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ABSTRACT 

A new formalism of signal energy representations depending on 
time and scale is presented as an altemative method to time- 
frequency representations. In addition, precise links between 
time-frequency and time-scale energy distributions are provided. 
It is known that a full description of the former is given by the 
Cohen's class, which can be described as a generalization of the 
spectrogram appropriately parameterized by a smoothing function 
acting on the Wigner-Ville distribution. In the present paper, we 
provide a full description of the latter, resulting in a new class of 
representations in which the smoothing of the Wigner-Ville 
distribution is scale-dependent. Through proper choices of the 
smoothing function, interesting properties may be imposed on the 
representation, which makes it a versatile tool for the analysis of 
nonstationary signals. Also, specific choices allow to recover 
known definitions (including the Bertrands' and the energetic 
version of the wavelet transform, referred to as the axlogram>>). 
Another, very flexible, choice uses separable smoothing 
functions: it is shown, in particular, that Gaussian kemels provide 
a continuous transition between spectrograms and scalograms via 
Wibmer-Ville. 

I - THE SHORT-TIME FOURIER TRANSFORM 
AND THE WAVELET TRANSFORM 

Given a finite energy signal x(t)  and a sliding window h(t) ,  a 
classical linear time-jrequency representation can be obtained by 
computing the short-time Fourier tramform (STFT): 

+- 
F,(t, v) x ( u )  h*(u - t )  e-izrrVu du . 

-m 

In recent years, an alternative representation, called the 
wavelet transform (WT), has been widely addressed in the 
literature [l-21. The fundamental idea here is to replace the 
frequency shifting operation which occurs in the STFT by a time 
(or frequency) scaling operation. The resulting definition is 

+m 

The function h(t) (called the analyzing wavelet) is supposed 
to have some localization properties in time. The explicit 
dependence of this definition on the dilation/compression (or 
scale) parameter a makes the WT a time-scale representation rather 
than a time-frequency one [3]. 

As for the STFT, the WT may be inverted provided that the 
Fourier transform H(v) of the analyzing wavelet h(r) satisfies [l] 

+m 

This means that h(t) is the impulse response of some band- 
pass filter. In the time domain, its mean value must be zero, 
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which implies that h(t)  will oscillate, hence the name wavelet. 
Both transforms analyze the signal by means of an inner product 
with analyzing waveforms depending on two parameters. In the 
WT case, the waveforms onto which the signal is decomposed is 
generated from the analyzing wavelet h( t )  by time-shift and 
dilation operations and are referred to as the wavelets. 

The main difference between the STET and the WT is 
related to the structure of their respective analyzing waveforms. 
The former uses modulated versions of a low-pass filter to 
explore the spectral content of the analyzed signal (uniform 
filterbank). This amounts, in the time-domain, to using an 
analyzing waveform of constant envelope with an increasing 
number of oscillations as higher frequencies are analyzed. The 
latter uses dilated or compressed versions of a band-pass filter, 
whose relative bandwidths are constant (constant-Q filterbank). 
Therefore, time evolutions of signals are analyzed by means of a 
waveform whose envelope is narrowed as higher frequencies are 
analyzed, whereas its number of oscillations, hence its shape, 
remains constant. 

11 - SPECTROGRAMS AND SCALOGRAMS 

A .  Definitions and comparison 

Owing to their definition, STFTs and WTs are complex-valued 
functions and they convey both modulus and phase informations. 
For some applications [4], these latter can be of interest but a 
description based only on the squared modulus, providing an 
energy densit distrib tion, is often preferred. Indeed, the 
spectrogram T F,(t, V )  7 z, defined as the energy distribution 
associated to the STFT, has been wi ely use for many signal 
processing tasks. A similar quantity, fTx(f, a)12, can be defined 
in the case of the WT: we propose to refer to it as a scalogram. 

A classical time and frequency resolution trade-off underlies 
the structure of the spectrogram: the choice of an analyzing 
window of short duration ensures a good time localization, but at 
the expense of a poor frequency resolution (by Fourier duality), 
and vice-versa. Moreover, once an analyzing window has been 
chosen, the resolution capabilities of the spectrogram remain fixed 
all over the time-frequency plane. The situation is different for 
scalograms: owing to the constant-Q structure described above, 
resolution capabilities are frequency-dependent. 

