 
The two families of shifted scaling impulse responses 
{ g, - 2 k }  and { g,! , -2k} ,  indexed by k, satisfy 

( g n - 2 k 9  g A - 2 1 )  = g n - 2 k g i i - n  

1 i f k = I  
(23) =i 0 otherwise 

(recall that g ’ is the paraconjugate (10) of g ’ ). Therefore, 
biorthogonality is necessary and sufficient for scaled ver- 
sions of the original signal {x,} to be uniquely determined 
by their scale and resolution parameters. This should al- 
ways hold in “coherent” multiresolution systems-for 
which multiresolution approximations are unique. Bior- 
thogonality will therefore be assumed in the sequel. 

Orthonormality is a special case of biorthogonality for 
which one further imposes that scaling filters are paracon- 
jugate of each other, 

reviews the pyramid transform [ l ] ,  [3] within this frame- 
work. We assume that scale and resolution characterize 
scaled signals as discussed in the preceding section (con- 
ditions (21), (22), or (23)). Intuitively, in a multiresolu- 
tion analysis, the original signal {x,} is decomposed into 
several multiresolution components associated to different 
resolutions, while during synthesis, the signal is recon- 
structed from its multiresolution components. 

From Section V, a signal at some resolution r contains 
all the information necessary to obtain versions at lower 
resolutions r ’  5 r: For example, the version of original 
signal x at scale 2-’ and resolution 2-J, namely. 
(G t)’-‘( 1 G’)’x, is brought to resolution 2-j-I by ap- 
plying the operator (G t l  G ’ ) j - ’ + ’ .  Therefore, to avoid 
redundancy of information in a multiresolution analysis, 
the signal is decomposed into residue signals that catch 
“details” from one resolution to the next finer one. These 
residue signals are defined by difference as follows. The 
“residue” signal of {x,} at scale s and resolution r is the 
signal which, added to the scaled version of {x,} at same 
scale and resolution, increases resolution from r to 2r. 
That is 

scaled signal (s, r) + residue signal (s, r) 

= scaled signal (s, 2r). (26) 

g n  = SA (24) We have assumed 

so that the family of shifted signals { gn - 2 k }  form an or- 
thonormal set, 

1 i f k = Z  i 0 otherwise. 
(25) ( g n - 2 k 9  g n - 2 1 )  = 

From (24) and the discussion of Section IV it follows that 
orthogonality is a shorthand for the combination of two 
properties: biorthogonality , plus the condition that up- and 
downscaling operators are Hermitian transpose of each 
other. 

VI. MULTIRESOLUTION RESIDUE SIGNALS AND 

PYRAMID TRANSFORMS 
This section uses the definitions and properties of scale 

and resolution discussed above to give a general definition 
of discrete-time multiresolution signal decomposition, and 

s 2 2r (27) 

so that the right-hand side of (26) is well defined accord- 
ing to (16). 

Now, we can define a general multiresolution decom- 
position of an original signal {x,} as a collection of resi- 
due signals at successive resolutions 1/2, 1/4, 1/8, 
. . .  . These residue signals are computed during multi- 
resolution analysis. During multiresolution synthesis, the 
signal {x,} is reconstructed starting from a low resolution 
scaled version of {x,} , by applying (26) iteratively to in- 
crease resolution until the highest resolution 1 is reached, 
which gives the original signal back. Note that with this 
definition, a multiresolution decomposition differs from 
another only by the scales of multiresolution components. 

The pyramid transform is a direct application of these 
ideas. It was first introduced by Burt and Adelson [3] for 
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scale 1f2, 
resolution 112 

residue: 
scale 1, 
resolution 1f2 

(c) 
Fig. 4. Flow-graph implementation of the pyramid transform. (a) One step of decomposition; the original signal x is decom- 
posed into a version of x at half its scale, and a residue signal at the same scale and half the resolution, the latter being obtained 
by difference. (b) The reconstruction part uses (26). One simply adds back what was subtracted before. (c) The elementary cell 
o f  (a) and (b) is iterated J times to provide a full pyramidal decomposition on J “octaves” (here J = 3) .  

image coding purposes; here we describe pyramid decom- 
positions for one-dimensional signals in the framework of 
this paper. A pyramid transform on J “octaves” decom- 
poses the signal {x,} into the collection of residue signals 
at scale 2-(’-’) and resolution 2-’, where j = 1 ,  * , 
J ,  plus a IOW resolution version of {x,} , namely the scaled 
signal at scale and resolution 2-’. This description is suf- 
ficient to fully describe a pyramid transform. 

It is easy to connect this to the original description of 
Burt and Adelson [3], by deriving a computational tree- 
structure for its implementation: Start with one step of 
decomposition, i.e., let J = 1. From the above definition, 
the original signal x is decomposed into two components: 
its residue signal at scale 1 and resolution 1/2, which, 
from (20), (26) is 

plus its scaled version at scale and resolution 1 /2, i.e., 
1 G’x. The corresponding flow graph is depicted in Fig. 
4(a). To reconstruct x, 1 G‘x is brought back to scale 1 
and (26) is applied, i.e., 

G t (1 G’x) + (X - G t l  G’x) = X. (29) 

In other words, one simply adds what has been previously 
subtracted. The corresponding flow graph is depicted in 
Fig. 4(b). This decomposition readily extends to a full 
computation of a pyramid transform on J octaves. Simply 
note that from the definition of general multiresolution de- 
composition, scale and resolution parameters of multires- 
olution residue signals are halved at each stage (octave) 
of the decomposition. Now, since any residue signal is a 
difference of scaled versions of x, the rules (18), (19) ap- 
ply for residue signals as well. Therefore, scale and res- 
olution parameters of a multiresolution residue signal are 
halved when replacing x by 1 G ‘ x. This amounts to iter- 
ating the basic computational structure (one-step decom- 
position) of Fig. 4 on (1 G ’ ) j x  at each level j = 0, - , 
J - 1 .  This gives the flow graph of Fig. 4(c). 

