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Examples of applications

Time series analysis based on stochastic modeling is applied in
various fields :

. Health : physiological signal analysis (image analysis).

. Engineering : monitoring, anomaly detection,
localizing/tracking.

. Audio data : analysis, synthesis, coding.

. Ecology : climatic data, hydrology.

. Econometrics : economic/financial data.

. Insurance : risk analysis.

Preliminaries Weakly stationary processes Random fields with orthogonal increments Linear filtering in the spectral domain

Heartbeats
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Figure: Heart rate of a resting person over a period of 900 seconds. This
rate is defined as the number of heartbeats per unit of time. Here the
unit is the minute and is evaluated every 0.5 seconds.
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Internet traffic
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Figure: Inter-arrival times of TCP packets, expressed in seconds, obtained
from a 2 hours record of the traffic going through an Internet link.
http://ita.ee.lbl.gov/.
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Speech audio data

Figure: A speech audio signal with a sampling frequency equal to 8000
Hz. Record of the unvoiced fricative phoneme sh (as in sharp).
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Climatic data: wind speed
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Figure: Daily record of the wind speed at Kilkenny (Ireland) in knots (1
knot = 0.5148 metres/second).
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Climatic data: temperature changes
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Figure: Global mean land-ocean temperature index (solid red line) and
surface-air temperature index (dotted black line).
http://data.giss.nasa.gov/gistemp/graphs/.
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Gross National Product of the USA
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Figure: Growth national product (GNP) of the USA in Billions of $s.
http://research.stlouisfed.org/fred2/series/GNP.
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GNP quarterly rate
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Figure: Quarterly rate of the US GNP.
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Financial index
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Figure: Daily open value of the Standard and Poor 500 index. This index
is computed as a weighted average of the stock prices of 500 companies
traded at the New York Stock Exchange (NYSE) or NASDAQ.
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Financial index: log returns
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Figure: SP500 log-returns.
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Stochastic modelling

Definition : time series
A time series valued in (E, E) and indexed on T = Z is a collection
of random variables (Xt)t∈T defined on the same probability space
(Ω,F ,P).

Definition : path

Let (Xt)t∈T be a random process defined on (Ω,F ,P). The path
of the random experiment ω ∈ Ω is defined as (Xt(ω))t∈T viewed
as an element of ET .

Definition : law
Let X = (Xt)t∈T be a random process. The law of X is defined as
the image probability measure PX = P ◦X−1 on (ET , E⊗T ).
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Finite dimensional (fidi) distributions

For all I ∈ I(T ) (a finite subset of T ),

(i) denote by ΠI is the canonical projection (xt)t∈T 7→ (xt)t∈I ,

(ii) denote by XI the random vector (Xt)t∈I = ΠI ◦X,

(iii) denote by PXI the distribution of XI , which is defined by

PXI

(∏

t∈I
At

)
= P (Xt ∈ At, t ∈ I) , where At ∈ E for all t ∈ I .

Remark: PX is characterized by the collection of fidi distributions(
PXI

)
I∈I(T )

.
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Backshift operator, stationarity

Definition : backshift operators

Let the backshift operator B : EZ → EZ be defined by

B(x) = (xt−1)t∈Z for all x = (xt)t∈Z ∈ EZ .

For all τ ∈ Z, we define Bτ by

Bτ (x) = (xt−τ )t∈Z for all x = (xt)t∈Z ∈ EZ .

A process X = (Xt)t∈T is said to be stationary if X and B ◦X
have the same distributions.

Examples: constant process, i.i.d. processes, Gaussian processes, ...
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L2 space

We set E = Cd. We denote

L2(Ω,F ,P) =
{
X C

d-valued r.v. such that E
[
|X|2

]
<∞

}
.

(L2, 〈, 〉) is a Hilbert space with

〈X,Y 〉 = E
[
XTY

]
.

