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Schedule

I 9:30 - 12:30 Tutorial

I 12:30 - 13:30 Lunch

I 13:30 - 17:00 Lab session (python)



Graph data

I Infrastructure: roads, railways, power grid, internet, ...

Main European highways
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Graph data

I Infrastructure: roads, railways, power grid, internet, ...

I Communication: phone, emails, flights, ...

I Information: Web, Wikipedia, knowledge bases, ...

Belle Époque (film)

Penélope Cruz

Chromophobia (film)

The Counselor

Nine (2009 live-action film)

Lola Dueñas

Volver

All the Pretty Horses (film)

Woman on Top

Todo es mentira

Vicky Cristina Barcelona

The Good Night

Carmen Maura

Jamón Jamón

Head in the Clouds

Volavérunt

Vanilla Sky

Chus Lampreave

For Love, Only for Love

Noel (film)
Broken Embraces

Yohana Cobo

Blow (film)

Gothika

Bandidas G-Force (film)
Zoolander 2

Don't Tempt Me

The Rebel (1993 film)

American Crime Story

Captain Corelli's Mandolin (film)

Entre rojas

Manolete (film)

The Girl of Your Dreams

Don't Move

Elegy (film)

Open Your Eyes (1997 film)

Sahara (2005 film)

Blanca Portillo

Alegre ma non troppo

Grimsby (film)
Twice Born

Ma Ma (2015 film)

All About My Mother

The Greek Labyrinth

The Hi-Lo Country
To Rome with Love (film)

La Celestina (1996 film)
The Man with Rain in His Shoes

Love Can Seriously Damage Your Health

Murder on the Orient Express (2017 film)

Extract from the movie-actor graph



Graph data

I Infrastructure: roads, railways, power grid, internet, ...

I Communication: phone, emails, flights, ...

I Information: Web, Wikipedia, knowledge bases, ...

I Social networks: Facebook, Twitter, LinkedIn, ...

Extract from Twitter

Source: AllThingsGraphed.com



Graph data

I Infrastructure: roads, railways, power grid, internet, ...

I Communication: phone, emails, flights, ...

I Information: Web, Wikipedia, knowledge bases, ...

I Social networks: Facebook, Twitter, LinkedIn, ...

I Biology: brain, proteins, phylogenetics, ...

The brain network

Source: Wired



Graph data
I Infrastructure: roads, railways, power grid, internet, ...
I Communication: phone, emails, flights, ...
I Information: Web, Wikipedia, knowledge bases, ...
I Social networks: Facebook, Twitter, LinkedIn, ...
I Biology: brain, proteins, phylogenetics, ...
I Health: genetic diseases, patient-doctor-pharmacy-drugs, ...

Pharmacy-doctor network

Source: IAAI 2015



Graph data

I Infrastructure: roads, railways, power grid, internet, ...

I Communication: phone, emails, flights, ...

I Information: Web, Wikipedia, knowledge bases, ...

I Social networks: Facebook, Twitter, LinkedIn, ...

I Biology: brain, proteins, phylogenetics, ...

I Health: genetic diseases, patient-doctor-pharmacy-drugs, ...

I Marketing: customer-product, bundling, ...



Data as graph

I Dataset x1, . . . , xn ∈ X
I Similarity measure σ : X × X → R+

I Graph of n nodes with weight σ(xi , xj) between nodes i and j
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Example: X = [0, 1]2, σ(x , y) = 1{d(x ,y)<1/4}



Data as graph

I Dataset x1, . . . , xn ∈ X
I Similarity measure σ : X × X → R+

I Graph of n nodes with weight σ(xi , xj) between nodes i and j

Example: X = [0, 1]2, σ(x , y) = 1{d(x ,y)<1/4}



Motivation

I Information retrieval

I Content recommandation

I Advertizing

I Anomaly detection

I Security



Graph analysis

I What are the most important nodes? → Ranking

I Can we predict new links? → Local ranking

I What is the graph structure? → Clustering

I Can we predict labels? → Classification



Setting

A weighted, undirected, connected graph of n nodes
No self-loops
Weighted adjacency matrix A
Vector of node weights d = A1