In Burt and Adelson’s terminology [3], the above mul- 
tiresolution residue signals form a Laplacian pyramid, 
while the set of versions of {x,} at scales 2-’(i = 0, * , 
J) is called a Gaussian pyramid. The terminology “pyr- 
amid” comes from the fact that muiltiresolution compo- 
nents are computed at successive scales, from scale 1 
(“base” of pyramid) to scale 2-”- ’) (“top” of pyra- 
mid). “Gaussian” and “Laplacian” were named after the 
type of scaling filters used in [3]. 
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Recall that one always has perfect reconstruction since 
what has been subtracted is added back during synthesis 
(see (29)). Therefore, there is no constraint at all on scal- 
ing filters { g,} and { g ;  }. Even the basic biorthogonality 
constraint (23), which ensures uniqueness of scaled ver- 
sions of x at a given scale, is not necessary for the scheme 
to work. There is a price to pay, however: the multires- 
olution residue signals correspond to scales s = 2-i(i = 
0, - * .  , J - 1) that are always twice their resolution r 

- s /2 .  Therefore the transform is overcom- 
plete: starting from an original signal sampled at rate 1 / T ,  
the multiresolution components of a pyramid transform 
are sampled at rate 1 /T(1 + 1 /2  + 1 /4  + + 2-J) 
= 2/T. This means that there are about twice as many 
transform coefficients as original signal samples. (In two 
dimensions this factor becomes 4 / 3  [l], [8].) 

In contrast with the pyramid transform, the discrete 
wavelet transform, presented below, is not overcomplete 
(there are as many wavelet coefficients as signal samples) 
but requires design constraints on scaling filters. 

2-’-1 - - - 

* 

VII. THE DISCRETE WAVELET TRANSFORM AND 

PERFECT RECONSTRUCTION FILTER BANKS 
We have seen in the preceding section that a potential 

drawback of the pyramid transform is its overcomplete- 
ness, due to the fact that the residue signals involved are 
“overscaled”, i.e., they satisfy s = 2r. In a “discrete 
wavelet transform (DWT),” each residue signal is “crit- 
ically sampled,” i.e., its scale and resolution parameters 
are equal, r = s. To describe the DWT we therefore need 
to extend the basic definition of residue signals (26) to this 
case, which violates restriction (27). 

We are led to consider two operators, H t and 1 H’, 
defined similarly as G t and 1 G ‘ , with impulse responses 
{h,} and { h ; } ,  respectively. Define 1 H‘x as the residue 
signal of x at scale 1 /2  and resolution 1 /2 ,  which is 
brought back to scale 1 by applying H t; this gives H t l  
H’x  as the residue signal at scale 1 and resolution 1 /2  
defined by (28), i.e., 

(30) 

‘ 
x - G t l  G‘x = H t l  H ‘ x .  

This condition is simply a rewriting, in operator notation, 
of perfect reconstruction (without delay) of a two-band 
filter bank [23] depicted in Fig. 5(a), with low-pass filters 
{ g,}, { g ; }  and high-pass filters { h,} , {h;} . This defini- 
tion of residue signals at scale and resolution r = s = 
1/2 is immediately extended to other values of r = s by 
application of the rules (18), (19) as in the preceding sec- 
tion. This gives 1 H ’ (  1 G’)’- ‘x as the residue signal at 
scale and resolution r = s = 2 - J ( j  > 0). 

Using this extended definition of multiresolution resi- 
due signals, a DWT on J “octaves” is simply defined as 
the transformation of a signal {x,} into the following 
“wavelet coefficients” {wi}, j = 1 ,  1 , J ,  which are 
precisely the residue signals 1 H’ ( 1 G ’ )’- ’x at scale and 
resolution r = s = 2-J, and a low resolution signal, 
{ U : ) ,  the scaled version of x at scale and resolution 2-’. 

To reconstruct {x,}, residue signals are first upscaled by 
means of H t (as in (30)), then definition (26) is applied 
iteratively to increase resolution until resolution 1 is 
reached, i.e., until the original signal (x,} is recovered. 
This is performed by the “inverse DWT” (IDWT). 

The DWT and the IDWT are easily recognized to be an 
octave-band filter bank [23]: To halve both resolution and 
scale of residue signals, x is replaced by 1 G’x according 
to rule (18), i.e., the two-band filter bank of Fig. 5(a) is 
applied to the scaled version ( 1 G’)’x at each levelj. This 
gives the flow graph of Fig. 5(b), where the analysis filter 
bank computes the DWT, whereas the synthesis filter bank 
computes the IDWT. Note that this filter bank is critically 
sampled, i.e., there are as many computed wavelet coef- 
ficients as signal samples, as opposed to the pyramid 
transform, which is overcomplete by 50% (Section VI). 
However, low-pass ({ g,} , { g L}) and high-pass ({  h,} , 
{h;}) filters are constrained to satisfy the perfect recon- 
struction property (30). 