Definition : L2 Processes
The process X = (Xt)t∈T defined on (Ω,F ,P) with values in Cd

is an L2 process if Xt ∈ L2(Ω,F ,P) for all t ∈ T .
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Mean and covariance functions

Let X = (Xt)t∈T be an L2 process.

. Its mean function is defined by µ(t) = E [Xt],

. Its covariance function is defined by

Γ(s, t) = cov(Xs,Xt) = E
[
XsX

H
t

]
− E [Xs]E [Xt]

H .

Linear combinations → scalar case
Let X = (Xt)t∈T be an L2 process with mean function µ and
covariance function Γ. This is equivalent to say that for all
u ∈ Cd, uHX is a scalar L2 process with mean function uHµ and
covariance function uHΓu.
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Scalar case E = C, examples

Hermitian symmetry, non-negative definiteness

For all I ∈ I(T ), ΓI = Cov([X(t)]t∈I) = [γ(s, t)]s,t∈I is a
hermitian non-negative definite matrix.

Examples

. L2 independent random variables (Xt)t∈Z have mean
µ(t) = E(Xt) and covariance

Γ(s, t) =

{
var(Xt) if s = t,

0 otherwise.

. A Gaussian process is an L2 process whose law is entirely
determined by its mean and covariance functions.
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Weakly stationary processes

Let T = Z. Let X be an L2 strictly stationary process with mean
function µ and covariance function Γ.

Then µ(t) = µ(0) and γ(s, t) = γ(s− t, 0) for all s, t ∈ T .

Definition : Weak stationarity

We say that a random process X is weakly stationary with mean µ
and autocovariance function γ : Z→ C if it is L2 with mean
function t 7→ µ and covariance function (s, t) 7→ γ(s− t).

The autocorrelation function is defined (when γ(0) > 0) by

ρ(t) =
γ(t)

γ(0)
.
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Examples

An L2 strictly stationary process is weakly stationary.

. The constant L2 process has constant autocovariance
function.

Strong and weak white noise

. A sequence of L2 i.i.d. random variables is called a strong
white noise, denoted by X ∼ IID(µ, σ2).

. An L2 process X with constant mean µ and constant diagonal
covariance function equal to σ2 is called a weak white noise. It
is denoted by X ∼WN(µ, σ2). (It does not have to be i.i.d.)
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Examples based on stationarity preserving linear filters
Let X be weakly stationary with mean µ and autocovariance γ.

In the following examples, Y = g(X) is weakly stationary with
mean µ′ and autocovariance γ′.

. Let g be the time reversing operator (xt)t∈Z 7→ (x−t)t∈Z.
Then

µ′ = µ and γ′ = γ .

. Let g =
∑

k

ψk Bk : x 7→ ψ ? x for a finitely supported

sequence ψ. Then

µ′ = µ
∑

k

ψk

γ′(τ) =
∑

`,k

ψkψ`γ(τ + `− k) (1)
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Heartbeats : autoregression
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Figure: Xt VS Xt−1 for the heartbeats data (see Figure 4). The red
dashed line is the best linear fit.
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Empirical estimates

Suppose you want to estimate the mean and the autocovariance
from a sample X1, . . . , Xn. Define the empirical mean as

µ̂n =
1

n

n∑

k=1

Xk ,

and the empirical autocovariance and autocorrelation functions as

γ̂n(h) =
1

n

n−|h|∑

k=1

(Xk − µ̂n)(Xk+|h| − µ̂n) and

ρ̂n(h) =
γ̂n(h)

γ̂n(0)
.
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Heartbeats : autocorrelation (empirical)
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Figure: Left : empirical autocorrelation ρ̂n(h) of heartbeat data for
h = 0, . . . , 100. Right : the same from a simulated white noise sample
with same length.
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Spectral measure

Given a function γ : Z→ C, does there exist a weakly stationary
process (Xt)t∈Z with autocovariance γ?

