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Schedule

» 9:30 - 12:30 Tutorial
» 12:30 - 13:30 Lunch
» 13:30 - 17:00 Lab session (python)



Graph data

» Infrastructure: roads, railways, power grid, internet, ...
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Graph data

» Infrastructure: roads, railways, power grid, internet,
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Graph data

v

v

Communication: phone, emails, flights, ...
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Information: Web, Wikipedia, knowledge bases, ...
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Social networks: Facebook, Twitter, LinkedlIn, ...

Extract from Twitter
Source: AllThingsGraphed.com

Infrastructure: roads, railways, power grid, internet, ...



Graph data
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Communication: phone, emails, flights, ...
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Information: Web, Wikipedia, knowledge bases, ...
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Social networks: Facebook, Twitter, LinkedlIn, ...
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Biology: brain, proteins, phylogenetics, ...

The brain network
Source: Wired

Infrastructure: roads, railways, power grid, internet, ...



Graph data

» Infrastructure: roads, railways, power grid, internet, ...
Communication: phone, emails, flights, ...
Information: Web, Wikipedia, knowledge bases, ...
Social networks: Facebook, Twitter, LinkedlIn, ...
Biology: brain, proteins, phylogenetics, ...
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Pharmacy-doctor network
Source: 1AAI 2015

Health: genetic diseases, patient-doctor-pharmacy-drugs, ...



Graph data

» Infrastructure: roads, railways, power grid, internet, ...
» Communication: phone, emails, flights, ...

» Information: Web, Wikipedia, knowledge bases, ...

» Social networks: Facebook, Twitter, Linkedln, ...

> Biology: brain, proteins, phylogenetics, ...

> Health: genetic diseases, patient-doctor-pharmacy-drugs, ...

> Marketing: customer-product, bundling, ...



Data as graph

» Dataset x1,...,x, € X
» Similarity measure o : X x X — RT

» Graph of n nodes with weight o(x;, x;) between nodes i and j
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Example: X = [0,1]?, o(x,y) = Ld(xy)<1/4)



Data as graph

» Dataset x1,...,x, € X
» Similarity measure o : X x X — RT

» Graph of n nodes with weight o(x;, x;) between nodes i and j

Example: X = [0,1]?, o(x,y) = Ld(xy)<1/4)



Motivation

Information retrieval

v

Content recommandation

v

v

Advertizing

v

Anomaly detection

v

Security



Graph analysis

» What are the most important nodes? — Ranking
» Can we predict new links? — Local ranking
» What is the graph structure? — Clustering
» Can we predict labels? — Classification



Setting

A weighted, undirected, connected graph of n nodes
No self-loops

Weighted adjacency matrix A

Vector of node weights d = Al
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Random walk

Consider a random walk in the graph G where the probability of
moving from node i to node j is Aj;/d;
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Random walk

Consider a random walk in the graph G where the probability of
moving from node i to node j is Aj;/d;
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» Dynamics:

P(Xey1=1) = ZP(Xt = J)Pji



Random walk

Consider a random walk in the graph G where the probability of
moving from node i to node j is Aj;/d;

The sequence of nodes Xp, X1, X3, ... defines a Markov chain on
{1,...,n} with transition matrix P = D~1A

» Dynamics:

P(Xey1=1) = ZP(Xt = J)Pji

» Stationary distribution 7

OO_I ZP oo—J i 7T,‘:Z7TJ'PJ','
J

(global balance)



Return time
Since 7; is the frequency of visits of node / in stationary regime,
the mean return time to node / is given by

1

P () —

0 = Bi(r) =~

with 777 = min{t > 1: X; = i}

oY,
VAQ;;AV"

oy AN
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Reversibility

A Markov chain is called reversible if in stationary regime, the
probability of any sequence of states is the same in both directions
of time



Reversibility

A Markov chain is called reversible if in stationary regime, the
probability of any sequence of states is the same in both directions
of time

» Transition from state i to state j:

P(Xe = i, Xer1 = J) = P(Xe = j, Xeq1 = i)
< mP;j=mPj (local balance)



Reversibility

A Markov chain is called reversible if in stationary regime, the
probability of any sequence of states is the same in both directions
of time

» Transition from state i to state j:

P(Xe = i, Xer1 = J) = P(Xe = j, Xeq1 = i)
< mP;j=mPj (local balance)

» Sequence of states iy, i1, .. . i

P(Xt — iOa" . 7Xt+€ = Iﬂ) = P(Xt = if?""Xt'f'f = IO)