Although the computational structures of the DWT and 
octave-band perfect reconstruction filter bank are identi- 
cal, the DWT provides an alternative formalism, which 
describes it as a multiresolution decomposition in time, 
rather than as a subband frequency decomposition. This 
formalism can be developed by defining “basis func- 
tions” onto which the signal is decomposed: The basic 
analysis (synthesis) “scaling sequence” is g ;  (g,, re- 
spectively), while the basic analysis (synthesis) “wave- 
let” is the corresponding high pass impulse response & 
(h,, respectively). Other scaling sequences and wavelets 
are obtained from the “basic” ones by successive up- 
scalings: 

Analysis scaling sequences: 

g’J = (GI t ) J - ’ g ’ .  (31) 

L‘J = (e’ t )J -  IL’. 
Analysis wavelets: 

(32) 

Synthesis scaling sequences: 

gJ  = (G t ) J - lg .  (33) 

hJ = (G t ) ’ - ’h .  (34) 

Synthesis wavelets: 

Appendix C shows that the wavelet coefficients w/k of the 
original signal {x,} at oc tave j ( j  = 1, - - , J), i.e., the 
residue signal at scale and resolution 2-’, are inner prod- 
ucts of {x,} with the corresponding analysis wavelets: 

wJk = (x,, / i ; J - . 2 J k ) ,  j = I ,  - 9 J .  (35) 

(36) 

Similarly the low resolution component is 
J 

U :  = (xn, g A - 2 J k ) .  

An alternative definition of the DWT is thus (35), (36). 
The inverse DWT reconstructs the signal as a linear com- 
bination of shifted synthesis wavelets weighted by the 
corresponding wavelet coefficients, plus a very low res- 
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-4 
residue: 
scale=resolution= 1 / 2  
residue: 
scale=resolruion= 114 
residue: 
scale=resolution= 1 / 8  

-,,; scaled version: 
scale=rcsolution= 1/8 

4 
w.’ 

3 
W” 

4 
(b) 

Fig. 5. Flow-graph implementation of the discrete wavelet transform (DWT). (a) One step of decomposition/reconstruction. 
The original signal x is decomposed into a version of x at half its scale and resolution, and a residue signal also at half its scale 
and resolution. This is simply a two-band perfect reconstruction filter bank; the decomposition (analysis) part uses the low-pass 
“scaling” filter { g:} and the high-pass “wavelet” filter { h : } .  The reconstruction (synthesis) part uses the low-pass “scaling” 
filter { g n }  and the high-pass “wavelet” filter { h ” } .  (b) The elementary cell of (a) is iterated J times to provide a full DWT on 
J “octaves” (here J = 3). 

I 

olution approximation of x, obtained similarly: 

Equation (37), also proven in Appendix C, is simply a 
rewriting of the previous definition of the inverse DWT. 
As a result, wavelets and scaling sequences are the dis- 
crete-time ‘‘basis functions” present in a multiresolution 
decomposition: for example, wavelet hJ, - p k ,  shifted in 
proportion to its scale,3 contributes for the representation 
of x at resolution 2-J ,  around location k2-’ in the signal. 

’In this paper, scale is defined from the viewpoint of the signal. There- 
fore in this presentation of the DWT, scale and resolution parameters of 
DWT components are equal. Scale can also be defined from the viewpoint 
of the wavelets (32), (34) that are “analyzing” the signal [12], [15], [16]. 
Small resolutions would then correspond to large scales for wavelets, and 
scale and resolution parameters would be reciprocal of each other for 
wavelet coefficients. 

VIII. BIORTHOGONAL AND ORTHOGONAL WAVELETS 
The biorthogonality property of { g,} and { g;} (23) de- 

rived in Section V ensures that a scaled (or residue) ver- 
sion of an original signal {x,} at a given scale and reso- 
lution is unique. In a DWT, we moreover have the 
constraint of perfect reconstruction (30) of the two-band 
filter bank of Fig. 5(a). Then, Appendix D shows that 
biorthogonality carries over to “wavelets” {h , )  and 
{h ; } .  In fact, restricting to FIR filters for convenience, 
the four filters g, g ’ ,  h, h’ are simply related (Appendix 
D) : 

h, = (- l)”gi 

h; = ( - 1)” + ’ g,. 

(When the filters are moreover assumed to be causal, this 
set of equations is slightly affected and induces a delay on 
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the output of the filter bank.) To design a DWT, it is 
therefore sufficient to find two low-pass filters satisfying 
biorthogonality (23) and to define high-pass filters by (38). 
In addition, the two families of analysis and synthesis 
wavelets are mutually biorthogonal not only across time 
shifts at a given scale, but also across scales: 

1 i fk  = l and i  = j  
(39) i 0 otherwise. 

(hi  - 2jk, fi;!- 2‘1) = 

A proof is given in Appendix D. In fact Appendix D 
shows that biorthogonality is already implied by perfect 
reconstruction, and therefore always occurs in a DWT. 