Herglotz Theorem

Let γ : Z→ C. Then the two following assertions are equivalent:

(i) γ is hermitian symmetric and non-negative definite.

(ii) There exists a finite non-negative measure ν on T = R/2πZ
such that,

for all t ∈ Z, γ(t) =

∫

T
eiλt ν(dλ) . (2)

When these two assertions hold, ν is uniquely defined by (2).
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Spectral density

If moreover γ ∈ `1(Z), these assertions are equivalent to

f(λ) :=
1

2π

∑

t∈Z
e−iλtγ(t) ≥ 0 for all λ ∈ R ,

and ν has density f (that is, ν(dλ) = f(λ)dλ).

Definition : spectral measure and spectral density

If γ is the autocovariance of a weakly stationary process X, the
corresponding measure ν is called the spectral measure of X.
Whenever the spectral measure ν admits a density f , it is called
the spectral density function.
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Examples
. Let X ∼WN(µ, σ2). Then f(λ) = σ2

2π .

. Let X be a weakly stationary process with covariance function
γ/spectral measure ν. Define

Y =
∑

k

ψk Bk ◦X

for a finitely supported sequence ψ. Recall that Y is a weakly

stationary process with covariance function

γ′(τ) =
∑

`,k

ψkψ`γ(τ + `− k) .

Then Y is a weakly stationary process with spectral measure

ν ′ having density λ 7→
∣∣∑

k ψke
−iλk

∣∣2 with respect to ν,

ν ′(dλ) =

∣∣∣∣∣
∑

k

ψke
−iλk

∣∣∣∣∣

2

ν(dλ) .
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A special one : the harmonic process
Let (Ak)1≤k≤N be N real valued L2 random variables. Denote
σ2
k = E

[
A2
k

]
. Let (Φk)1≤k≤N be N i.i.d. random variables with a

uniform distribution on [0, 2π], and independent of (Ak)1≤k≤N .
Define

Xt =

N∑

k=1

Ak cos(λkt+ Φk) , (3)

where (λk)1≤k≤N ∈ [−π, π] are N frequencies. The process (Xt)
is called a harmonic process. It satisfies E [Xt] = 0 and, for all
s, t ∈ Z,

E [XsXt] =
1

2

N∑

k=1

σ2
k cos(λk(s− t)) .

Hence X is weakly stationary with autocovariance

γ(t) =
1

2

N∑

k=1

σ2
k cos(λkt) .
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Spectral representation of the harmonic process
We deduce that X has spectral measure

µ =
1

4

N∑

k=1

σ2
k (δλk + δ−λk) ,

where we denote by δλ the Dirac mass at point λ.

Similarly, we can write

Xt =
1

2

N∑

k=1

(
Ake

iΦk eiλkt +Ake
−iΦk e−iλkt

)

=

∫

T
eiλt dW (λ) ,

where W is the random (complex valued) measure

W =
1

2

N∑

k=1

(
Ake

iΦk δλk +Ake
−iΦk δ−λk

)
.
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Spectral representation
One can interpret the relation between X and W as saying that W
is the Fourier transform of X, so we denote it by X̂ :

Xt =

∫

T
eiλt dX̂(λ), t ∈ Z .

This spectral representation of X can be extended to any weakly
stationary processes with some remarkable properties on X̂.

But some work is necessary.

. The paths of X are random sequences, usually unbounded (no
decay at infinity can be used!) so dX̂ cannot be in the “nice”
form X̂(λ)dλ.

. Instead X̂ always is a random measure defined on
T = R/2πZ.

. For the same reason, there is no simple formula for defining X̂
from X : we rely on Hilbert geometry.
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Why is it useful?
Recall the backshift operator B : (xt)t∈Z 7→ (xt−1)t∈Z.
Observe that from

Xt =

∫

T
eiλt dX̂(λ), t ∈ Z ,

we get that

(BX)t =

∫

T
eiλt e−iλdX̂(λ)⇒ dB̂(X)(λ) = e−iλ dX̂(λ) .