< 71','0P,'0,'1...P,'271,'é :ﬂ-iePiziéq""Dilio



Reversibility & random walks

» The random walk in a graph is a reversible Markov chain,
with stationary distribution 7 oc d




Reversibility & random walks

» The random walk in a graph is a reversible Markov chain,
with stationary distribution 7 oc d

» Conversely, any reversible Markov chain is a random walk in
a graph, with weights 7;Pj; = m; P;j;



Reversibility in physics

» All microscopic laws of physics are reversible
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» All microscopic laws of physics are reversible

» The second law of thermodynamics states that the evolution
of any isolated system is irreversible



Reversibility in physics

» All microscopic laws of physics are reversible

» The second law of thermodynamics states that the evolution
of any isolated system is irreversible

» This apparent paradox was solved by Tatiana & Paul
Ehrenfest in 1907
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Hitting time, commute time & escape probability
> Mean hitting time of node j from node i:
Hij = Ei(1;), 7 =min{t>0:X; =/}
» Mean commute time between nodes / and j:
pij = Hij + Hji
» Escape probability from node / to node j:

ej = Pi(r; < 7)

1

Pij = ——
77,-e,-j




Proof



Frequency of no-return paths

Vi ;é_/ Ti€jj = Tj€jj
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Laplacian matrix

Let D = diag(Al).

The matrix L = D — A is called the Laplacian matrix.

Heat equation

» Fix the temperature of some nodes S C {1,...,n}
> Interpret the weight Aj;; as the thermal conductivity
» Then for any node i € S,

dT
P ZAU(TJ — Tj) = —(LT);
J



Example




Example




Example




Equilibrium

Dirichlet problem

> For any node i ¢ S,

(LT); =0

with boundary condition T; for all i € S
» The vector T is said to be harmonic

Uniqueness

There is at most one solution to the Dirichlet problem

Proof based on the maximum principle



The maximum principle



Back to random walks

» Consider the probability that the random walk first hits S in j
when starting from /:

P3 = Pi(1; = 75)

with 7¢ = min{t > 0: X; € S}
» This defines a stochastic matrix P°



Back to random walks

» Consider the probability that the random walk first hits S in j
when starting from /:

P3 = Pi(1; = 75)

with 7¢ = min{t > 0: X; € S}
» This defines a stochastic matrix P°

Existence

The solution to the Dirichlet problem is

VigS, Ti=>» PZT;
JeS




Solution to the Dirichlet problem
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Spectral analysis
The Laplacian matrix L is symmetric and positive semi-definite

YweR" vilv= ZA,'J'(V,' —v)?
i<j




Spectral analysis
The Laplacian matrix L is symmetric and positive semi-definite

YweR" vilv= ZA,'J'(V,' —v)?
i<j

Spectral decomposition

L=VAVT

» A =diag(A1,...,An) is the diagonal matrix of eigenvalues,
with0=X 1 <X < ... <A,

» V =(v1,...,v,) is a unitary matrix of eigenvectors,

with vy =1/y/n



Mechanics

Consider a mechanical system of n particles of unit mass located
on a line and linked by springs with stiffness A;; (Hooke's law)
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Denoting by v € R" the location of these particles, the force
between / and j is:
Ajjlvi = vjl



Mechanics

Consider a mechanical system of n particles of unit mass located
on a line and linked by springs with stiffness A;; (Hooke's law)

Denoting by v € R" the location of these particles, the force
between / and j is:
Ajjlvi = vjl

We deduce the potential energy of the system:

1 1
5 D Aj(vi—v)? = SV Ly

i<j



Energy minima

The minimum of v’ Lv under the constraint v v =1 is:
> 0 (take v = v1)

> )2 under the constraint 17v = 0 (take v = v»)

Theorem
Forall k=1,...,n,

Ak = min viLlv
viviv=1
v1T v:O,,..,v,;r_lv:O

and the minimum is attained for v = vj.



Proof



Physical interpretation

Assume each particle has unit mass and let the mechanical system
rotate with angular velocity w > 0



Physical interpretation

Assume each particle has unit mass and let the mechanical system
rotate with angular velocity w > 0
By Newton's law,

Vi, ZA,'J'(VJ' — V) = —viw?
J

— Lv=1uw?v



Physical interpretation

Assume each particle has unit mass and let the mechanical system
rotate with angular velocity w > 0
By Newton's law,

Vi, ZA,'J'(VJ' — V) = —viw?
J

— Lv=1uw?v

Observations

» The only possible values of angular velocity are v/ A2, ..., VA,
» The corresponding equilibra are proportional to vs, ..., v,



Physical interpretation (energy)

At equilibrium, the potential energy is equal to the (rotational)
kinetic energy:

1 1

ivTLv = EVTVLdz

Tv is the moment of inertia of the system.

where v



Physical interpretation (energy)

At equilibrium, the potential energy is equal to the (rotational)
kinetic energy:
I r 1 7 5
—v'lv=-v'vw
2 2
v is the moment of inertia of the system.