Biorthogonality of wavelets (39) is perhaps easier to 
understand if we note that, in (37), the term contributing 
to resolution 2-’ is 

Now (39) implies that (40) is a projection of x onto the 
subspace of signals spanned by the wavelets 
since if x belongs to this subspace, then using (39) one 
finds that (40) reduces to x .  In other words, owing to 
biorthogonality , the DWT decomposes a signal into pro- 
jections of this signal onto subspaces corresponding to dif- 
ferent resolutions 2-’ ( j  = 1 ,  , J). This point of 
view is the discrete counterpart of the original theory of 
Mallat [15], [16] and Meyer [17]. 

The Orthonormal Case 
We have seen in Section VI that the orthonormal case 

is a special case of biorthogonality for which one further 
imposes (24), i.e., g ,  = g ; .  From (38) this implies h, = 
fi;; analysis and synthesis wavelets are equal. From the 
discussion of Section IV, it follows that the analysis and 
synthesis filter banks of Fig. 5(b), which, respectively, 
perform the DWT and IDWT, are Hermitian transpose of 
each other. In other words the DWT is an orthogonal 
transform: it is composed of lossless or paraunitary two- 
band filter banks [24] for which analysis and synthesis 
filters are paraconjugate of each other. The orthogonal 
discrete wavelet transform was first connected to the pyr- 
amid transform, in a similar manner as in Section VII, by 
Adelson et al. [l].  

From (39) and the relation h, = f i ; ,  the wavelets form 
an orthonormal basis: 

1 i f k  = I and i  = j 
(41) 

hence (40) is now an orthogonal projection of x .  This 
means that among all signals y belonging to the subspace 
spanned by the {hi-2Jk}, (40) is the one that minimizes 
the quadratic distance 1Ix - y(I2 .  Therefore, orthonormal- 
ity can also be thought of as the condition under which 
multiresolution components are most similar to the orig- 
inal signal [ 151. 

Orthonormality is often considered as an essential 
property for coding applications (see, e.g., [15]), where 

i 0 otherwise 
(hi-zk, hk-w) = 

the coding strategy is based on an LMS error criterion. It 
also simplifies the design: scaling and wavelet sequences 
are simply related since (38) reduces to h, = 
(- 1)”g:- , - n  for causal filters. However, it is well known 
[8], [91, [23], [26] that orthonormal filters cannot be of 
linear phase, except for a trivial choice; this has moti- 
vated the search for biorthogonal, linear phase wavelets 
r41, ~ 1 .  

IX. COMPARISON WITH WAVELET SERIES 
There is a remarkable parallelism between the DWT, 

presented in the previous section, and its continuous-time 
counterpart, which has been developed for functions of a 
continuous variable by Meyer [17], Mallat [15], [16], 
Daubechies [8] and other authors. We refer to the latter 
as the “wavelet series decomposition” (see (3) and (4)). 
This section compares the two models within the frame- 
work of this paper. The relationship of discrete and con- 
tinuous wavelet transforms was also clarified by Shensa 
1221. 

The analog model uses a continuous version of the in- 
ner product, namely, 

( x ( t ) ,  Y W )  = 1 x ( t ) Y * ( t )  dt (42) 

and applies to analog signals x ( t )  of finite energy I l ~ ( t )11~  
= ( ~ ( t ) ,  x ( t ) ) .  Also, upscaling is the simple dilation x ( t )  

+ x ( t / 2 ) / & .  (In the presentation of the DWT above, 
the constant h has been integrated into the discrete scal- 
ing sequences.) As in the DWT, one defines analysis and 
synthesis basic scaling functions, denoted by +(t) and 
cp (t), respectively, and analysis and synthesis basic wave- 
lets $ (t) and $ (t). The whole set of scaling functions and 
wavelets is defined as in (31)-(34) by successive upscal- 
ings. For example, the synthesis wavelets are $’(t) = 
2-’12 $(2-’t), and the other basis functions involved, 
namely, cp’(t), $’( t ) ,  and +’(t) are defined similarly. 
Then, the wavelet series coefficients are (compare with 
(3% (36)) 

wi, = ( x ( t ) ,  $’(l  - 2jk))  

V i  = ( ~ ( t ) ,  G J ( t  - 2 J k ) )  (43) 

and the reconstruction part uses a wavelet series (compare 
with (37)) 

J 

x ( t )  = ,x c Wi,$’(t - 2’k)  + VicpJ(t  - 2Jk). 
j = I  k 

(44) 

Analog wavelets are biorthogonal (compare with (39)) 

( $ ’ ( t  - 2 ’ k ) ,  $ i ( t  - 2‘1)) 

1 i f k  = 1 a n d i  = j 
(45) =i 0 otherwise 

and, of course, orthonormality occurs when analysis and 
synthesis wavelets are equal. Other properties, such as 
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phase linearity [4], [26] and finite or “compact” support 
[4], [8], [26], are also expressed similarly as in the dis- 
crete-time case. 