More generally, if g =
∑

k αk Bk for some finitely supported
sequence (αt)t∈Z, we get

dĝ(X)(λ) = ĝ(λ) dX̂(λ) with ĝ(λ) =
∑

k

αke
−iλk .

This will allow us to come up with linear operators g directly
described by the function ĝ (under quite general conditions).
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Random fields with orthogonal increments

In the following we let (X,X ) be a measurable space.

Definition : Random fields with orthogonal increments

Let η be a finite non-negative measure on (X,X ). Let
W = (W (A))A∈X be an L2 process indexed by X . It is called a
random field with orthogonal increments and intensity measure η if
it satisfies the following conditions.

(i) For all A ∈ X , E [W (A)] = 0.

(ii) For all A,B ∈ X , Cov (W (A),W (B)) = η(A ∩B).

Consequence

For all A,B ∈ X such that A ∩B = ∅, W (A) and W (B) are
uncorrelated and W (A ∪B) = W (A) +W (B).
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Example

We denote by δλ the Dirac mass at point λ.

Let λk, k = 1, . . . , n be fixed elements of X. Let Y 1, . . . , Y n be
centered L2 uncorrelated random variables with variances
σ2

1, . . . , σ
2
n. Then

W =
n∑

k=1

Y k δλk

is a random field with orthogonal increments and intensity measure

η =
n∑

k=1

σ2
k δλk .
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Stochastic integral
Let W be a random field with orthogonal increments defined on
(Ω,F ,P), with intensity measure η on (X,X ).

The stochastic integral with respect to W is defined by the
following steps.

Step 1 We set W (1A) = W (A), which defines a unitary operator
from {1A, A ∈ X} ⊂ L2(X,X , η) to L2(Ω,F ,P).

Step 2 Extend this unitary operator linearly on Span (1A, A ∈ X ).
Step 3 Extend this unitary operator continuously to the L2-sense

closure Span (1A, A ∈ X ) = L2(X,X , η).
Step 4 One obtains a L2(X,X , η)→ L2(Ω,F ,P) unitary linear

operator. We denote

W (g) =

∫
g dW , g ∈ L2(X,X , η) .

Conversely, any L2(X,X , η)→ L2(Ω,F ,P) centered unitary linear
operator defines a random field W with intensity measure η.
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Application to the construction of weakly stationary
processes

Let W be a random field with orthogonal increments with intensity
measure η on (T,B(T)).

Define, for all t ∈ Z,

Xt =

∫
eitλ dW (λ) .

Then we have E [Xt] = 0 and

Cov (Xs, Xt) = 〈Xs, Xt〉 =
〈
eis·, eit·〉 =

∫

T
ei(s−t)λ dη(λ) ,

We get a centered weakly stationary process with spectral measure
η.
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Construction of the spectral random field
Conversely, let (Xt)t∈Z be a centered weakly stationary with
spectral measure η.

Step 1 Define
HX∞ = Span (Xt, t ∈ Z) .

Step 2 As previously, we can extend Xt 7→ eit· linearly and
continuously as a unitary linear operator from HX∞ to
L2(T,B(T), η).

Step 3 Since Span
(
eit·, t ∈ Z

)
= L2(T,B(T), η), this operator is

bijective.

Step 4 Let X̂ be its inverse operator.

Then X̂ is a random field with orthogonal increments with
intensity measure η on (T,B(T)).
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Spectral representation

Moreover, by construction, every Y ∈ HX∞ can be represented as

Y =

∫
g(λ) dX̂(λ) .

for a (unique) well chosen g ∈ L2(T,B(T), η).

In particular, for all t ∈ Z,

Xt =

∫
eitλ dX̂(λ) .

and X̂ is called the spectral representation of X.
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Example: complex-valued Harmonic processes

The previous definition of harmonic processes can be extended as
follows.