Outline

1. Random walk

2. Laplacian matrix

3. Spectral analysis

4. Graph embedding

5. Applications
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Random walk

Consider a random walk in the graph G where the probability of
moving from node i to node j is Aij/di

The sequence of nodes X0,X1,X2, . . . defines a Markov chain on
{1, . . . , n} with transition matrix P = D−1A

I Dynamics:

P(Xt+1 = i) =
∑
j

P(Xt = j)Pji

I Stationary distribution π:

P(X∞ = i) =
∑
j

P(X∞ = j)Pji ⇐⇒ πi =
∑
j

πjPji

(global balance)
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Return time
Since πi is the frequency of visits of node i in stationary regime,
the mean return time to node i is given by

σi = Ei (τ
+
i ) =

1

πi

with τ+i = min{t ≥ 1 : Xt = i}



Reversibility

A Markov chain is called reversible if in stationary regime, the
probability of any sequence of states is the same in both directions
of time

I Transition from state i to state j :

P(Xt = i ,Xt+1 = j) = P(Xt = j ,Xt+1 = i)

⇐⇒ πiPij = πjPji (local balance)

I Sequence of states i0, i1, . . . i`:

P(Xt = i0, . . . ,Xt+` = i`) = P(Xt = i`, . . . ,Xt+` = i0)

⇐⇒ πi0Pi0i1 . . .Pi`−1i` = πi`Pi`i`−1
. . .Pi1i0
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Reversibility & random walks

I The random walk in a graph is a reversible Markov chain,
with stationary distribution π ∝ d

I Conversely, any reversible Markov chain is a random walk in
a graph, with weights πiPij = πjPji
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Reversibility in physics

I All microscopic laws of physics are reversible

I The second law of thermodynamics states that the evolution
of any isolated system is irreversible

I This apparent paradox was solved by Tatiana & Paul
Ehrenfest in 1907
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of any isolated system is irreversible
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Example



Hitting time, commute time & escape probability

I Mean hitting time of node j from node i :

Hij = Ei (τj), τj = min{t ≥ 0 : Xt = j}

I Mean commute time between nodes i and j :

ρij = Hij + Hji

I Escape probability from node i to node j :

eij = Pi (τj < τ+i )

Proposition

ρij =
1

πieij



Proof



Frequency of no-return paths

∀i 6= j πieij = πjeji



Outline

1. Random walk → Statistical physics

2. Laplacian matrix → Heat equation

3. Spectral analysis → Mechanics

4. Graph embedding → Electricity

5. Applications



Laplacian matrix

Let D = diag(A1).

Definition

The matrix L = D − A is called the Laplacian matrix.

Heat equation

I Fix the temperature of some nodes S ⊂ {1, . . . , n}
I Interpret the weight Aij as the thermal conductivity

I Then for any node i 6∈ S ,

dT

dt
=
∑
j

Aij(Tj − Ti ) = −(LT )i



Example



Example



Example



Equilibrium

Dirichlet problem

I For any node i 6∈ S ,
(LT )i = 0

with boundary condition Ti for all i ∈ S

I The vector T is said to be harmonic

Uniqueness

There is at most one solution to the Dirichlet problem

Proof based on the maximum principle



The maximum principle



Back to random walks

I Consider the probability that the random walk first hits S in j
when starting from i :

PS
ij = Pi (τj = τS)

with τS = min{t ≥ 0 : Xt ∈ S}
I This defines a stochastic matrix PS

Existence

The solution to the Dirichlet problem is

∀i 6∈ S , Ti =
∑
j∈S

PS
ij Tj



Back to random walks

I Consider the probability that the random walk first hits S in j
when starting from i :
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with τS = min{t ≥ 0 : Xt ∈ S}
I This defines a stochastic matrix PS

Existence

The solution to the Dirichlet problem is
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ij Tj