B. Smoothing interpretation within the CohenS clcllrs 

Both spectrograms and scalograms have a bilinear dependence on 
the analyzed signal. As shown below, a simple interpretation may 
be given considering the general class of bilinear (shift-covariant) 
time-frequency energy distributions. Recall that this class, 
referred to as Cohen's 151, is given by 

+-+- 
CJt ,  V ;  I7) = I J W,(u,  n )  n ( u  - t ,  n - V) d u  d n  , (1) -- -cc 
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where I l ( t ,  v )  is some arbitrary time-frequency function and 
where 

+m 

W,(t, v) = j x ( t  + $) x * ( t  - i) e- i2nvTdz 
-m 

is the so-called Wigner-Ville distribution (WVD) [ 5 ] .  If H(t. v) 
behaves like a low-pass function in the time-frequency plane, the 
general class (1) may be considered as composed of smoothed 
versions of the WVD. It is convenient to introduce 2 0  Fourier 
transformations in (1). Changing variables accordingly yields a 
dual characterization: 

+m+m 

C,(t, V ;  l7) = f ( n ,  z)A,(n, 7) e- i2x (n t  + T v )  dn  d z  , 
- m - m  

where the weighting function f ( n ,  z) and the (narrowband) 
ambiguity function [ 5 ]  A,(n, z) are the 2D Fourier transforms of 
U([, v) and Wx(t, v), respectively . 

Structure constraints of spectrograms and scalograms can be 
made explicit using members of the Cohen’s class. The following 
proposition gives a well-known example of this for the 
spectrogram [6-71 : 

Proposition 1. For time-frequency energy distributions 
characterized by a weighting function of modulus unity, a 
spectrogram results from the smoothing of the signal distribution 
by the window distribution : 

k n ,  7) I = 1 - I F,O, v)  I = 

+-+- 
= I [C,(u, n; U )  C:(u - I ,  n - V ;  n) du d n  . (2 )  

-m-m 

This condition is met by many distributions, including the 
class of generalized Wigner distributions [7] and, in particular, the 
Rihaczek‘s distribution [ 5 ]  and the WVD itself. 

We state a similar specification of scalograms from Cohen’s 
distributions [6]: 

Proposition 2. For rime-frequency energy distributions 
characterized by a weighting function of modulus unity which 
depends on its variables only through their product, a scalogram 
results from the affine smoothing of the signal distribution by the 
wavelet distribution : 

+-+= 
I TI([ ,  a )  I ’= 1 C,(u, n;  I l ) C : (  5, an;  n ) d u  d n .  ( 3 )  

-m - m  

Although this condition seems to be more restrictive, it is 
still fulfilled by the whole family of generalized Wigner 
distributions, including the WVD itself [SI. 

In - TIME-SCALE ENERGY DISTRIBUTIONS 

A. A general class and its interpretation 

In order to derive the general formulation of time-scale energy 
distributions, it is appropriate, at this point, to interpret 
Proposition 2 in the restrictive case where WVDs are used: a 
scalogram results from the affine smoothing of the WVD of the 

analyzed signal by the WVD of the analyzing wavelet. However, 
scalograms are only a special case of time-scale energy 
distributions. It is this affine smoothing concept that enables us to 
generalize scalograms to general time-scale energy distributions, 
in a similar way as spectrograms are generalized to the Cohen’s 
class. More precisely, consider the affine transformation: 

where the factor 1/11 I a I is introduced for normalization 
purposes. The main result of [6] presented in this paper states: 

Proposition 3. If  a bilinear time-scale distribution QJt,  a)  is 
covariant to affine transformations, i.e. 

then, it is necessarily parameterized as 

+-+- 
U - t  

QS t ,  a; n) = w x ( u .  n )  7, a n )  d u  d n  , (4) 
-m - m  

where Il is some arbitrary time-frequency function. Eq.(4) 
characterizes the general class of time-scale energy distributions. 

