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ABSTRACT

Using techniques related to a two-layer Perceptton Neural Network representation,
investigations of the relationship beitween acoustic parameters and positions of different
articulators in the vocal tract were made on a computer-simulated Mermelstein articulatory
model. After presenting different neural net representations such as random waveform mode
decomposition connected to a continuous Kanerva model, and various non-lincar regression
techniques, we introduce the Randomly Connected Neural Networks representation and the
associated "Randomly Linearized Adaptation" Algorithm. It was found that, using this
technique, the determination of articulatory positions can be achieved with good accuracy,
using different acoustic parameters such as lincar predictor coefficients, spectrum, cepstrum,
reflexion coefficients and line spectral frequencies.
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1. Introduction.

The current enthusiasm for artificial neural networks finds its motivation in the hope that
investigations in neurobiology may some day reveal the underlying principles related 1o the
human brain. They would allow us (o build modelized (and until now quite simple) systems
that imitate the characteristics of the powerful tasks performed by human beings, for solving
problems where sequential algorithms lack some capabilities: pattern recognition, or speech
understanding is one example.

One of the numerous explanations given for this motivation is that neural net systems seem
to achieve unusual performances: while given uncomplete information (“training set"), they
perform a noise-resistant task in a parallel and high speed way:,

The neural network design is of practical interest to us because it gives a flexible, new
representation of an underlying non-linear mapping, it can be used to perform adaptive non-
linear signal processing. Not surprisingly, many non-lincar systems have been analysed using
predominantly linear analysis, which is not likely to perform as well as an appropriate non-
linear analysis.

The two-layer perceptron representation, described below, provides a natural generalization
of lincar processing as a Taylor-like expansion does. Our model is continuous, that is, inputs
and outputs are not restricied to binary values: they are instead lincar elements that can take all
real values from a normalized range [~1,1]. They provide thus a dynamic range more closely
adapted to the real values of the mappings we considered for applications. The non-Linear
transfer functions (sometimes referred 10 as "hidden nodes™ use a continuous, bounded, non-
lincar (and non-polynomial) basis function. This provides a mode decomposition of the
multidimensional mapping considered, into basis functions labeled by amplitudes and shifts
coefficients. These coefficients are also referred as 1% layer connections weights". The
preparation of the data and learning principles we use are explained in this paper.

The originality of the algorithm we use is that unlike most time series’ expansions, the
coefficients used to describe the collection of the basis functions are not preset to a particular
fixed structure. Unlike, for example, in the back-propagation algorithm!!, these coefficients
arc not adjusted by adaptation to the data, which demands many iterations and a good
accuracy. Instead, the different shapes of the basis functions are chosen at random. This has
been proven to give an efficient mode decomposition as the basis functions are likely to scan
the output space, and has allowed us to use a straight-forward, fast and linear adaptative
algorithm to find a reasonable local minima of the cost function (commeonly taken as the
variance error of the actual output). This scheme is also closely related to a modified Kanerva
Model for continuous mappings.
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We have used and tested this algorithm on many different mappings, synthetic or real (see
also [51). In this paper we present the results obtained for determining articulatory parameters
from speech. The mapping uscd is not a straight-forward one, and therefore is likely to give us
more insight about real problems involving non-lincar networks. Although a particular model
(the "Mermelstein” model) was used, and acoustic parameiers were taken from a model
estimation of the transfer function of the vocal tract, things can be investigated further, without
any patticular difficulty (except as for the preparation of the data), using real speech.

2. Non-linear Decomposition of multidimensional mappings.

From now on we shall restrict ourselves to a particular functional representation of a non-
linear system. Let’s begin with a particular case. Assume a known multidimensional mapping
(x) — (yp is given, Typically x; and y; are also functions of time: x;=x;(t) and yi=yit).

i=l,,m  j=1..n
Moreover, a given y;(¢) may depend on the history up to ¢ of the input variables x}(%)=x;(t~1).
In our case, x is any kind of m-dimensional acoustic parameter vector, and y is a model-defined
set of articulator positions in the vocal tract. The mapping involved is complicated but is
deterministically calculable from an appropriate model. Then the question that arises is how to
invert this mapping. For the sake of simplicity and efficiency, several assumptions are to be
made. First, we restrict ourselves 1o time-invariant mappings:

2(t) = M(x(2)) (1)

Second, we consider only mappings without memory. Time will not play a role in our
discussions, despite the possibly many advantages of time adaptative signal processing here.
Third, we assume that the inverse of M is well defined in the ranges of the input and output
values considered. This asumption, although impossible to verify for complicated mappings,
can be made less constrained: The representation used can determine by itself the quasi-
inverlibility structure (M), provided that M . M* is close to identity. After appropriate
normalization, we can assume that the values of all the outputs and inputs lie between —1 and
+1. The complexity of the mapping is consequently reduced to a axm dimensional non-lincar
mapping M.