Therefore, the sole ability of the wavelet transform to 
do multiresolution signal decomposition, using orthonor- 
mal or biorthogonal bases, should not be critical in decid- 
ing whether to choose the discrete-time model or the con- 
tinuous-time one, because both models share the same 
properties. In fact, the parallelism that exists between the 
discrete-time and the continuous-time formalisms is so 
strong that a DWT can always be deduced from a bior- 
thogonal analog wavelet basis [4]. Specifically, discrete 
and continuous-time “basis functions” are related by [4] 

+(t)  = Jz c g;+(2t - n) 
n 

$(t)  = Jz c &+(2t - n)  
n 

cp(t) = Jz c g,cp(2t - n )  

$(t)  = h hncp(2t - n ) .  (46) 

n 

n 

Furthermore, additional properties satisfied by continu- 
ous-time wavelets, such as orthonormality , symmetry, and 
finite support are automatically fulfilled by the associated 
discrete-time wavelets [4], [8]. Thus, a continuous wave- 
let series decomposition scheme induces an associated 
DWT, the latter being implemented as an octave-band fil- 
ter bank. Moreover, fed by the discrete input { V : } ,  this 
filter bank provides the continuous-time wavelet series 
coefficients { W i }  ( j  = 1, * - * , J )  and { V i }  [4]. The 
algorithm was first derived by Mallat [15] in the context 
of orthonormal wavelets and was generalized for other 
types of continuous wavelets transforms by Shensa [22]. 

However, any arbitrary DWT cannot always be de- 
duced from a wavelet series decomposition scheme, be- 
cause this would imply that the obtained discrete wavelets 
satisfy constraints other than biorthogonality . For exam- 
ple, they would satisfy the relations [4] C,h, = E,& = 
0, which are not always met in perfect reconstruction fil- 
ter banks (see [23]). 

This has motivated several researchers to determine the 
minimal conditions under which continuous-time wavelet 
bases can be deduced from discrete-time ones. Necessary 
and sufficient conditions were recently derived, which 
turned out to be quite technical [4], [14]. It was previ- 
ously shown [SI, however, that a sufficient condition for 
the equivalence between the continuous-time case and the 
discrete-time case is the regularity property, which is by 
itself interesting; it is discussed in the next section. 

X. FILTER REGULARITY 
Regularity is well understood for continuous-time 

wavelets; they are regular if they are at least continuous, 
possibly with several continuous derivatives. Evidently 
this cannot be expressed directly on discrete-time signals, 
and the regularity property seems to be an exception to 
the rule that the discrete-time and continuous-time models 

share the same properties. Nevertheless, the aim of this 
section is to show that regularity can be defined for dis- 
crete-time wavelets, and that the two definitions of regu- 
larity are in fact equivalent. 

Regularity, introduced by wavelet theory as a smooth- 
ness condition on continuous-time wavelet basis func- 
tions, was soon recognized as a new design constraint for 
perfect reconstruction filter banks which is used to con- 
struct regular continuous-time wavelets [4], [8], [26]. 
Therefore, we want to characterize this constraint as a 
smoothness condition on the discrete-time ‘‘basis func- 
tions” defined in Section VII. These “basis sequences” 
are obtained by successive up-scalings: the aim is to find 
the conditions on the upscaling operator G t (6) under 
which signals (G t)’x vary smoothly, even for large j .  
We then say that the underlying scaling filter { g,,} is 
“regular.” 

In a biorthogonal DWT, for example, regularity of the 
scaling filter { g,,} implies regularity for all synthesis dis- 
crete wavelets and scaling sequences, since they are de- 
fined by successive up-scalings associated to { g,} (33), 
(34). On the other hand, regularity of analysis discrete 
wavelets and scaling sequences (31), (32) holds if the 
scaling filter { g;} is regular. Note that regularity can also 
be studied for pyramid transforms because their equiva- 
lent basis functions are also of the form (G t)’x, and in 
fact regularity was first observed by Burt and Adelson [3] 
in the framework of pyramidal decomposition. 

Regularity is believed to be useful in multiresolution 
decomposition schemes for several reasons [ 181, [2 11. In 
a DWT, for example, any error occurring in a wavelet 
coefficient w$ results, from (37), in a perturbation in the 
synthesized signal which is equal to the corresponding 
synthesis wavelet sequence { h i  - 2 , k ) .  It is therefore nat- 
ural to require that this perturbation be smooth, rather than 
discontinuous, or even fractal, as in the example shown 
in Fig. 6(a). This may be useful in, e.g., image coding 
applications where a “fractal” perturbation is likely to 
“strike the eye” much more than a smooth one, for the 
same SNR level [2]. On the other hand, requiring that the 
signal be analyzed by smooth basis functions {LA’} en- 
sures that no “artificial” discontinuity (i.e., not due to 
the signal itself) appears in the wavelet coefficients w/k = 
(x,,, LA’- 2 , k ) .  This should also be of interest for compres- 
sion purposes [2], [27]. 

A .  De$nition of Regularity 
We now define regularity for discrete-time signals 

(G t)’x, i.e., for responses to the operator (G t)’, re- 
stricting to the impulse responses gJn = ((G t )’@,, for con- 
venience. The following definition of regularity is in- 
spired from Holder regularity of continuous-time 
functions [ l l ] ,  [19]: For 0 < a 5 1, g i  is said to be 
regular of order r = (Y if it satisfies 

(47) 

where c is the constant independent of j and n.  In other 
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words, the slopes 

A g i  = (g’,+1 - g’,>/2-’ (48) 

of the curve g’, plotted against n2-’, are constrained to 
increase less than 2’(’-@ as j increases: for a < 1 they 
may indefinitely increase (Fig. 6(b) shows an example 
which satisfies (47) for a = 0.550 [8], [9], [ l l ] ) ;  
for CY = 1 they are always bounded (see Fig. 6(c)). Of 
course, the regularity condition (47) is stronger as a in- 
creases, thereby imposing smoother time evolutions of the 
sequence { g i }  . 