For unit moments of inertia,

where v7T

» The only possible values of energy are (half) A, ..., A,

» The corresponding equilibra are vo, ..., v,



Example

Vo V3




Back to random walks

» The normalized symmetric Laplacian is defined by:
L= D—1/2LD—1/2 -/ — D—1/2AD—1/2

» This matrix is symmetric and positive semi-definite

> By the spectral theorem,
£=vry’

where I' = (y1,...,7n), with 11 =0 <12 < ... <7,

The transition matrix P has eigenvalues 1 > 1 — 4, > ... > v,
with corresponding matrix of eigenvectors D~1/2V
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Pseudo-inverse

Recall that
L=VAVT

The pseudo-inverse of L is
LT =vAtvT

with

1 1
AT =di 0,—, ..., —
1ag<7}\27 7)\’7)

117
LL+=L+L=/—T




Proof



First graph embedding

Consider the embedding Z = (z1, ..., z,) of the nodes in R", with

Z=+VANtVT



First graph embedding

Consider the embedding Z = (z1, ..., z,) of the nodes in R", with

Z=+VANtVT

» The first coordinate is 0
» The k-th coordinate is vx/v/ Ak, with energy

1vaka_1

2 2

> Null component-wise averages, Z1 =0

» The Gram matrix of Z is the pseudo-inverse of L

ZTZ=vAtvT =t



Example in R?
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Second graph embedding

Consider the embedding X = (xi, ..., x,) of the nodes in R”, with

X =+/|d|Z(I —=1T)

» Shifted, normalized version of Z

> Null component-wise weighted averages, Xm =0

» Gram matrix of X:
G=X"X=\|d|(l -1xT)LT( —71T)

Gr =0



Example in R?
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Back to random walks

» The mean hitting time of node j from node / satisfies:

Y\ 1+ ko1 PiHy  otherwise
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Back to random walks

» The mean hitting time of node j from node / satisfies:

Y\ 1+ ko1 PiHy  otherwise

» We deduce that the matrix (/ — P)H — 117 is diagonal
» Equivalently, the matrix LH — d17 is diagonal

H=11"d(G)- G

where G = XT X is the Gram matrix of X




Back to random walks

» The mean hitting time of node j from node / satisfies:

Y\ 1+ ko1 PiHy  otherwise

» We deduce that the matrix (/ — P)H — 117 is diagonal
» Equivalently, the matrix LH — d17 is diagonal

H=11"d(G)- G
where G = XT X is the Gram matrix of X

H=1nT —G with h" =7TH




Graph embedding and random walk

» Square distance to the origin:
|xi||> = h; (hitting time)
» Scalar product:
XJ-T(XJ' —x;) = Hy  (hitting time)
» Square distance between nodes i and j:

|Ixi — xj||> = pj (commute time)



Proof of the Theorem

Lemma

There is at most one matrix H such that LH — d17 is diagonal and
d(H)=0




Proof of the Theorem

H=11"d(G)- G




Mean return times
» The mean return time to node i satisfies

o = 1+ZPUHﬁ
J

» Thus the diagonal of PH + 117 gives the mean return times

Corollary

d(PH +117) = diag(n) !




Electricity

» Consider the electric network induced by the graph, with a
resistor of conductance A;; between nodes / and



Electricity

» Consider the electric network induced by the graph, with a
resistor of conductance A;; between nodes i and j

» We look for the vector U of electric potentials given Us; =1
(source) and Uy = 0 (sink)




A Dirichlet problem

» By Ohm'’s law, the current that flows from / to j is
Aj(Ui = U))
» By Kirchoff’s law, the net current at any node i # s, t is null:

> AU —U) =0
j

that is (LU); =0
» The vector U is the solution to the Dirichlet problem with
boundary conditions Us =1 and U; =0



Energy dissipation

» Energy dissipation = differential of potential x current

» Total energy dissipation

> AU - Uiy

i<j

Thompson's principle
The potential vector U minimizes energy dissipation

Taking the derivative in U;
> AU = Up) =0
J

that is (LU); = 0, which is the Dirichlet problem



Solution to the Dirichlet problem

The electric potential of node i is

(xi — Xt)T(Xs — Xt)

U =
: [Ixs — xe[?