In order to invert this mapping, we need a good non-linear representation of M. We
didn’t consider the possible apriori assumptions on the correlation between the articulatory
parameters, so that for our classes of representations of M~ the different outputs will be
determined independently. Thus we can represent one projection (for a given output O)) of the
inverse system by a multi-input mapping:

M () el-1,41)" — Ojef~1,+1] (2)
i=1,.,n
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An estimated output 51- is an unknown non-linear mapping of all the inputs /, that can be
represented in several ways. We will describe a few of them. Once a precise representation
with an appropriate sct of unknown parameters is given, these unknowns can be determined by
minimizing a given cost function over this set of parameters. A cost funciion in the form:

E=310-0;]* (3
J ~
where O =My Iy, * < ,I,)

will provide an approximation in the L? space of the outputs with rclative error (inverse of
signal over noise ratio) equal to E / | O | %.

An additional restriction is imposed by the implementation: Only a discrete subset of all
the possible inputs and outputs can be implemented, via indirect knowledge of M, which
provides incomplete information for a particular determination. Therefore the input and output
spaces to be considered (for a particular determination of M™) is finite and discrete, with

associated L2-norm defined as
[1] =«/ TIr? @)
§=1 =1

where the index { refers to the dimension and 1 to the discrete index covering the space. In
some of our implementations, the dimension of both the input and output space was 10, and N
took values between 5,000 and 10,000. In the neural network’s terminology, the couple (Input
Space, Output Space) is known as the training set. Several methods are possible to minimize
E in the most general case. A common approach consists of a gradient descent search: starting
from a random set of parameters, E decreases as parameters ; are changed according to:

oE
aj = —&—— (5)
aaj
where € is small. In general, this provides only a local minimum for E. Whether this local
minimum is close to the global minimum is unpredictible,

The increasing effort to implement techniques of analysis for non-lincar systems is
predominantly based on two different types of representation designs of these systems:
poiynomial systems and the "neural network" approach. We will therefore briefly present them
both, and show some connections between the two.

2.1 Linear Case.

The predicted value is a linear combination of the different inputs:
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Qe

=A.l+a ()

where A 18 a mxna matrix, [ the n-dimensional input vector, and a a m-dimensional vector. As
shown below, this representation can be seen as a lincar one-layer perceptron, with no "hidden
units”. The constant part ¢ (the vector of “thresholds” in the language of neural nets) can be
integrated in the matrix A if the inputs are added to a constant input [/, always fed by the
constant 1. Determining the parameters A and a is straight-forward.

2.2 Polynomial Series,

Polynomial serics are a straight-forward extension of the linear estimation, where
polynomial non-linearitics are added in the expansion. O ; s estimated by series of inputs in
the form:

-~ n
OJ‘ = a—" + Za‘ull + E aihizvj[illi!-’_ o (7}

i=] i,

for j=1, .., m

‘The number of parameters for a polynomial expansion of order k is:

(m A+ m+k—1)...(m+1)
k1

and grows exponentially with the dimension m of the output. In this case, the output is
estimated by a linear combination of basis functions (the polynomial non-linearities). In order
to determine the unknown parameters of the representaion minimizing the cost function E, a
simple least mean square algorithm can be used: In fact, for any expansion of the form:

- N

O; = Y agybildy, ... 1y ®)

{=]
where b; are the basis functions, minimizing E (sum of the quadratic errors over the training
set (I*,07)) over the parameters a;;, is achieved by letting the derivatives of E with respect to
T

a;; equal 0. This provides a set of linear equations, and the coefficient matrix is the Gramm
matrix of the basis functions:

Gy=YbUi,.... [0 bdY, ..., 1) )
T

Then G™'. »*.0 gives the set of parameters minimizing E exactly (in this casc a global
minimum is found).
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2.3 Principles of Neural Networks.