In order to extend this definition to higher regularity 
orders, we impose (47) on the “discrete derivatives” of 
g’,. The first “discrete derivative” of g i  is the sequence 
of slopes (48). The Nth discrete derivative ANgi is de- 
fined by applying N times the difference operator A. Now, 
g’, is said to be regular of order r = N + a (0 < a 5 1) 
if its Nth discrete derivative ANgi is regular of order CY, 

i.e., if 

- 

lANg{+l  - ANg’,l S ~ ( 2 ~ ’ ) ” .  (49) 

The example of Fig. 6(c) is regular of order r > 2.102 
[ 191. Again this definition imposes a stronger condition 
as r increases; here condition (49) is imposed on “slopes 
of slopes” and therefore requires very smooth evolutions 
of g i .  

B. Connection with Wavelet Series 

It can be shown [I91 that regular discrete wavelet and 
scaling sequences converge toward continuous-time func- 
tions as j -+ 03. More precisely, the discrete curves 
{ gi}, { g:’}, { h i }  and {LA’}, when plotted aBainst n2-j, 
uniformly converge to p ( t ) ,  + ( t ) ,  II/ ( t ) ,  and II/ ( t ) ,  respec- 
tively. In addition, these limit functions have the same 
Holder regularity order r as their discrete counterparts 
[19], Holder regularity r = N + CY (0 < QI 5 1) for the 
continuous-time case being defined similarly as 

((p“’(t + h) - (p(”(t)l 5 c(h(” (50) 

where ~ ( ~ ’ ( t )  is the Nth derivative of p ( t )  (compare with 
(49)). Note that a Holder regularity order r > N implies 
N continuous derivatives. 

Now, the continuous-time limits 8 ( t ) ,  + ( t ) ,  $ ( t ) ,  and 
(t) can be used to define a wavelet series decomposition 

as in Section IX. Compactly supported continuous-time 
wavelets have been designed by this method [4], [8], [9]. 
Therefore, owing to regularity, the identification between 
discrete-time and continuous-time wavelet schemes is 
complete: it is only a matter of opinion to state that con- 
tinuous-time wavelets underlie discrete-time ones (from 
(46)) or vice versa (from the limit process). Likewise, the 
regularity property can be seen either on continuous-time 
functions (50) or on discrete-time sequences (49). 

C. A First Necessary Condition for Regularity 

I 

Regularity of the scaling filter { g,} also implies shape 
preservation by the upscaling operator G t (this is As- 

sumption 3) of Section 111). In other words, upscaling 
“stretches” the sequence {g’,} but does not affect its 
shape: we have g!, = gin+ I z gin+: ,, the approximations 
being sharper as j increases. Now since gJ + ’ = G t g’, 
using (6), we have gin+ = Ckg2kg i -k  = (Ckg2Jgi, hence 
&gSk = 1. Similarly it can be shown that CkgZk+ I = 1, 
starting from g<nf: I ([ 191 contains a more rigorous proof). 
These conditions are necessary conditions for shape pres- 
ervation and regularity. They can be rewritten as C,g, = 
2 and E,(- l ) ”g,  = 0, i.e., 

2 i f w = O  

0 i f w = ? r  
G(eJ“) = 

where G(e’”) is the transfer function of the scaling filter 
of impulse response { g,} . This justifies that scaling filters 
are preferably low pass. In fact, they are often chosen to 
be half-band low-pass filters, a property that is justified 
by stronger regularity conditions (see below). Note that 
the first condition in (51) is simply a renormalization: In 
an orthogonal DWT, for example, they are normalized 
such that [8] C,g, = C,gL = h so that orthogonality 
(25) holds. Hence, the order of magnitude of {g i }  de- 
creases as 2-J” as j increases, and one has to renormalize 
{ g,} according to (51) so that the order of magnitude of 
{ g!,} is preserved for different j ’s. 

Fig. 6 shows several examples of iterated wavelet se- 
quences { h i }  corresponding ,to different choices of { gn} . 
In Fig. 6(a), the curve { h i }  rapidly diverges as j in- 
creases. This example does not even fulfill (51), therefore 
it is not continuous. The example shown in Fig. 6(b) is 
the first Daubechies wavelet of length 4 [8]. It satisfies 
(51) but is clearly not very regular; this shows that (51) 
is not sufficient to obtain a high regularity order. Fig. 6(c) 
is a very regular example (see below). The example of 
Fig. 6(d) is particularly interesting: it corresponds to one 
of Smith and Bamwell filters derived in [23]. Mathemat- 
ically speaking, this example is not regular because (51) 
is not satisfied. However, in this case, the scaling filter 
has a 40-dB attenuation in the stopband, and the value of 
G(e’“) at w = ?r is thus very small (about As a 
result, (51) is “almost” satisfied and the iterated se- 
quences { h i }  “pretend” to be regular for small j ’ s .  For 
large j ’ s  the curves eventually diverge, with strong oscil- 
lations near the wavelet modes (see Fig. 6(d)). Although 
rejected by the mathematical definition above, such wave- 
lets may be “regular enough” in applications where the 
number of octaves in the multiresolution decomposition 
is not too large. 