A similar approach has been investigated by the Bertrands 
[9]. Precise links between our formulation and theirs are given in 
subsection JII-C. It can be noted for the moment that (4) better 
reveals the affine smoothing concept underlying time-scale 
distributions and certainly is more suited for combining time-scale 
and time-frequency into a unitied perspective. 

Alternative characterizations of the class (4) may be given. 
An interesting one makes use of the weighting function f and 
reads : 

Just as the WT uses band-pass filters, the smoothing 
function U is preferrably chosen to be band-pass as a function of 
frequency. We thus define n ( t ,  v )  = Il0(t ,  v - vo), where vo is 
some non-zero frequency. Using this notation, an interesting 
identification between time-scale and time-frequency distributions 
may be found: 

provided that the associated weighting function fo(n,  z) depends 
only on the product nz. This condition is met by numerous 
distributions. In addition to the class of generalized Wigner 
distributions, we can mention the ChoGWilliams’ distribution [SI, 
which has recently received a special attention. 

B.  Properties 

The general formulation (4) enables us to find distributions 
satisfying various specific requirements. This approach, which 
closely parallels the one used for the Cohen’s class, is illustrated 
on some examples in the following. 

1) Enerw. The terminology ene rgy  distribution, is justified by 
the following: 
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+m+m +- 

where x(n, m) is the partial Fourier transform of II over time. 
This means that energy is properly spread over the time-scale 
plane if the quantity into brackets is unity. 

2) Marginal in frequencv. The spectral energy density of x is 
recovered from the marginal in frequency as long as: 

3) Marginal in time. Similarly, the instantaneous power of x is 
obtained as time marginal if: 

+m +m 

da  2 da 
U2 

J fix([, a; m - = I x ( t )  I J f ( a n ,  2 z= K T ) ,  v n  
-m - m  

4) Moval-tvoe formula. Finally, a Moyal-type formula relating 
inner products of signals and dismbutions may be obtained as: 

+m+m +m 5 fi,(t, a; n) fi;(t, a; m T =  I dt da 
~ ( t )  y*( t )  dt 1 

- m  .m-m 

C. Special cases 

As for the Cohen's class, specific choices for smoothing (or 
weighting) functions allow to obtain special cases of time-scale 
distributions: some of them will now be reviewed. 

1) Scalograms. The simplest example is the scalogram which, 
according to (3), can be seen as the affine smoothing of the WVD 
of the analyzed signal by the WVD of the analyzing wavelet [8]: 

I T,(t, a) I = a,(t, a; w,) . 

2) Bertrands' class. Another choice yields the Bertrands' class 
191: 

where I&) and p(u) are two arbitrary functions. Several points 
should be noted here. 1) Eq.(5) is explicitly written in terms of 
time and scale,  whereas the Bertrands' formulation uses 
frequency as a formal parameter playing the role of the inverse of 
scale. 2) Bertrands' approach puts emphasis on analytic signals 
and the integration in (5)  is therefore limited to positive values of 
U.  However, the formulation (5 )  is obtained as a special case of 
(4) corresponding to the following choice for the weighting 
function: 

+- 

- m  

The following example will allow to simply recover a 
particular distribution used by the Bertrands [9] : 

for which the formulation (6) appears to be unnecessarily 
complicated. 

3) Localized bi-frequencv kernels. A useful subclass of (4) 
consists in characterization functions which are perfectly localized 
on some curve m =F(n) in their bi-frequency representation: 

zdn, m )  4 G(n)G(m -F(n)) a , f&n ,  2) 4 G ( n )  e-i2rrF(n)7 , 

where G(n) is an arbitrary function. Those distributions can be 
written 

Specifying 

allows to recover the particular Bertrands' distribution (7). More 
important is the fact that this specific definition may be 
constructed starting from a localized bi-frequency kernel by 
imposing a priori requirements (namely time-localization and a 
Moyal-type formula) with the help of the results of subsection III- 
B. This is detailed in [6] .  It is, of course, these same requirements 
that led the Bertrands to their definition (7). Our construction, 
however, takes place within the more general framework of (4). 