The neural network structure consists of simple nodes (or "ncurons”) connected through
links. Each node can be seen as a basic non-lincar computational clement. It may have several
inputs, and its output (or state) depends on the states of many other nodes. Its task is simply
to pass the result of a linear combination of its inputs through a non-linear one-dimensional
transfer function ¢. The weights of the lincar combination are associated with the weights of
the connections feeding the node. The biases are associated with each node, and modify the
action of the non-linearity by shifting its characteristic. Because they are often part of the
representation parameters, one can see biases as special connection weights fed by an "always-
1" input (see figure 1).

OUTPUT; = 6( S wili~B;) [/ V
i=1 "

Dx) = (0D j=1.n

W= o0r) = x

Figure 1. The non-linear neuron principle.

The ¢ function (which is the same for all non-linear nodes) may actually be chosen in an
arbitrary way -continuous or smoothed, invertible or non-invertible. Most widly used is the
"sigmoid” form as in ¢(x) = 1/(1+e¥). For small inputs and non-active connections, a
sigmoid presents a linear characteristic. For large inputs, the saturation part limits the range of
the output, unlike a polynomial non-linearity. Our implementation allows the choice of several
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kinds of such ¢’s. It appeared to us that the behavior of the systems involved doesn’t depend
on the particular form of the (bounded) non-linearity, provided that ¢ doesn’t oscillate too
much, or remain flat.

It would be tedious and practically almost impossible to handle a network in which all
possible connections are allowed. The most interesting behaviors have been found in well-
defined, restricted neural networks, A common restriction is to consider only Iayered networks,
that is networks with structures presenting successive layers of nodes, with most connections
lying between two consecutive layers. Inputs and outputs are generally present in the first
(bottom-most) and last (top-most) layers, respectively. Morcover, we will assume that there is
no intra-layer connectivity and that the inter layer "all-to-all" connectivity is feedforward, i.e,
each node in a given layer feeds its output to all nodes in the next layer, and does not feed
back, nor feeds to its neighbors.

These assumptions are somewhat restrictive but allow simple and efficient learning
procedures 1o be achieved. The resulting structure is often referred to as "multi-layer
perceptron”. One can see n-layer percepirons as special "sandwich" representations of non-
lingar mappings in the matrix form (where input and output nodes are linear):

O=A, ®. Ay . ®. - Ay O A .1 (10)
where @ is a non-linear multi-dimensional operator: @(x)} = (())i=1.n

Perceptrons have been proven o be efficient to perform associations (where input and
output paiterns may be completely arbitrarily independent: hetero-association). These
associations inpuf->output are taught to the system during the training phase, in which the
different parameters (connection weights) are adjusted, Most of the training procedures have in
common the fact that at cach successive instant, the system is presented with one association
pair taken from the training set consisting of one input and one output veciors: then an
interative training algorithm is performed to modify the connection weights (see figure 2).

Note that many independent input-output pairs can be presented and memorized
simultancously, but recalled independently while testing or using the final system. Some
algorithms can perform differently, depending on the order of the association pairs present in
the training set. The type of training algorithm is essential: it determines the (good or bad)
ability to interpolate the associations it has been given during training. Several (raining
algorithms relevant for our applications are presented later in this paper.

Once the system is trained, it can be tested in different ways. For our purposes, the testing
phase must be able to determine the ability of the present trained network to generalize (or
interpolate) the association pairs present in the training set, in order 10 perform a comparable
task on different data.
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Figure 2. The Training Procedure

Therefore, we tested the data by producing another fest set containing different input-
outputs pairs, feeding the network with these inputs to collect the estimated outputs, and
comparing the results with the real outputs of the test set. The quadratic error function:

E=Y[0~0;]|? (1)
j
where O; = Mj'-l(ll, cudy)

gives a reasonable estimation of the error rate in the output space. Some kind of error
determination can also be performed on the input space by retrieving the input values back
from the estimated outputs (if one disposes of the exact inverse mapping) and comparing them
to the desired inputs of the test set.