Definition : Harmonic processes

The process (Xt)t∈Z is an harmonic process if its spectral

representation X̂ is of the form

X̂ =
n∑

k=1

Zkδλk ,

where λ1, . . . , λn are deterministic frequencies in T and Z1, . . . , Zn
are uncorrelated centered C-valued random variables.
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Example: real-valued Harmonic processes

To obtained a real valued process X̂ must satisfy an hermitian

symmetry X̂(−A) = X̂(A).

Hence, for a real valued harmonic process, we obtain for
0 < λ0 < · · · < λn ≤ π,

X̂ = Z0δ0 +
N∑

k=1

(Zkδλk + Zkδ−λk) ,

where Z0, Z1, . . . , ZN , Z1, . . . , ZN are uncorrelated centered
C-valued random variables and Z0 is real valued.

(Recall our previous example where Zk = 1
2Ake

iΦk .)
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Examples

Centered white noise
If (Xt)t∈Z ∼WN(0, σ2) then X̂ satisfies

Var
(
X̂((λ′, λ])

)
=
σ2

2π
(λ− λ′) , λ′ < λ < λ′ + 2π .

Linear filtering

Let (Xt)t∈Z be centered, weakly stationary with spectral measure

ν and spectral representation X̂. Then for any ĝ ∈ L2(T,B(T), ν),
one can define a centered, weakly stationary process (Y t)t∈Z by its

spectral representation Ŷ (dλ) = ĝ(λ) X̂(dλ),

Y t =

∫

T
ei tλ Ŷ (dλ) =

∫

T
ei tλ ĝ(λ)X̂(dλ) ,

and (Y t)t∈Z is centered, weakly stationary with spectral measure
ν ′(dλ) = |ĝ(λ)|2 ν(dλ).
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A simple case : filtered white noise
Let (Xt)t∈Z ∼WN(0, σ2). Then the following assertions are
equivalent.

(i) The sum Y t =
∑

k∈Z
ψkXt−k converges in in L2.

(ii) The sequence (ψt)t∈Z ∈ `2.

Convergence in L2 is sufficient to obtain as for `1 convolution
filtering that

Y is weakly stationary with spectral density f(λ) =
σ2

2π
|ψ∗(λ)|2 ,

where ψ∗ is the transfer function

ψ∗(λ) =
∑

k∈Z
ψke

−iλk .

Hence the condition ψ ∈ `1 is too strong in this case.
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Spectral representation of filtered white noise

Note that by construction, the process (Y t)t∈Z belongs to HX∞.

Using the spectral representation of X, we have that, for all t ∈ Z,

Y t =

∫
eiλt ψ∗(λ) dX̂(λ) .

Here the unitary property corresponds to Parseval’s identity :
ψ∗ : T→ C is such that

∫

T
|ψ∗|2 = 2π

∑

k∈Z
|ψk|2 <∞ .

How to generalize this to any process X ?
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General linear time-invariant filtering
Let (Xt)t∈Z be a centered weakly stationary process with an
arbitrary spectral measure ν.

We can generalize `1 convolution filtering by setting

Y t = lim
n→∞

∑

k∈Z
ψn,kXt−k ,

where (ψn,k)k∈Z has finite support for all n and the limit holds in
L2.

The spectral representation of this limit takes the general form

Y t =

∫
eiλt g(λ) dX̂(λ) , t ∈ Z ,

where g ∈ L2(T,B(T), ν). We shall denote

Y = F̂g(X) .

Preliminaries Weakly stationary processes Random fields with orthogonal increments Linear filtering in the spectral domain

General linear time-invariant filtering (cont.)

Observe that, for all s, t ∈ Z,

Cov (Y s, Y t) =

∫

T
eiλ(s−t) |g(λ)|2 dν(λ) .

Hence Y = F̂g(X) is a centered weakly stationary process and its
spectral measure has density |g|2 with respect to ν, the spectral
measure of X.