4) Separable kernels and affine smoothed Wimer-Ville. It is 
known from the theory of time-frequency distributions that the 
trade-off underlying time and frequency behaviors of the 
spectrogram can be overcome by replacing the associated WVD 
smoothing by a smoothing function which is separable in time and 
frequency [lo]. The resulting distribution (called the smoothed 
pseudo- WVD) offers a great versatility for balancing e.g. time- 
frequency resolution and cross-terms reduction, although this is 
necessarily at the expense of the loss of other properties such as 
marginals. 

We propose a similar approach for time-scale distributions 
and define the affine smoothed WVD by 

n&, v) = g(t) Ho(v - vo) * 

This is a versatile representation which allows a flexible 
choice of time and scale resolutions in an independent manner 
through the choice of g and H,. An illustration of this, with 
additional interesting properties, is given next. 

D. From spectrograms to scalograms via Wigner-Ville 

The smoothing functions acting on the WVD to obtain 
spectrograms on one hand and scalograms on the other hand, are 
found, by Propositions 1 and 2, to be of the form of a WVD. This 
suggests a continuous transition from spectrograms to scalograms 
via the WVD by suitably controlling the evolution of the 
smoothing function between a WVD and a delta function.The 
following proposition shows that this can be achieved using 
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separable kemels, which allow an independent control of the time 
and frequency (or scale) behaviors of the associated distributions. 

Proposition 4. A continuous passage from spectrograms to 
scalograms via Wigner-Ville is possible by means of separable 
kernels if and only if these latter are Gaussian. 

Outline of the proof. If either spectrograms or scalograms are 
supposed to be attainable through separable kemels, then their 
associated smoothing function, which is a WVD, must necessarily 
be itself a separable function of time and frequency. Since 
separable WVDs are necessarily everywhere non-negative, we 
deduce from Hudson's theorem and the separability condition that 
this WVD must be of the form of a normalized product of 
Gaussians. Therefore, a suitable choice of separable smoothing 
function which allows a continuous passage from WVD to 
spectrograms or spectrograms is of the form 

n,(t,  v) = G e - m 2  e-Rv-vo7 

The transition is controlled by the parameter p = 271 /G 
which runs from 0 (WVD) to 1 (spectrogram/scalogram). This is 
illustrated in Fig. 1 which shows several analyses of three 
Gaussian wave packets. 

CONCLUSION 

We may envision that, owing to their constant-Q structure, time- 
scale distributions are to play an important role for transient 
analysis and detection. The above development has demonstrated 
that it is possible to build a general class of time-scale energy 
distributions in a systematic manner, in which affine smoothing of 
the WVD plays a central role. An additional benefit of our 
presentation is that it closely parallels the one used for the 
Cohen's class, thereby unifying the derivation of time-scale 
distributions and their time-frequency counterparts. Again, the 
WVD is shown to be a central part of the analysis in which the 
simple identification a = vdv (scale = inverse of frequency) holds: 
the WVD thus belongs to both classes of time-frequency and time- 
scale distributions. This is well illustrated by the last result 
presented in this paper, which shows a continuous transition from 
spectrograms to scalograms with the WVD as a middle step. In 
light of this, we recommend that various properties of time- 
frequency and time-scale methods be compared keeping in mind 
that both result from a smoothing operation acting on a common 
kemel (the WVD), the difference being related to the nature of the 
smoothing operation used (time-frequency or affine (time-scale) 
smoothing). Moreover, this continuous transition permits to 
balance time-frequency resolution and cross-terms reduction in the 
time-scale representation, in a similar (but different) way as for 
the smoothed pseudo-WVD [lo]. Other specific requirements 
(such as energy normalization, time marginal, etc.) and associated 

parameterizations of the representation were also studied in this 
paper. This results in a great versatility for the choice of 
representations appropriate for various ap lications. 

Since a large class of time-scare and time-frequency 
representations is now available, with many possible (and 
sometimes, exclusive) properties, some analysis should be done 
on the analysis tool itself in order to express particular needs: 
starting from the most general formulation, one can, for instance, 
build a subset of time-scale energy representations, suitable for a 
given application, by imposing specific requirements. Controlling 
a few parameters on this set of analyses should help in many 
ways, e.g. for determining which representation best reveals a 
given time-scale signature. 
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Fig. 1 From spectrograms to scalograms via Wigner-Ville ( time: 4; frequency: ?; p= m/G) 