2.3.1 Linear Estimation and polynomial series.

The siructure of perceptron that is amenable to a lincar estimation procedure (§2.1) is
simply a single-layer perceptron with all nodes being linear. This, of course, is a degencrate
case, but shows that one can always add a lincar and constant term in the representation of
estimated outputs in a more complicated structure, by adding feedforward connections from the
linear input nodes 1o the linear output nodes. The constant part is, as mentionned before,
represenied as always-1 inputs (see figure 3.0).
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With the linear case, the ability to separate one output pattern from the other memorized
ones is low compared to when neon-linear nodes are used, because the output is a linear
combination of all input training values. Therefore, once the network is trained, inputing the
training data will never provide a good approximation of the output training patterns (the
estimation of the multidimensional mapping is made by an hyperplane), except if the mapping
considered happens 1o be very close 1o linear.

ouTPUT

INPUT

Figure 3.0. Some like it as: Single Layer-Perceptron,

Using a two-layer perceptron with linear nodes wouldn’t work very well cither: The
outputs of many hidden nodes (which would be linear combinations of the inputs) would be
linearly dependant, thus providing an unstable learning algorithm.

Estimation with polynomial expansions can also be seen as a two-layer perceptron, where
the connection weights of the bottom layer are fixed and adjusted so that the output of the
intermediate node j is the j* polynomial image of the input pattern. Note that in this case
different types of non-linearities are used, which can be reduced to x, x2, x°, ete. The
introduction of many different non-linearities improve the discrimation power of the
representation. Each intermediate node is representative of an independant local representation
of the mapping.

2.4 The Back-Propagation algorithm,

In our implementations of the Back-Propagation Algorithm a two-layer perceptron
representation was used. We have added a constant linear part by superposing the structure
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shown in Fig. 3.1, 3.2 with a linear single layer perceptron from the inputs o the inputs.
OUTPUT OUTPUT

INPUT

Figure 3.1, A two Layer-Perceptron.
Figure 3.2, Final neural net structure with constant and linear part.

Our representation then becomes:

0=A.0.R.I (12)

without any constant and linear parl, and;

0=A.2 R./+p+L.1+c 13)
with constant and linear part. @ is still defined as:

D) = OCDi=1.n

and A and R are the matrices associated to the connection weights of the bottom and top layer,
respectively.  We can integrate in the mathematical formalism the vectors r and ¢ by
introducing two always-1 input nodes as shown in figure 3.2: An estimated output is then
represented as a linear combination of the inputs and the outputs of the NL intermediate nodes:

~ NL n
O] = EAijk + ZLUII (14)
k=1 il

i=12,-m
where Ayi=¢;, H, =1,

and the hidden nodes’ outpuis H, are calculated from:
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Hy = &(3Rul) (15)

I=0
for k=12, -+ NL
where Rop=ry, [, =1,

The Back-Propagation Algorithm can be thought as a particular minimization of the
quadratic error function E = | 0-0 | * (sec equation (5)): Computing the gradient of E with
respect to the Ay; leads to:

JE
Ay

2(0 —er ) = 2(0 -0 pH, (16)
J

The term "back-propagation” comes from an interpretation of the derivative of E with respect

to the first layer connection weights Ry, (we use the notation ¢ for the derivative of ¢):

IRy ZE(O 003w, aH Ry

amn
=25(0,-0 ,-)Akj-g_;—f—

J Ik
= 2[§;<éj~0j)Akj1 VT HI

For each iteration of the algorithm, the weights will be changed according to (5):

AAy; = me—é%%— and ARy = —E%E;;
Depending on the gradient descent algorithm used, € can be fixed for both layers, or can be
adjusted at each step such that the gradient descent is maximal. If we let §; be the ratio of the
weight modification from point i to point j (that is either AA;; or AR;;) and the output in i (that
is either /; or H;), then the &’s in the top layer are proportional to the linear error of the
estimated and desired output: (bj—Oj) and the 6&'s in the bottom layer will be:
(T A BiPPlavery o' (671 (H,)), that is the back-propagated errors 8, of the top layer (as if the
J

arrows were turned back) multiplied by a correction term duc to the non-linearity used. If this
non-linearity happens to be:

1
1+e™*

olx) =

then this correction term is reduced to H,(1—H,), that can be scen as an anti-saturation term, 0
. 1 . . .

at the saturation of ¢, 7 where the characteristic of ¢ is close to lincar. Therefore, first layer

connection weights are not modified during training if the corresponding non-linear node
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remains saturated. The connection weights are usually initialized to very small random values
before training, in order not to saturate the network at the begining of the training procedure.

The Back-Propagation algorithm can be seen as a non-linear regression where an ouput Q;
is decomposed into a linear combination of many non-linear basis functions in the form:
n
OCY Ryd; + ry). For this purpose, it can be thought of as some kind of curve fitting method,
=1
wherc non-linear sigmoeids are added in the interval [~1,+1] to form the function
O;(Iy, ... ,1). In the decomposition of this function into sigmoids, the R, adjust the
“scaling" or dilatation parameter for each coordinate ! of the input, and the r; adjust the shifts,
This kind of decomposition can actually be achieved by all kinds of two-layer continuous
perceptrons; it is not due to the back-propagation algorithm itself.