D. Necessary Conditions for Regularity: “Flat Filters ’’ 
or “Vanishing Moments” 

A regularity order r > N requires more than (51). In 
fact it can be shown [4], [19] that the scaling transfer 
function G(e’”) is necessarily of the form 

N +  I 

(52) G(e’”) = (7) 1 + e-’“ F(e’“). 
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Condition (51) follows for N = 0. Here (52) implies that 
up to N derivatives of the transfer function G(e’”) vanish 
at w = T ,  hence the spectrum of a regular scaling filter is 
“flat” at half the sampling frequency. It is also flat at w 
= 0 (with the same order of vanishing derivatives), which 
tends to imply that the scaling filter should be half-band 
low pass. 

In a DWT, using (38) one finds 

and similarly for {h , }  if the analysis scaling filter { g ; }  is 

“flat.” Equation (53) means that the wavelet sequence 
(6 ; )  has N + 1 vanishing moments [4], [9], and this can 
be written similarly for the continuous-time wavelet IJ (t)  
[4], [16], [17]. For example, the wavelet shown in Fig. 
6(c) has six vanishing moments. This property may be 
interesting by itself for some applications [9]. 

E.  Estimating Regularity 
The condition (52) or (53) can be easily integrated in a 

filter design procedure [4], [26]. However, it is only a 
necessary condition for regularity: there exist nonregular 



2604 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 8, AUGUST 1993 

examples for which (52) holds [19]. It is therefore im- 
portant to a posteriori determine the regularity order of a 
computed scaling filter { g,} , and several regularity esti- 
mates have been derived for the purpose [8], [ 113.  Dau- 
bechies’ estimate [8] is based on the determination of 
maxima of spectra. Unfortunately, it requires many com- 
putations to determine a good estimate and is not optimal 
in general [ 191. Daubechies and Lagarias [lo], [ 1 11 have 
derived a method based on matrix algebra which yields 
optimal regularity estimates in some instances. The au- 
thor derived a method in [19], which, unlike earlier esti- 
mates, is based on the discrete-time approach described 
in this section. It is easily implementable, applicable in 
all cases, and gives optimal estimates for Holder regular- 
ity. 

XI. CONCLUSION 
This paper has developed an alternative view of mul- 

tiresolution theory which focuses on discrete-time sig- 
nals. It is based on precise notions of scale and resolution 
in discrete-time (Sections 111 and V). We have described 
both the pyramid transform (Section VI) and the discrete 
wavelet transform (Sections VI1 and VIII) using these no- 
tions. Pyramid transforms uses “overscaled” multireso- 
lution components, while scale and resolution parameters 
of DWT coefficients are equal. 

Biorthogonality is derived as an essential condition for 
scaled versions of an original signal to be characterized 
by scale and resolution parameters (Section V). In a DWT, 
it is also implied by the perfect reconstruction property 
(Section VIII). Orthonormality is a special case of biorth- 
ogonality, in which DWT and inverse DWT flow graphs 
are self transposed. 

The discrete-time multiresolution theory derived here 
shares the same properties as the continuous-time multi- 
resolution theory of Mallat [15], [16] and Meyer [17]. 
These properties include basis expansion, scale and res- 
olution notions, orthogonality or biorthogonality , and 
regularity. Therefore, it is only a matter of taste to decide 
whether analog wavelets underly discrete-time ones or 
vice versa. The DWT provides a coherent alternative, 
which has advantages and drawbacks. For example, a 
change of scale is evidently not so easily expressed for 
discrete sequences that it is for continuous-time signals. 
The discrete approach, however, avoids technical proofs 
or makes them easier and readily provides numerical al- 
gorithms. Of course, discrete-time multiresolution theory 
also gives a new way of looking at filter banks; it de- 
scribes them as a temporal multiresolution decomposition 
rather than as a subband frequency decomposition. 

New criteria in filter design are also brought by wave- 
lets. In particular, there is a, presumably important, no- 
tion of regularity. In Section X we have briefly discussed 
the regularity property in the framework of discrete-time 
wavelets. Although regular filters have been used in prac- 
tical systems [2], [15] it is still not clear whether regular- 
ity is to play an important role in applications such as 
image coding. 

APPENDIX A 
GENERAL EXPRESSIONS FOR SCALING OPERATORS 

Proof of (6): Let { g,} be the impulse response of 
the upscaling operator, that is, the upscaled version of the 
pulse signal 6,. By assumption 2), g n - 2 k  is the response 
to 6, - k .  Since the input signal can be written 

x ,  = c x k 6 , - k  

its upscaled version is, using linearity l ) ,  

X k g n  - 2k 

U which is (6). 
Proof of (7): Let { g:}  be the impulse response of 

the downscaling operator to {A,}, and { g! - I }  be the im- 
pulse response to { 6, - The input signal can be written 

x ,  = T X 2 k s n - 2 1 1  + X 2 k + 1 6 n - I - 2 k .  

Its downscaled version is therefore 

k 

Now let { g ; }  be defined by g;, = g: and g;,+l = g!.  
The downscaled version becomes 

C X 2 k g ; n - 2 k  k + X 2 k + l g ; n - 2 k - l  

0 which reduces to (7). 