Solution to the Dirichlet problem
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Spectral analysis

The Laplacian matrix L is symmetric and positive semi-definite

Proposition

∀v ∈ Rn, vTLv =
∑
i<j

Aij(vi − vj)
2

Spectral decomposition

L = VΛV T

I Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues,
with 0 = λ1 < λ2 ≤ . . . ≤ λn

I V = (v1, . . . , vn) is a unitary matrix of eigenvectors,
with v1 = 1/

√
n
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Mechanics

Consider a mechanical system of n particles of unit mass located
on a line and linked by springs with stiffness Aij (Hooke’s law)

Denoting by v ∈ Rn the location of these particles, the force
between i and j is:

Aij |vi − vj |

We deduce the potential energy of the system:

1

2

∑
i<j

Aij(vi − vj)
2 =

1

2
vTLv
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Energy minima

The minimum of vTLv under the constraint vT v = 1 is:

I 0 (take v = v1)

I λ2 under the constraint 1T v = 0 (take v = v2)

Theorem

For all k = 1, . . . , n,

λk = min
v :vT v=1

vT
1 v=0,...,vT

k−1v=0

vTLv

and the minimum is attained for v = vk .



Proof



Physical interpretation

Assume each particle has unit mass and let the mechanical system
rotate with angular velocity ω > 0

By Newton’s law,

∀i ,
∑
j

Aij(vj − vi ) = −viω2

⇐⇒ Lv = ω2v

Observations

I The only possible values of angular velocity are
√
λ2, . . . ,

√
λn

I The corresponding equilibra are proportional to v2, . . . , vn
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Physical interpretation (energy)

At equilibrium, the potential energy is equal to the (rotational)
kinetic energy:

1

2
vTLv =

1

2
vT vω2

where vT v is the moment of inertia of the system.

Observations

For unit moments of inertia,

I The only possible values of energy are (half) λ2, . . . , λn
I The corresponding equilibra are v2, . . . , vn



Physical interpretation (energy)

At equilibrium, the potential energy is equal to the (rotational)
kinetic energy:

1

2
vTLv =

1

2
vT vω2

where vT v is the moment of inertia of the system.

Observations

For unit moments of inertia,

I The only possible values of energy are (half) λ2, . . . , λn
I The corresponding equilibra are v2, . . . , vn



Example

v2 v3



Back to random walks

I The normalized symmetric Laplacian is defined by:

L = D−1/2LD−1/2 = I − D−1/2AD−1/2

I This matrix is symmetric and positive semi-definite

I By the spectral theorem,

L = VΓVT

where Γ = (γ1, . . . , γn), with γ1 = 0 < γ2 ≤ . . . ≤ γn

Observation

The transition matrix P has eigenvalues 1 > 1− γ2 ≥ . . . ≥ γn,
with corresponding matrix of eigenvectors D−1/2V



Outline

1. Random walk → Statistical physics

2. Laplacian matrix → Heat equation

3. Spectral analysis → Mechanics

4. Graph embedding → Electricity

5. Applications



Pseudo-inverse

Recall that
L = VΛV T

The pseudo-inverse of L is

L+ = VΛ+V T

with

Λ+ = diag

(
0,

1

λ2
, . . . ,

1

λn

)

Proposition

LL+ = L+L = I − 11T

n



Proof



First graph embedding

Consider the embedding Z = (z1, . . . , zn) of the nodes in Rn, with

Z =
√

Λ+V T

Observations

I The first coordinate is 0

I The k-th coordinate is vk/
√
λk , with energy

1

2

vTk Lvk
λk

=
1

2

I Null component-wise averages, Z1 = 0

I The Gram matrix of Z is the pseudo-inverse of L

ZTZ = VΛ+V T = L+
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Example in R2
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Second graph embedding

Consider the embedding X = (x1, . . . , xn) of the nodes in Rn, with

X =
√
|d |Z (I − π1T )

Observations

I Shifted, normalized version of Z

I Null component-wise weighted averages, Xπ = 0

I Gram matrix of X :