The originality of the back-propagation algorithm is that the coefficients of translation r,
and dilatation Ry arc actually adapted to the training data, together with the multiplicative
cocfficients of the sigmoids Ay;. Because saturated sigmoids have a tendency not to be
modified during training (see above), very sharp non-linearities will not be obtained easily.
Thercfore, a perceptron trained with back-propagation can only produce smoothed
representations of mappings, in the same manner as functional approximation that maximizes
smoothness (¢.g. using splines).

This kind of mode decomposition, where basis functions are labeled by translation and
scale  paramelers, is reminiscent of  scveral  Haar-like  analyses. Consider
Y)=00x)—2¢(x —1)+p(x~2). It is possible to choose the connections weights of the first layer
such that the given mapping is decomposed into the family of basis functions in the form:
W(2%x—b), where g and b can be any pair of integers. For a degenerated form of ¢:

_ 4 0 for x negative
o) = { 1 for x positive (18)

this system is called the Haar system and form a complete (orthonormal) basis of all signals of
(—1,1} of finite energy. In this case g is a scale (or "frequency") factor whereas b plays the
role of a translation step in space. Two-layer perceptrons thus are able to represent a general
mapping, as long as therc are enough non-linear nodes and as long as the choice of sigmoids
and of the leamning algorithm is efficient enough.

2.5 A Continuous Karnerva Model.

A continuous approach of the Kanerva’s Associative Memory Model has been studied in
[2]. In this attempt, the norm chosen to the locations’ matching procedure, instead of being the
Hamming distance between two bit patterns, was adapted to continuous values: the L2 norm
with respect 1o the input space is one of the possible choices (although [2] prefers the L 128
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norm). We choose the L2 norm here because it allows a straight-forward extension to new
ideas, as explained later. Independently of the norm used, the idea remains the same: it is
much more efficient 1o train a parallel two-layer network without any adaptation to the data for
the first Iayer (unlike the Back-Propagation algorithm). Of course, one needs o find a good
non-parameteric distribution for the first layer connection weights’ values.

In order (o provide this, the Kamerva model is based of a location matching procedure:

1. First, a large number of random vectors of dimension of the input are created in the
normalized range. Unlike {2], the random generator can simply provide random values
for each coordinate. These values will remain constant during the learning algorithm.

2. Then, for each input pattemn, the distances between this input pattern and all the fixed
(random) vectors, say, with respect to the L? norm, are computed (sec figure 4).

1

0.5 —

Figure 4. Location matching procedure (in two dimensions).

3. If a distance appears to be more than a certain threshold (called the activation radius T,
fixed during the algorithm), then a corresponding intermediate node (a location address)
is activated (output set to 1), otherwise this node is not activated (output set to 0). r is
determined such that a certain (low) percentage of activation is observed on average.

4. The final output is then estimated as linear combinations of the activated nodes (or
locations). For that purpose, any linear adaptation can be performed.
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In other words, in order 1o estimate the activation of a given location, one has to simply
compute:

He =00 — [ =R, | %) (19)

where ¢ is defined as a step function (or hard threshold sigmoid), as in equation (18). Any
output can then be determined by a least mean square algorithin as linear combinations of these
Hy. The notations used here are intentional: they show that H, can actually be thought of as
outputs of the intermediate layer’s non-linear nodes, and that the R,’s are nothing but the first
layer’s comnection weights. Indeed, on can write from equation (19):

Hy=62 1 . R — 1) 20)

where r'= |1 |“+| Ry | ®>~r® appears as a given threshold for the intermediate non-linear
nodes, and where R, is seen as the £ line of the matrix R in equation (12).

This kind of procedure involves merely some matrix computation and inversion for the
linear adaption process. It thercfore allows us to take many more intermediate nodes than
possibly could be handled by the back-propagation algorithm. Because of the large number of
intermediate nodes involved, the norms of R, can be estimated as a constant number not
depending on the training set or on &, for a given mapping. Thus the threshold r” is
predominantly dependent on the norm of the input pattern. We will discuss similar properties
while presenting the randomly linearized adaptation procedure, Note that, however, as is true
also for other techniques, a Karnerva model can always be implemented as a two-layer
perceptron.