APPENDIX B 
DERIVATION OF BIORTHOGONALITY 

From any possible expression of upscaled versions 
of { x , } ,  simplify using (21) each time this is possible to 
obtain a unique expression for a version of { x , }  at a 
given scale 2-’ and resolution 2-j(j  2 i ) ,  namely, 
(G t)’-‘( 1 G ’ ) J x .  Condition (21) is therefore sufficient 
for uniqueness of a version of x at a given scale and res- 
olution. In addition, since A approximates at half the res- 
olution, it should leave Ax itself unchanged. That is, both 
Ax and A2x are at scale 1 and resolution 1 /2, so they are 
equal and (22) is a necessary condition for uniqueness. 
We have seen in Section V that (21) implies (22). There- 
fore, if we show the converse implication, then both con- 
ditions (21) and (22) will be equivalent to uniqueness. 

Proof of (22) * (21): Equation (22) can be written, 
using (20), G t y = 0, where y = 1 G ’ ( G  t l  G ’  - Z ) x .  
Now since upscaling is one to one (17), this yields y = 
0, i.e., 

(1 G ‘ G  t -Z )  1 G ’ x  = 0 

for all signals x .  We now prove that any signal y with 
finite energy can be written 1 G ’ x  for some x .  We can 
always write y = y ’ + y ”, where y ’ belongs to the range 
of the downscaling operator 1 G (hence it can be put in 
the form 1 G ’ x  for some x ) ,  and where y ” is orthogonal 
to any signal of this range: 

( y ” ,  1 G ‘ z )  = 0 for all signals z .  
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Using the transposition property (15) one obtains 

(6’ ? y ” ,  z )  = o for all z 
hence 6’ t y “  = 0, which implies y ”  = 0 similarly as 
for G t (17). Therefore any signal y can be written 
y = y ’  = 1 G’x for some x. Now from the equation 
(1 G ’ G  t - I )  1 G‘x = 0, (21) immediately follows. 0 

This shows that uniqueness is equivalent to (21) and to 
(22). We now show that biorthogonality is also equivalent 
to (21). 

Proof: Using the transposition property (15) and the 
relation 

1 i f k = l  i 0 otherwise 
( 6 n - k ,  6 n - / )  = 

we have 

( g n - 2 k 9  g A - 2 1 )  = ( ( G  t a ) n - 2 k ,  (6’ t 6)n-2/) 

= ( ( G  t (6’ t 6 n - I ) )  

= ((4 G ‘ G  t 6 n - k ) ,  6 n - / )  

- - (6n-k ,  A n - / )  

1 i f k = l  = i  0 otherwise 

which shows that (23) and (21) are equivalent. 

APPENDIX C 
DISCRETE WAVELET BASES 

Proof of (35) and (36): The residue signal at reso- 
lution and scale 2’ can be written 

wjk = (1 H ’ ( 1  G ’ ) j - ’ X ) k  

= ((1 H ’ ( 1  G ’ ) j - ’ x n ,  an- , ) .  

Using the transposition property (15) we have 

= ( x n ,  ((6’ ? ) f p ’ P ) n - 2 ] k )  

which reduces to (35) by definition of &” (32). One proves 
similarly that v J  = (1 G ’ ) ’ x  reduces to (36). 

Proof of (37): To reconstruct the signal, the wavelet 
coefficients w J ,  and uJ are brought back to scale 1 and 
(26) is applied. This gives 

J 

x = c (G t)’-’H t wj + (G ? ) J U J .  

Using the formula w’, = C k  wjk6, - k (and similarly for U J ) ,  
linearity and (33), (34), this equation is easily seen to re- 
duce to (37). o 

j =  1 

APPENDIX D 
PERFECT RECONSTRUCTION AND BIORTHOGONALITY 

Proof of (38) and Biorthogonality (39), Assuming 
Perfect Reconstruction (30): It is well known [23], [24] 
that perfect reconstruction of the filter bank of Fig. 5(a) 

can be written as two conditions on z transforms of filters, 
namely, 

(D1) 

(D2) 

Assuming (noncausal) FIR filters, z transforms are poly- 
nomials in z and z - ’ .  Now, consider four polynomial fac- 
tors of low-pass filters, defined by G(z )  = GH(z)GH,(z) 
and G ’ ( z )  = GA(z)GA.(z), which satisfy, from (D2), 
H ( z )  = GH(z)GA(-z) and H ‘ ( z )  = -GH,(-z)Gk,(z) .  
Consequently, a common factor of (Dl)  is GH(z)Gk,(z); 
both terms divides a constant polynomial, and can there- 
fore be chosen equal to one, GH(z)  = GA,(z) = 1. We 
therefore end up with H ( z )  = G ’ ( - z )  and H ’ ( z )  = 
-G(  - z ) ,  which is (38), and perfect reconstruction re- 
duces to 

G(z )G’ ( z )  + H ( z ) H ’ ( z )  = 2 i G ( z ) G ‘ ( - z )  + H ( z ) H ’ ( - z )  = 0. 

G(z )G’ ( z )  - G ( - z ) G ’ ( - z )  = 2 

which is (23). 
We have seen in Section V that (23) is equivalent to 

1 G’  G t = I .  From the relations (38) one similarly proves 
that 1 H’H t = I. Now, using definitions (32) and (34), 
and the transposition property (15), the left-hand side of 
(39) can be written 

((G t ) ’ - ’ H  t (6’ ? ) ’ - ‘ f i r  t a n - / )  
= (1  H ’ ( L  G’)’-I(G T ) ’ - ’ H  t 6 , - k ,  A n - / )  

which reduces to the right-hand side of (39). 0 
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