G = XTX = |d |(I − 1πT )L+(I − π1T )

Gπ = 0



Example in R2

75 50 25 0 25 50 75 100

80

60

40

20

0

20

40

60

80



Back to random walks

I The mean hitting time of node j from node i satisfies:

Hij =

{
0 if i = j
1 +

∑n
k=1 PikHkj otherwise

I We deduce that the matrix (I − P)H − 11T is diagonal

I Equivalently, the matrix LH − d1T is diagonal

Theorem

H = 11Td(G )− G

where G = XTX is the Gram matrix of X

Observation

H = 1hT − G with hT = πTH
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Graph embedding and random walk

I Square distance to the origin:

||xi ||2 = hi (hitting time)

I Scalar product:

xTj (xj − xi ) = Hij (hitting time)

I Square distance between nodes i and j :

||xi − xj ||2 = ρij (commute time)



Proof of the Theorem

Lemma

There is at most one matrix H such that LH − d1T is diagonal and
d(H) = 0



Proof of the Theorem

Theorem

H = 11Td(G )− G



Mean return times
I The mean return time to node i satisfies

σi = 1 +
∑
j

PijHji

I Thus the diagonal of PH + 11T gives the mean return times

Corollary

d(PH + 11T ) = diag(π)−1



Electricity

I Consider the electric network induced by the graph, with a
resistor of conductance Aij between nodes i and j

I We look for the vector U of electric potentials given Us = 1
(source) and Ut = 0 (sink)
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A Dirichlet problem

I By Ohm’s law, the current that flows from i to j is

Aij(Ui − Uj)

I By Kirchoff’s law, the net current at any node i 6= s, t is null:∑
j

Aij(Ui − Uj) = 0

that is (LU)i = 0

I The vector U is the solution to the Dirichlet problem with
boundary conditions Us = 1 and Ut = 0



Energy dissipation

I Energy dissipation = differential of potential × current

I Total energy dissipation∑
i<j

Aij(Uj − Ui )
2

Thompson’s principle

The potential vector U minimizes energy dissipation

Taking the derivative in Ui∑
j

Aij(Uj − Ui ) = 0

that is (LU)i = 0, which is the Dirichlet problem



Solution to the Dirichlet problem

Proposition

The electric potential of node i is

Ui =
(xi − xt)

T (xs − xt)

||xs − xt ||2



Example

75 50 25 0 25 50 75 100

80

60

40

20

0

20

40

60

80



Effective conductance, effective resistance

I The current that goes from node s to node t is

|d |
||xs − xt ||2

=
|d |
ρst

I This is the effective conductance between s and t

I The effective resistance between s and t is proportional to
ρst , the mean commute time between nodes s and t



Electricity and random walks

The vector U of electric potential is the solution to the Dirichlet
problem with Us = 1 and Ut = 0

Interpretation of voltage

The voltage of any node is the probability that the random walk
starting from this node reaches node s before node t

Interpretation of current

The net current from node i to node j is the net frequency of
particles moving from node i to node j , with a flow of particles
entering the network at node s at rate

|d |
ρst



Electricity and random walks

The vector U of electric potential is the solution to the Dirichlet
problem with Us = 1 and Ut = 0

Interpretation of voltage

The voltage of any node is the probability that the random walk
starting from this node reaches node s before node t

Interpretation of current

The net current from node i to node j is the net frequency of
particles moving from node i to node j , with a flow of particles
entering the network at node s at rate

|d |
ρst



The current as the net flow of particles



Extension

I A single source s, at electric potential 1

I Multiple sinks t1, . . . , tK , at electric potential 0



Solution to the Dirichlet problem

Proposition

The electric potential of node i is:

Ui =
K∑

k=1

αk(xi − xtl )
T (xs − xtk )

where

I l is an arbitrary element of {1, . . . ,K}
I α is the unique solution to the equation Mα = |d |1, with M

the Gram matrix of the vectors (xs − xt1 , . . . , xs − xtK )