With this model, one still tries 10 minimize the same variance error, but over a set of
restricted parameters (the connection weights of the top layer). Consequently, a global
minimum is found with respect to this subset, whercas in the back-propagation case, only a
local minimum is found with respect to all the possible connection weights.

The following section presents the algorithm we used for our purposes, which can be scen
as a gencralization of these ideas, with a somewhat different approach.

2.6 Randomly Linearized Non-linear Neural Networks.

The randomly linearized adaptation algorithm follows the idea of a much faster straight-
forward algorithm (which amounts fo a linear least mean square adaptation after fixed non-
linear transformation) versus a slower adaptation of all parameters of the representation (see
figure 5). This kind of procedure (fix the first layer, adapt on the second layer) has an obvious
apparant drawback of minimizing the mean square error only on a subsct of all possible
parameters, but this is compensated by the ability to chose a very large number of non-
linearities (up to 1,000 in our simulations). This high dimensionality implies a priori the
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ability to find a minimium of error closer to the global minimum, and allowed us to solve the
non-linear adaptation problem by a lincar one (namely least mean square error adaptation),

Of course one has to have some insight about how any given mapping is decomposed into
non-linearities in order to make this procedure successful by setting the connections weights of
the first layer at the begining of the training algorithm. For our simulations, we have chosen to
set all these parameters to random values in the approximated range [~1;+1]. This "randomly
linearized adaptation” provides excellent estimations in our simulations, and was not improved
by a post-processing of any kind of back-propagation algorithm. Moreover, the representation
scheme is as described in figure 3.2 and a linear + constant part was adapled as well.

In order to prove the completeness of the decomposition used in this algorithm, one has to
prove that the following variance of the error tends to 0, for large training sets, as the number
NL of non-linearities tends to infinity.

NL

E=3 3 (0] - Y AGHY (19)
T f 1

1 is the index associated with the training set, and HY is the output of the k™ intermediate
non-linear node for the input patiern of the training set,

E can be rewritten for a given training set oulput 0; as the squared norm of O ~ H.A,
where H is the matrix of elements (H%); 4. The least mean square solutions for the Ay;’s is:

Aj=(H H7(H.0). (20)
where ‘H denotes the transpose of H. The training set error obtained is:
[0 -H(H. W) ‘H.0|? 1)

We conjecture that for a large class of continuous mappings, the operator HCH.H)™ ‘H
converges to the identity matrix (of dimension the number of elements in the training set) as
NL tends to infinity, provided that the fixed values for the first layer’s connection weights are
homogeneous, in some sense, and that the training set samples are independant, with N:>NL.
In other words, these values don’t influence the result as far as the adaptation of a given
smoothed mapping is concerned.
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BACK-FROPAGATION RANDOMLY LINEARIZED ADAPTATION
53 2 nE = 5 3.0,-0)?
mm,_é' = EZ(DJ'“ j) mn}i—»o - EZ( a J')
nse  k=lj=1 -0 k=1j=1
10
Creato
Croate Training
Training set
sel l
Initialize Initialize
Newwork First Layer
To Appropriate
fﬁ‘.‘fﬂi‘“ﬂ’_‘L Randem Vaiues
Calculate
K Ouiput 1
Sample
Calenlato Al}
Intermediate
Nodes'
Ouiputs
Modify
Cennection
Weights a E i
AW,'J' = *-85——-
o Find
Conrwetion
Weights
by Least Mesn
Square Algorithm

l

Figure 5. Comparison of two two-layer perceptron algorithms:
Back-Propagation and Randomly Linearized Adaptation.

Saturation probability and scaling.

It is possible to estimate the average saturation of the non-linear intermediate nodes under a
simple assumption on the weights’ random number generator, in order to predict reasonable
scaling normalization for the network. Assuming the Ry are independant gaussian random

R
variables of mean 0 and variance o, the lincar combinaison ¥ R/, +r, feeding each non-
I=1
linearity ¢ has a centered gaussian density of probabilty of variance y=oVI+]7 |2, If we
assume ¢(x) = tanh(x), which is a reasonable choice, then the output of each non-linearity has
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the distribution:
_ Artanh(X)
e

W2r (1-X?)

for-1£X <41,

DSP(H,) = (22)

This density shows a high probability of saturation (on both sides of ¢) for y>2, an
approximate uniform density around v = 0.85, and a high probability for the inputs to pass thru
the linear part of ¢ for y <0.3 (see figure 6).