Example

=75




Effective conductance, effective resistance

» The current that goes from node s to node t is
dl_ld
Ixs =l pst
» This is the effective conductance between s and t

» The effective resistance between s and t is proportional to
pst, the mean commute time between nodes s and t



Electricity and random walks

The vector U of electric potential is the solution to the Dirichlet
problem with U; =1 and U; =0

Interpretation of voltage

The voltage of any node is the probability that the random walk
starting from this node reaches node s before node t



Electricity and random walks

The vector U of electric potential is the solution to the Dirichlet
problem with U; =1 and U; =0

Interpretation of voltage

The voltage of any node is the probability that the random walk
starting from this node reaches node s before node t

Interpretation of current

The net current from node / to node j is the net frequency of
particles moving from node i to node j, with a flow of particles
entering the network at node s at rate

1

Pst



The current as the net flow of particles



Extension

» A single source s, at electric potential 1

» Multiple sinks t1,..., tk, at electric potential 0




Solution to the Dirichlet problem

The electric potential of node i is:

K

U= aklxi = xi) T (% = x,)
k=1
where
» [ is an arbitrary element of {1,..., K}

» « is the unique solution to the equation Ma = |d|1, with M
the Gram matrix of the vectors (xs — X¢,, .- -, Xs — X¢,)

General solution to the Dirichlet problem

» For each s € S, apply previous result to get Pg = U;
» The potential of each node i € S'is U; = Zjes P,fUJ-
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Graph embedding

1.
2.
3.

Check that the graph is connected

Form the Laplacian L=D — A

Compute vy, ..., vk, the k eigenvectors of L associated with
the lowest eigenvalues, \; < ... < A

Compute Z = diag (\/%, . ﬁ) (va,...,v)"

Return X = /|d|Z(/ — 71T) where m = d/|d|

The dimension of the embedding must be chosen so that Ay is
large compared to A



Ranking

Centrality

» Output: nodes in increasing order of ||x;||?

Local centrality

> Input: node s of interest

» Ouput: nodes in increasing order of x;” (x; — xs)

Local centrality (multiple nodes)

» Input: nodes sy, ..., sk of interest (with weights)

» Ouput: nodes in increasing order of x;” (x; — x)
with x the weighted sum of xs, ..., Xs



Ranking with repulsive nodes

Directional centrality

» Input: node s of interest, repulsive node t

» Ouput: nodes in increasing order of x;” (xs — x¢)

Directional centrality (multiple repulsive nodes)

» Input: node s of interest, repulsive nodes t1, ..., tx

» Ouput: nodes in increasing order of x;” x with

K
X = Zak(xs — Xt,)
k=1

where « is the solution to Ma = 1, with M the Gram matrix
of (Xs — Xty -+ s Xs — Xty )



Clustering
Partition Cy,..., Ck of the nodes

» Objective: Minimizing

J=D M — el with g = |C1k! > xi
ieCy

k ieCy

» A combinatorial problem (NP-hard)




The K-means algorithm

Algorithm

Input: K, number of clusters

Init @1, ..., uk arbitrarily
Repeat until convergence:

» for each k, C, + closest points of px
» for each k, uyx < centroid of Cj
Output: Clusters Cy,...,Cx

» Convergence in finite time
> Local optimum, that depends on the initial values of
M1y UK



Back to random walks

Observing that

1
J= == ) ki = xll?
p 2|Ck| .4
i,jeCy
the cost function J is, up to a factor n/2:

» the mean square distance of a random point to another
random point of the same cluster

» the mean commute time of the random walk between a

random node and another node taken uniformly at random in
the same cluster



Modularity

» Given some clustering C, let
C
Q= Zﬂ', i — )0

where

5C — 1 if i,j are in the same cluster
~ | 0 otherwise



Modularity

» Given some clustering C, let
C
Q= ZW' i — )05

where

5C — 1 if i,j are in the same cluster
~ | 0 otherwise

» Then Q is the difference between the probabilities that
(1) two successive nodes of the random walk are in the same
cluster
(2) two independent random walks are in the same cluster

» Maximizing @ is NP-hard



The Louvain algorithm

Algorithm

Init each node in its own cluster
Repeat until convergence:

» while @ increases, change the cluster of any node to one of its
neighbors

» aggregate all nodes belonging to the same cluster in a single
node

Output: Clusters

» Convergence in finite time

» Local optimum, that depends on the order in which nodes are
considered



Summary

» Random walks in graphs provide efficient techniques for
ranking and clustering nodes

> In the lab session, you will learn to apply these techniques to
real graphs using the Python networkx package
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