General solution to the Dirichlet problem

I For each s ∈ S , apply previous result to get PS
is ≡ Ui

I The potential of each node i 6∈ S is Ui =
∑

j∈S P
S
ij Uj



Outline

1. Random walk → Statistical physics
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3. Spectral analysis → Mechanics

4. Graph embedding → Electricity
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Graph embedding

Method

1. Check that the graph is connected

2. Form the Laplacian L = D − A

3. Compute v1, . . . , vk , the k eigenvectors of L associated with
the lowest eigenvalues, λ1 ≤ . . . ≤ λk

4. Compute Z = diag
(

1√
λ2
, . . . , 1√

λk

)
(v2, . . . , vk)T

5. Return X =
√
|d |Z (I − π1T ) where π = d/|d |

Observation

The dimension of the embedding must be chosen so that λk is
large compared to λ2



Ranking

Centrality

I Output: nodes in increasing order of ||xi ||2

Local centrality

I Input: node s of interest

I Ouput: nodes in increasing order of xTi (xi − xs)

Local centrality (multiple nodes)

I Input: nodes s1, . . . , sK of interest (with weights)

I Ouput: nodes in increasing order of xTi (xi − x)
with x the weighted sum of xs1 , . . . , xsK



Ranking with repulsive nodes

Directional centrality

I Input: node s of interest, repulsive node t

I Ouput: nodes in increasing order of xTi (xs − xt)

Directional centrality (multiple repulsive nodes)

I Input: node s of interest, repulsive nodes t1, . . . , tK
I Ouput: nodes in increasing order of xTi x with

x =
K∑

k=1

αk(xs − xtk )

where α is the solution to Mα = 1, with M the Gram matrix
of (xs − xt1 , . . . , xs − xtK )



Clustering
Partition C1, . . . ,CK of the nodes

I Objective: Minimizing

J =
∑
k

∑
i∈Ck

||xi − µk ||2 with µk =
1

|Ck |
∑
i∈Ck

xi

I A combinatorial problem (NP-hard)



The K -means algorithm

Algorithm

Input: K , number of clusters

Init µ1, . . . , µK arbitrarily
Repeat until convergence:

I for each k , Ck ← closest points of µk
I for each k , µk ← centroid of Ck

Output: Clusters C1, . . . ,CK

I Convergence in finite time

I Local optimum, that depends on the initial values of
µ1, . . . , µK



Back to random walks

Observing that

J =
∑
k

1

2|Ck |
∑
i ,j∈Ck

||xi − xj ||2

the cost function J is, up to a factor n/2:

I the mean square distance of a random point to another
random point of the same cluster

I the mean commute time of the random walk between a
random node and another node taken uniformly at random in
the same cluster



Modularity

I Given some clustering C , let

Q =
∑
i ,j

πi (Pij − πj)δCi ,j

where

δCi ,j =

{
1 if i , j are in the same cluster
0 otherwise

I Then Q is the difference between the probabilities that
(1) two successive nodes of the random walk are in the same
cluster
(2) two independent random walks are in the same cluster

I Maximizing Q is NP-hard



Modularity

I Given some clustering C , let

Q =
∑
i ,j

πi (Pij − πj)δCi ,j

where

δCi ,j =

{
1 if i , j are in the same cluster
0 otherwise

I Then Q is the difference between the probabilities that
(1) two successive nodes of the random walk are in the same
cluster
(2) two independent random walks are in the same cluster

I Maximizing Q is NP-hard



The Louvain algorithm

Algorithm

Init each node in its own cluster
Repeat until convergence:

I while Q increases, change the cluster of any node to one of its
neighbors

I aggregate all nodes belonging to the same cluster in a single
node

Output: Clusters

I Convergence in finite time

I Local optimum, that depends on the order in which nodes are
considered



Summary
I Random walks in graphs provide efficient techniques for

ranking and clustering nodes
I In the lab session, you will learn to apply these techniques to

real graphs using the Python networkx package
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