1.4f

1.2}

0.8]

0.6-
0.4k

0.2}

B X S | R X

Figure 6. Density of probability DSP(H,) of the non-linear nodes’ outputs
for y=oV [ 1 |%+1 increasing from 0.2 (sharp "bump”) to 5.0 (saturation on both sides)

It is therefore possible (and rcasonable) to choose ¢ and to normalize the input o a given
interval, say [~1;+1] in order to avoid numerical problems of saturation or instability. This
apparent restriction doesn’t imply any loss of generality, since a very simple scaling procedure
can be applied for "real” inpuis in the range [/ i max]: One simply has to change:

2R
Ry in —b (23)

! max = min

Iax M min 2
["k zn ]‘k _ max min ZRHC
max_lT min  f=1
Moreover, one can integrate the estimation of the constant and linear part in the non-
linearities by choosing different appropriate ¢’s for the bottom layer’s connection weights.

3. Determining Articulatory Parameters from Acoustic Parameters,

In order to have more insight on human speech production, it would be useful to provide
some elficient way 1o determine articulator positions in the vocal tract. Until now, it remains
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extremely difficult to determine these articulatory parameters due to the wide range of values
thay can have, and also due to a compensation mechanism they can follow, thus allowing
different vocal tract shapes to provide the same specch pattern (sce the discussion about the
question of invertibility below). Present methods of determining measurements of articulator
positions during production of speech are mainly based on x-ray and optical techniques.
Therefore, very few data is available and a model was used to produce reasonable data. One
way Lo determine articulatory data from speech is 10 use a synthesized speech adaptation on a
continually adjusted set of glottal and vocal tract parameters®), The Mermelstein model!®!
used in our simulations produces some vocal tract parameters that, along with other glottal
parameters such as the lung pressure, are needed to drive an articulatory speech synthesizer 110,
which thus mimics the way we produce speech by combining a sequence of articulatory
configuration to generate a desired speech signal.

The Memelstein model, when coupled to an acoustic model of the vocal tract, allows us to
compute acoustic parameters {rom articulatory positions in the vocal tract via a vector of 20
arcas distributed along the vocal tract: The articulator positions are used to approximate the
cross sectional arca of the vocal tract at 20 discrete points; cach such section is then defined as
the perpendicular arca 10 a center line running through the tract, bounded by the walls of the
oral cavity.

Using this model, it was therefore easy to provide training sets for training a network
representation of the inverse relationship (acoustics o articulatory). The influence of the nasal
tract was not considered in our present simulations nor was any modeling of glottis exitation.
The acoustic parameters are directly derived from the transfert function of the vocal tract,
predicted by the models used.

The question of Invertibility.

Although one given source of exitation and shape of areas produces a unique acoustic
ouput (i.e. the transformation arcas —» acoustics is injective), it is somewhat difficult, as far as
the present understanding of acoustic speech production is concerned, to determine under what
circumstances the assumption of invertibility of the mapping from articulatory to acoustics
fails.

At most, the representation used in our simulations seemed to prove the quasi-uniqueness
of the transformation given by the (simplified) model, for our data.

Generation of the Training set.

In order to avoid the implementation of a training which involves enormous amounts of
data, our training set was taken as a so-called Articulatory Codebook!”). This codebook was
merely generated by interpolating in the articulatory space different root shapes of the vocal
tract, and then interpolating the interpolations. This training set is sufficiently complete (about
10,000 points) and contains association pairs of input-output (articulatory-acoustics) relatively
constrained (only a subset of all possible configurations) but related to speech production, to
provide a good generalization ability for the trained network.

The Mermelstein model sets position variables to the different struciures of the vocal tract
(pharynx, nasal and oral cavity). These positions are either indicated in fixed coordinates or
relative to the stracture to which they are attached. The articulatory parameters variable in our
simulations were:
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1. Jaw Angle (in radians): Its position is related to a fixed point and indicated by the lower
tecth.

2. Tongue Center: The body of the tongue is represented as a circle of fixed radius 2 cm, of
which the center is movable.

3. Tongue Tip: Rotates about a point located on the tongue body tangent to the tongue
circle. Its coordinates are refered to this point. Tip and center can be considered
relatively independant and can move in all directions.

4. Lip Position: The lower lip is refered to the jaw angle and can significantly change the
Iength and shape of the vocal tract.

5. Hyoid Position: Close to the glottis where the vocal tract shape significantly changes.

The last four parameters were measured in x and y coordinates, in centimeters (see
appendix). Other Mermelstein articulatory parameters were set to their nominal values: The
velum area, allowing a coupling of the nasal sidebranch to the oral tract, was set to (). The
Tongue radius was also constant.

3.1 The Randomly Linearized Adaptation case.

The different estimations arc represented as estimated vs. actual plottings in the appendix.
Half of the articulatory codebook was taken as the training set, while the other half was used to
test the network after training. The maxima of errors can be estimated in the articulatory
space, as shown in the following table. However, a more understandable interpretation of these
errors can be performed back in the acoustics’ space, comparing the test set’s inputs and
acoustics computed by the model from the network-estimated outputs. The root mean square
error of the logarithmic spectral distance was computed, showing that most (83%) of the test
sample’s estimations were under 4 dB spectral error.

Parameter Range Max Error
Jaw Angle 0.29-0.36 rad. | 0.035 rad. (2 deg)
X Tongue Center 6.0-8.5 cm. 2.0 mm.
Y Tongue Center 3.7-6.3 cm. 3.0 mm.
X Tongue Tip 7.5-13 cm. 10.0 mm.
Y Tongue Tip 2.0-5.5 cm. 15.0 mm,
X Lip Position 0.2-1.2 cm. 3.0 mm.
Y Lip Position -0.05-0.4 em. 1.6 mm.
X Hyoid Position 6.1-6.4 cm. 1.4 mm.
Y Hyoid Position | 8.45-9.0 cm. 2.1 mm.

TABLE 1. Estimation of Articulatory Paramelers from Acoustics
with Randomly l.inearized Non-linear Networks.

3.2 Comparison Randomly Linearized Adaptation - Back-propagation,

In order to estimate the capabilities of both algorithms, simulations on estimation of four
line spectral frequencies from fourth order reflexion coefficients were made; figure 7 shows the
behaviour of both algorithms running on the same data. The {raining set consists of 5,000
reflexion coefficients - line spectral {requencies pairs, computed from real speech. The network
is tested on another sct of 1,000 samples.
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Figure 7. Relative error m versus NL (number of non-linear nodes)
for different algorithms running on a 2-layer perceptron:
back-propagation with linear part (dotted),
randomly lincarized adaptation with Hnear part (solid),
randomly linearized adaptation without linear part (dashed).

The mapping involved in this estimation is far from being simple: In order to determine
the exact values of line spectral frequencies from reflexion coefficients, one needs to compute
the linear prediction polynomial P(z) from reflexion coefficients using the Levinson-Durbin
recursive method, then compute the complex roots of the polynomials P (z}+z P (z™") and
P(z)-z79P(z7"). These roots lic on the unit circle and are symetric from the real axis; the line
spectral frequencies are then defined as the positive angles of these roots. A two-layer
perceptron can perform this operation much faster, at least for inputs of the same nature (e.g.
range) as those of the training sct.

Not surprisingly, the back-propagation algorithm is slower by typically 2 or 3 orders of
magnitude compared to the randomly linearized adaptation algorithm; we have thus restricted
ourselves to simulations where the number of non-linear nodes was varying up to 20. This is a
well known limitation for back-propagation: indeed, the randomly linearized adaptation model
allow us t© perform estimation with a much larger number of non-linear nodes.

Both algorithms were ran from the same initial random set of connection weights; no
particular optimization procedure was investigated: the goal was to run the two algorithms
independently, without any knowledge from cach other. In our example, the back-propagation
method gives a poorer estimation. It shows that the randomly linearized adaptation model is
able to find a reasenable local minimum of the quadratic error with respect to the whole set of
connection weights,

Note that the linear part can be estimated quite well using only non-lincar nodes, provided
that there ate enough connections in the network: this is due to the large number of smaller
connection weights of the first layer, that integrate the linear estimation into the linear
caracteristic (near () of the non-linear transfert function ¢.
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4. Notes on Simulations

We ran our simulations on a Cray X-MP {0 speed up convergence to an exact minimum for
simulations using randomly linearized adaptation and back-propagation involving real data. In
addition, a conjugate gradient minimizing procedure, programmed in language C in [11],
instead of the commonly used stecpest descent procedure, was investigated. This is supposed
to speed up the convergence by some orders of magnitude, but still was slow compared to the
randomly linearized adaptation model.
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